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Exercise 1 – Beam Hardening 

The polychromatic x-rays used in x-ray imaging and CT experience different attenuations for different wave energies; 
this is due to the fact that the attenuation in biological tissue is dependent on the energy of the rays. This leads to 
the effect called “beam hardening”. 

a) A typical energy distribution of the beam from the x-ray source is shown in Figure 1. Sketch the energy 
spectrum after the beam has passed through the body. 

 
b) In Figure 2, calculate the X-ray intensity, as a function of the incident intensity I0 that reaches the film for 

each of the three X-ray beams. The dark-shaded area represents bone and the light-shaded area represents 
tissue. The linear attenuation coefficients at the effective X-ray energy of 68keV are 10 and 1 cm-1 for bone 
and tissue, respectively. 

Exercise 2 – Sinogram 

A straightforward depiction of the data obtained by a CT scanner is a sinogram. It shows the imaging data 
accumulated by the different projections. 

   

 Figure 3 Figure 4 

a) For the object shown in Figure 3, draw the CT projections that would be obtained at angles 
ø = 00, 450, 900, 1350, and 1800 

b) For the object shown in Figure 4, sketch the sinogram for values of ø from 0 to 1800. 

Exercise 3 – Reconstruction Methods 

CT images can be reconstructed using different methods. In this exercise, we want to give you an insight into how 
these methods work by applying them to a simplified example; we investigate a matrix of only 2x2 elements. Don’t 
worry; this exercise is only long, but not too tough! 

 

 Figure 1 Figure 2 
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a. Given is the 2x2 image below. The intensity values of the pixels are A11 to A22, while the projections along 
certain directions are named P0(i) and P90(i). 
 
 
 
 
 
 
Use direct matrix inversion to calculate the values of A11 to A22.  
Hint: 
You have a system of 4 unknowns and 4 possible equations. Write a matrix system 𝐹𝐹𝐹𝐹 = 𝑝𝑝, where 𝑎𝑎 and 𝑝𝑝 are 
the pixel and projections written into a vector, and 𝐹𝐹 is a 4x4 matrix filled with 0 and 1 to match the 
corresponding equations. Here are some matrices and their inversions which might be handy: 
 

𝐹𝐹 = �

1 1 0 0
0 0 1 1
1 0 1 0
1 0 0 1

�→ 𝐹𝐹−1 = �

0 −0.5 0.5 0.5
1 0.5 −0.5 −0.5
0 0.5 0.5 −0.5
0 0.5 −0.5 0.5

� 

𝐹𝐹 = �

1 1 0 0
1 0 1 0
1 0 0 1
0 0 1 1

�→ 𝐹𝐹−1 = �

0 0.5 0.5 −0.5
1 −0.5 −0.5 0.5
0 0.5 −0.5 0.5
0 −0.5 0.5 0.5

� 

 
b. A similar image is given below. Use the back projection theorem to calculate the pixel values.  

 
 
 
 
 

 
 
 
To do that, for each pixel, sum the values of all projections passing through it. Then rescale the resulting image by 
dividing it by  the sum of all the new projections values

the sum of all the original  projections values
 . Compare your result to 𝑏𝑏2 = 𝐹𝐹𝑇𝑇𝑝𝑝.   

 
Why can’t you compute 𝐹𝐹−1  and what does it imply on the reconstructed image using only these projections ?   

B22 B21 

B12 B11 P0 (0) = 7 

P0 (1) = 3 

P90 (1) = 4 P90 (0) = 6 

A22 A21 

A12 A11 P0 (0) = 3 

P0 (1) = 7 

P45 =5 P90 = 4 
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c. The same set of pixels as in b is given, but now with two extra projections.  

 
 
The number of equations is larger than the number of unknowns. In general, image reconstruction is a 
minimization problem. Here we want 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = argmin 

b
‖𝐹𝐹𝐹𝐹 − 𝑝𝑝‖2  . The solution to this problem is the 

pseudo-inverse:  
𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑃𝑃𝑃𝑃 𝑝𝑝 = (𝐹𝐹𝑇𝑇𝐹𝐹)−1𝐹𝐹𝑇𝑇𝑝𝑝  
 

Compute 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   (using the hint). 
 
Compute the new back-projected image, and compute the residual value 𝑟𝑟 with 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  : 

 𝑟𝑟 = �𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�
2

  
 
How does it compare to the residual value of point b. ? What do you conclude about back-projection ? 
 
Hint: 

𝐹𝐹 =

⎝

⎜⎜
⎛

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0⎠

⎟⎟
⎞

 → 𝐹𝐹𝑃𝑃𝑃𝑃 =
1
6
�

  2 −1   2 −1   2 −1
  2 −1 −1   2 −1   2
−1    2   2 −1 −1   2
−1    2 −1   2   2 −1

� 

 
 
 
 
 

 
 

  

B22 B21 

B12 B11 P0 (0) = 7 

P0 (1) = 3 

P90 (1) = 4 P90 (0) = 6 
P45 = 5 P135 = 5 
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Exercise 4 – Spatial Resolution of Back-Projection 

You saw in the course that one of the issues applying back projection is the low spatial resolution. Here, we try to 
investigate this mathematically. We are interested in the attenuation coefficient as a function of position 𝜇𝜇(𝑥𝑥,𝑦𝑦) . 
We measure g(𝑥𝑥′,𝜑𝜑), the radon transform of the 𝜇𝜇 along 𝑦𝑦′  (see picture). 

 

 
 

1. Justify why the back-projected 𝜇𝜇𝐵𝐵(𝑥𝑥, 𝑦𝑦) can be written as 

𝜇𝜇𝐵𝐵(𝑥𝑥,𝑦𝑦) =  �  
+∞

−∞
� g(𝑥𝑥′,𝜑𝜑)δ(xʹ− (cos(𝜑𝜑) x + sin(𝜑𝜑) 𝑦𝑦) )d𝜑𝜑d𝑥𝑥′ 
𝜋𝜋

0
 

. 
2. Write the relationship between g(𝑥𝑥′,𝜑𝜑) and 𝜇𝜇(𝑥𝑥,𝑦𝑦) of the tissue. 
3. We will need to investigate rotation in k-space: show that if 𝑟𝑟 = 𝑂𝑂𝑟𝑟′, where 𝑂𝑂 is a rotation matrix  

then the Fourier transform  𝑓𝑓 of a function 𝑓𝑓 obeys 𝑓𝑓�𝑂𝑂𝑘𝑘�⃗ � =  ∫𝑓𝑓(𝑂𝑂𝑟𝑟′)𝑒𝑒𝑖𝑖𝑘𝑘�⃗ ∙𝑟𝑟′d2rʹ. 
4. Deduce from the previous results that  

𝜇𝜇�(cos(𝜑𝜑) 𝑘𝑘𝑥𝑥, sin(𝜑𝜑) 𝑘𝑘𝑥𝑥) = � g(𝑥𝑥′,𝜑𝜑)𝑒𝑒𝑖𝑖𝑘𝑘𝑥𝑥𝑥𝑥′d𝑥𝑥′ 

Use this result to show  𝜇𝜇𝐵𝐵(𝑥𝑥,𝑦𝑦) =  ∫𝜇𝜇�(𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑦𝑦)𝑒𝑒−𝑖𝑖𝑘𝑘�⃗ ∙𝑟𝑟 d
2k

|𝑘𝑘�⃗ |
 , where the formally correct normalization 

of Fourier transforms has been omitted for simplicity.  
Hint: use the following relation: ∫ 𝑒𝑒𝑖𝑖𝑖𝑖(𝑥𝑥−𝑑𝑑)dk = δ(x − d ) 

5. Using symmetry and dimensionality arguments, show that the Fourier transform of 1
|𝑘𝑘�⃗ |

 is 

proportional to 1
|𝑥⃗𝑥|

.   

6. Explain the blurring of the image back-projected image using these results, and describe the 
algorithm of filtered back-projection. 

 


