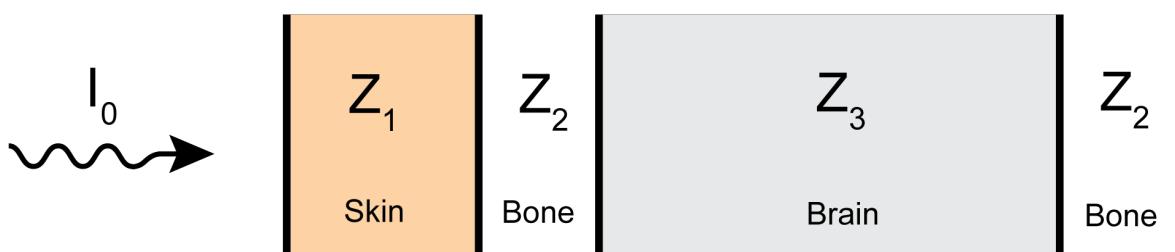


Ultrasound

Problem 1

An experimentalist wants to use ultrasound to separately detect small structures in a blood vessel that are about 0.5 mm apart. The vessel runs parallel to the surface and lies at a depth of 5 cm. Given is that the attenuation is $1 \text{ dB}/(\text{MHz}\cdot\text{cm})$. The attenuation at which an image can still be obtained is 10^{10} . The pulse duration of the ultrasound beam is 2 periods. The speed of sound in the tissue is 1580 m/s.


- What is the minimum frequency needed to spatially dissolve the structures?
- What is, based on the attenuation, the highest allowed frequency?
- If besides the resolution the signal-to-noise ratio (SNR) needs to be as high as possible, which transducer frequency would you use (qualitative answer)?

Problem 2

Consider the schematic view (figure below) of a profile in depth of a head scanned with ultrasound imaging. The structures are successively skin, bone, brain and bone again, characterized by impedances Z_1 , Z_2 , and Z_3 ($=1.12 \cdot 10^6$, $7.8 \cdot 10^6$ and $1.09 \cdot 10^6$ rayls respectively). We consider that the transducer is in close contact with the skin and we neglect absorption as well as signal coming from multiple reflections.

- What is the portion of signal coming back from the brain (i.e. from the second brain/bone interface) to the transducer?
- What do you conclude on the efficiency of ultrasound imaging for brain studies?
- In practice, gel is always spread between the transducer and the skin. Explain why.

X-rays interactions and production

Problem 3

- What is the relation between Joule and electron volt?
- Calculate the energy in Joule of a photon emitted by the Tc_{99m} isotope (see table at the end of this series).

- c. Find the frequency and the energy of blue light with a wavelength of 400 nm.
- d. What is the energy equivalent to the mass of an electron (assume that the electron is at rest)?

Problem 4

- a. Why is the distinction between ionizing and non-ionizing radiation important?
- b. What is the critical wavelength for ionizing radiation? Is it a maximal or minimal limit?
- c. Compare this limit with the visible spectrum. What can you conclude on the use of sunscreen?
- d. K- and L-shell binding energies for cesium are 28 keV and 5 keV, respectively. What are the kinetic energies of photoelectrons released from the K and L shells when 40-keV photons interact in cesium?

Constants

Energy of a TC_{99m} photon	141 keV
Electron charge	$e = 1.6 \cdot 10^{-19} \text{ C}$
Speed of light	$c = 3.0 \cdot 10^8 \text{ m/s}$
Electron mass	$m_e = 9.1 \cdot 10^{-31} \text{ kg}$
Planck constant	$h = 6.6 \cdot 10^{-34} \text{ J}\cdot\text{s}$