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Solution 1 - The colour of the sky 

Rayleigh scattering through a thicker layer of air causes high energy (blue) 
photons to be scattered too much to be visible, while lower energy (red) 
retains more of its directionality and is thus the dominant wavelength (see 
picture). This effect is also the main reason why the sun appears yellowish 
to us. From space, it looks actually white. 

Solution 2 - Half-value layer and effective atomic number Zeff 

a)  
𝑛𝑛(𝑥𝑥) = 𝑁𝑁0𝑒𝑒−𝜇𝜇𝑥𝑥𝑎𝑎  
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  ⇒   𝑥𝑥𝑎𝑎 = 0.94 𝑐𝑐𝑐𝑐 

b) Use 

𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒 = ��𝜆𝜆𝑖𝑖𝑍𝑍𝑖𝑖3.4
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, with 𝜆𝜆𝑖𝑖 =

𝑃𝑃𝑖𝑖𝑍𝑍𝑖𝑖
𝐴𝐴𝑖𝑖

∑ 𝑃𝑃𝑗𝑗𝑍𝑍𝑗𝑗/𝐴𝐴𝑗𝑗𝑛𝑛
𝑗𝑗=1

 

Let <1> refer to H, <2> to O and <3> to Gd: 

Z1=1 Z2=8 Z3=64 

A1=1 A2=16 A3=157 

P1=55·2·1=110 P2=55·16=880 P3=0.001·157=0.157 

Plugging this in gives Zeff=7.85, while pure water gives 7.49. 

Solution 3 - Compton Scattering 

a) 

The relationship between energy and wavelength is in this case: 

ℎ𝜈𝜈(𝑘𝑘𝑘𝑘𝑘𝑘) =  
ℎ𝑐𝑐
𝜆𝜆

=  
(6.62 · 10−34 𝐽𝐽 · s) (3 · 108 𝑚𝑚/𝑠𝑠𝑠𝑠𝑠𝑠)

(𝜆𝜆)(10−9 𝑚𝑚/nm) (1.6 · 10−19 𝐽𝐽/𝑒𝑒𝑒𝑒)(103 𝑒𝑒𝑒𝑒/keV) 
=

1.24
𝜆𝜆

 

The wavelength λ of a 2-MeV photon then is:  

𝜆𝜆 =  
1.24
ℎ𝜈𝜈

=  
1.24

2000 𝑘𝑘𝑘𝑘𝑘𝑘
= 0.00062 𝑛𝑛𝑛𝑛 

 

 

The energy transferred to the electron is greatest when the change in wavelength of the photon is 
maximum; Δλ is maximum when φ = 180 degrees. 

𝛥𝛥𝜆𝜆max = 0.00243[1 − cos(180)] = 0.00243[1 − (−1)] = 0.00486 nm 

Rayleigh Scattering: 
Picture taken one hour after sunset 
(courtesy wikipedia article “Rayleigh Scattering) 
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The wavelength λ’ of the photon scattered at 180 degrees is now: 

𝜆𝜆′ = 𝜆𝜆 + 𝛥𝛥𝛥𝛥 = (0.00062 + 0.00486) 𝑛𝑛𝑛𝑛 = 0.00548 𝑛𝑛𝑛𝑛 

The energy hν’ of the scattered photon is: 

ℎ𝜈𝜈′ =  
1.24
𝜆𝜆′

=  
1.24

0.00548 𝑛𝑛𝑛𝑛
= 226 𝑘𝑘𝑘𝑘𝑘𝑘 

The energy Ek of the Compton electron is: 

𝐸𝐸𝑘𝑘 = ℎ𝜈𝜈 − ℎ𝜈𝜈′ = (2000 − 226) 𝑘𝑘𝑘𝑘𝑘𝑘 =  1774 𝑘𝑘𝑘𝑘𝑘𝑘 

b) ∆λ = 0.00243·(1-cosθ), so Δλ = 0.00071 nm. As above, hν = 1.24/λ, so λ = 1.24/150 = 0.0083 nm. The 
scattered photon has wavelength λ’ = λ+∆λ, which gives it λ’ = 0.00901 nm and hν’ = 138 keV. The Compton 
electron takes the remaining 150 keV – 138 keV = 12 keV. 

As λ’> λ, the energy of the scattered photon is decreased. 

 

c)  λ is the wavelength of the photon before scattering, 

λ' is the wavelength of the photon after scattering, 

m is the mass of the electron, 

θ is the angle by which the photon's heading changes 

Energy and momentum conservation: 

𝐸𝐸𝛾𝛾 +  𝐸𝐸𝑒𝑒 =  𝐸𝐸𝛾𝛾′ +  𝐸𝐸𝑒𝑒′        (1) 

𝑝⃗𝑝𝛾𝛾 =  𝑝⃗𝑝𝛾𝛾′ +  𝑝⃗𝑝𝑒𝑒′        (2)  

where 𝐸𝐸𝛾𝛾 and 𝑝𝑝𝛾𝛾 are the energy and momentum of the photon 

and 𝐸𝐸𝑒𝑒  and 𝑝𝑝𝑒𝑒 are the energy and momentum of the electron 

From (1), we have:  ℎ𝑓𝑓 +  𝑚𝑚𝑐𝑐2 = ℎ𝑓𝑓′ +  �(𝑝𝑝𝑒𝑒′𝑐𝑐)2 + (𝑚𝑚𝑐𝑐2)2        

 Solving for 𝑝𝑝𝑒𝑒′: 

 (ℎ𝑓𝑓 +  𝑚𝑚𝑐𝑐2 − ℎ𝑓𝑓′)2 =  (𝑝𝑝𝑒𝑒′𝑐𝑐)2 + (𝑚𝑚𝑐𝑐2)2   

�ℎ𝑓𝑓+ 𝑚𝑚𝑐𝑐2−ℎ𝑓𝑓′�2− 𝑚𝑚𝑐𝑐2

𝑐𝑐2
=  𝑝𝑝𝑒𝑒′2              (3) 

Solving (2) and rearrange: 

𝑝⃗𝑝𝑒𝑒′
2 =  𝑝⃗𝑝𝛾𝛾

2 +  𝑝⃗𝑝𝛾𝛾′
2 −  2𝑝⃗𝑝𝛾𝛾′𝑝⃗𝑝𝛾𝛾 =   𝑝⃗𝑝𝛾𝛾

2 +  𝑝⃗𝑝𝛾𝛾′
2 −  2�𝑝𝑝𝛾𝛾′��𝑝𝑝𝛾𝛾� cos𝜃𝜃  

𝑝𝑝𝑒𝑒′2 =  �ℎ𝑓𝑓
𝑐𝑐
�
2

+  �ℎ𝑓𝑓′
𝑐𝑐
�
2
− 2 �ℎ𝑓𝑓′

𝑐𝑐
� �ℎ𝑓𝑓

𝑐𝑐
� cos𝜃𝜃       (4) 
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By equating (3) and (4), we get after simplification: 

−2ℎ2𝑓𝑓𝑓𝑓′cos𝜃𝜃 =  −2ℎ2𝑓𝑓𝑓𝑓′ +  2ℎ(𝑓𝑓 − 𝑓𝑓′)𝑚𝑚𝑚𝑚2      

Dividing by −2ℎ𝑓𝑓𝑓𝑓′𝑚𝑚𝑚𝑚2  : 

𝑓𝑓 − 𝑓𝑓′
𝑓𝑓𝑓𝑓′

=
ℎ
𝑚𝑚𝑚𝑚2

(1 − cos𝜃𝜃) 

which can be rewritten:   
1
𝑓𝑓′
−  1

𝑓𝑓
= ℎ

𝑚𝑚𝑚𝑚2
(1 − cos𝜃𝜃).  

This is equivalent to the Compton scattering equation, but it is usually written using λ's rather than f's.  

 𝑓𝑓 = 𝑐𝑐
𝜆𝜆
  , so we have finally: 𝜆𝜆′ − 𝜆𝜆 = ℎ

𝑚𝑚𝑚𝑚
(1 − cos𝜃𝜃). 

c bis)  We can also derive this equation directly from the Compton Energy equation seen in the lecture (slide 3-8): 

𝐸𝐸𝑓𝑓 =
𝐸𝐸𝑖𝑖

(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝐸𝐸𝑖𝑖
𝑚𝑚𝑒𝑒𝑐𝑐2

+ 1
 

For a photon, we have : 

𝐸𝐸 = ℎ𝑓𝑓 = ℎ
𝑐𝑐
𝜆𝜆

 

The Compton equation becomes then: 

(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
𝐸𝐸𝑖𝑖

𝑚𝑚𝑒𝑒𝑐𝑐2
𝐸𝐸𝑓𝑓 + 𝐸𝐸𝑓𝑓 = 𝐸𝐸𝑖𝑖  

ℎ2𝑐𝑐2
𝜆𝜆𝑖𝑖𝜆𝜆𝑓𝑓
𝑚𝑚𝑒𝑒𝑐𝑐2

(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + ℎ
𝑐𝑐
𝜆𝜆𝑓𝑓

= ℎ
𝑐𝑐
𝜆𝜆𝑖𝑖

 

ℎ𝑐𝑐
𝜆𝜆𝑖𝑖𝜆𝜆𝑓𝑓𝑚𝑚𝑒𝑒𝑐𝑐2

(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) +
1
𝜆𝜆𝑓𝑓

=
1
𝜆𝜆𝑖𝑖

 

ℎ
𝑚𝑚𝑒𝑒𝑐𝑐

(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝜆𝜆𝑖𝑖 = 𝜆𝜆𝑓𝑓 

         𝜆𝜆𝑓𝑓 − 𝜆𝜆𝑖𝑖 = ℎ
𝑚𝑚𝑒𝑒𝑐𝑐

(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

Solution 4 - Pair Production 

a) Subtract 511 keV per created electron and divide the remaining energy by two: 
(2750-1022)/2=864 keV. 

b) ∆λ = 0.00243·(1-cosθ); if φ=60°, Δλ=0.001215 nm. If we assume that the incident photon has the limit of 
infinite energy and thus λ=0, then λ’= Δλ and hν’=1.24/λ’=1021 keV. At least 1022 keV is needed for pair 
production to occur.  

Solution 5 - Radiation Protection 

a) 1Gy=E/m   =>   10cGy = 0.1Gy = E/(10·10-3) kg   =>   E=10-3J 

b) This question is often asked to new people at PET centres. 
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i. µ= (µ/ρ)·ρ = 0.1542 cm2/g · 11.35 g/cm3 = 1.75 cm-1. 
ii. The transmission for perpendicular radiation is 0.25, so  𝑒𝑒−µ·𝑑𝑑25% =  𝑒𝑒−1.75 cm−1·𝑑𝑑25% = 0.25. This 

means µ·d25% = ln(4) and thus d25% = ln(4)/1.75 cm-1 = 0.792 cm. 
iii. m = V · 𝜌𝜌 = A · 𝑑𝑑25% · 𝜌𝜌 = 1.5·104 cm2 · 0.792 cm · 11.35 g/cm3 = 134838 g = 135 kg. 
iv. The calculated weight is too heavy to carry. If we take 10 kg as the maximum apron weight, the 

transmission would be 92%. This means no lead aprons are used in PET. 

 

 


