

Solution 1: MR Quiz

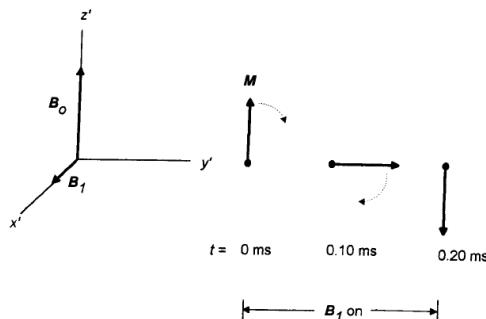
- a) False. As the magnetisation vector returns to the z axis, necessarily the transverse component goes to zero.
- b) True. If the B_0 field is inhomogeneous, nuclei at different positions will process at different rates and hence the spin system de-phases faster, which results in a shorter free induction decay.
- c) False. When the magnetization relaxes, excess energy in the spin system is released to the environment (the lattice).
- d) False. A shorter T_1 means that it takes shorter time for the spin system resumes to its thermal equilibrium state.
- e) False.
- f) A solid-state sample.

Solution 2: Precession

a) $\nu = \frac{\gamma B_0}{2\pi} = \frac{(267.512 \cdot 10^6 \text{ rad}) \cdot 5.87 \text{ T}}{2 \cdot 3.14 \text{ rad}} = 250 \text{ MHz}$

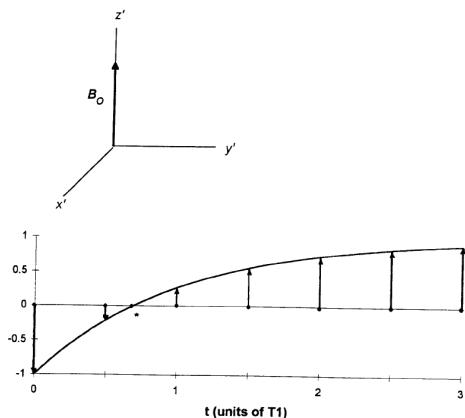
Since B_1 is $10^{-5}B_0$, ^1H nuclei will precess around B_1 at $10^{-5} \cdot 250 \text{ MHz} = 2.5 \text{ kHz}$

- b) The cycle time $t_0 = 1/\nu = 0.400 \text{ ms}$.
- c) Since one complete cycle requires 0.4ms, \mathbf{M} will rotate 360° in 0.4ms. The tip angle will start at 0° at $t=0$. After 0.1ms it will have rotated one-fourth of a cycle (90°) and 180° after 0.2ms.
- d) See figure:



- e) A tip angle of 180° results in a perfectly inverted \mathbf{M} , where the population of down spins now outnumbers up spins. No T_2 -controlled relaxation is needed since \mathbf{M} already lies along the $-z$ axis. But the normal Boltzmann distribution must be reestablished by longitudinal relaxation (controlled by T_1).

See figure below.



Solution 3: Longitudinal Relaxation

a) The z-component of magnetization is given by:

$$M_z(\tau) = M_z(\tau = 0)(1 - 2e^{-\tau/T_1})$$

By setting the left hand side equal to zero, and solving for τ we obtain:

$$\tau = T_1 \ln(2)$$

b) Inversion recovery experiment. A 180° pulse is applied, then a relaxation delay t_{ir} is applied before flipping the relaxed magnetization into the xy plane. The 90° pulse allows to access magnetization along the longitudinal axis, which means the relaxation at time t_{ir} . Redoing this experiment several times varying the relaxation delay t_{ir} allows to rebuild the relaxation curve given by the equation in point a). Especially, you can determine the point such as $M_z(\tau) = 0$ and then calculate relaxation time T_1 .

c) The experiment would consist in applying a 180° pulse and waiting a time T_{IR} such that the CSF would be in the xy plane (but not the WM magnetization that has a different T_1) before applying a 90° pulse. The basic idea of the experiment is that after the 90° pulse, the CSF magnetization would return along the z axis and wouldn't be measured while the remaining WM along the z axis would be flip into the xy plane. Using the equation found in a) :

$$T_{IR} = T_1 \ln(2)$$

As $T_{1,CSF} = 2800\text{ms}$, $T_{IR} = 1941\text{ms}$.

At time T_{IR} the WM magnetization (along the z axis) will be :

$$M_{z,WM}(T_{IR}) = M_{z,WM}(t = 0) \left(1 - 2e^{-\frac{T_{IR}}{T_{1,WM}}} \right) = 0.82 M_{z,WM}(t = 0)$$

Using this experiment CSF signal would be cancelled while WM signal would have fully recovered!!!

Solution 4: Liver Experiment

Signal decrease (in xy plane) is governed by T_2 relaxation. It is described by the following equation : $S(t) =$

$$S_0 e^{-t/T_2}$$

So for $t = 40\text{ms}$

$$S(40\text{ms}) = S_0 e^{-40/40} = 0.37 S_0$$

And for $t = 500\text{ms}$

$$S(500\text{ms}) = S_0 e^{-500/40} = 3.7 \times 10^{-6} S_0$$

Solution 5: Excitation Pulses

The excitation profile is given by:

$$\begin{aligned} H(f) &= \int_0^{2\tau} A e^{-i2\pi f t} dt = A \int_0^{2\tau} \cos(2\pi f t) dt - iA \int_0^{2\tau} \sin(2\pi f t) dt \\ &= \frac{A}{2\pi f} \sin(2\pi f t) \Big|_0^{2\tau} + \frac{iA}{2\pi f} \cos(2\pi f t) \Big|_0^{2\tau} = \frac{A}{2\pi f} [\sin(4\pi f \tau) + i(\cos(4\pi f \tau) - 1)] \\ &= \frac{A}{2\pi f} \sqrt{2 - 2\cos(4\pi f \tau)} e^{i\varphi} = \frac{A}{2\pi f} \sqrt{4 \sin^2(2\pi f \tau)} e^{i\varphi} = \frac{A}{\pi f} |\sin(2\pi f \tau)| e^{i\varphi}, \text{ with} \end{aligned}$$

$$\varphi = \arctg \left(\frac{\cos(4\pi f \tau) - 1}{\sin(4\pi f \tau)} \right) = -2\pi f \tau : \text{a phase modulation}$$

$\frac{A}{\pi f} |\sin(2\pi f \tau)|$: the amplitude of each frequency contributing to the signal

The excitation bandwidth is given by the frequency interval between the two first zeros of the sinc function:

$$\frac{A}{\pi f} |\sin(2\pi f \tau)| e^{-i2\pi f \tau}.$$

Thus the excitation bandwidth is $\frac{1}{\tau}$.