

Problem 1 : Spin detection

- Indicate the nuclear spin I of the three following nuclei : ^4He , ^6Li and ^7Li . In general, can all the nuclei be detected by NMR? If not what is the condition on their nuclei to be detectable and which nuclei among the three above can be detected?
- What is the energy difference between the two spin states of ^1H in a magnetic field of 5.87 T? And that of ^{13}C ?
- For both nuclei ^1H and ^{13}C , calculate which fraction of the spin population is in the upper state (higher energy)? What can you deduce for the magnetization of the two nuclei?
Hint: assume $T=300\text{K}$.
- Explain why proton signal is used for imaging in NMR and not another nucleus.
- One wants to measure glucose signal, using proton (H^1) and carbon (C^{13}) MR spectroscopy. Investigating total Glc signal, calculate sensitivity ratios between both techniques for Glc.

Problem 2 : \mathbf{B}_1 field and radiofrequency

In many MR experiments it is necessary to flip a spin which is initially aligned along the z axis into the x' - y' plane by using an appropriate rotating magnetic field \mathbf{B}_1 during a certain amount of time (pulse) (in the rotating frame, \mathbf{B}_1 is a static field orthogonal to \mathbf{B}_0). This is referred to as a 90° pulse. If the desired pulse time is 1.0ms, what \mathbf{B}_1 magnitude is required for

- A proton spin?
- A carbon spin?
- At which frequency is the magnetization originating from each of the two atoms precessing ?
- At a \mathbf{B}_0 of 9.4T, at which frequency must \mathbf{B}_1 rotate (in the lab frame) in resonance conditions for a proton spin?
- What is then the wavelength and energy of a photon of this field? Compare it to what is used for X-ray imaging.

Problem 3 : Rotating frame and effective field

In a static frame, the equation of motion for a spin, $\mathbf{m}(t)$, in a magnetic field $\mathbf{B}_0 = B_0 \mathbf{e}_z$ is given by:

$$\frac{d\vec{m}(t)}{dt} = \gamma \vec{m}(t) \times \vec{B}_0$$

- Write down the equation of motion in a rotating frame with precession speed of $\vec{\omega} = \omega \cdot \vec{e}_z$

Hint: use the following theorem, for any vector $\vec{A}(t)$

$$\left[\frac{d\vec{A}(t)}{dt} \right]_{\text{static frame}} = \left[\frac{\partial \vec{A}(t)}{\partial t} + \vec{\omega} \times \vec{A}(t) \right]_{\text{rotating frame}}$$

- Explain graphically what happens to the spin's precession speed, if we increase the precession speed of the rotating frame gradually from 0 to $\omega_0 = \gamma B_0$.
Hint: draw \mathbf{B}_{eff} in the rotating frame as ω increases.
- Now we have an exciting magnetic field \mathbf{B}_1 perpendicular to \mathbf{B}_0 and precessing around \mathbf{B}_0 at angular frequency ω . Calculate the effective field, \mathbf{B}_{eff} , in the rotating frame (where \mathbf{B}_1 is fixed) and the tangent of the angle between the \mathbf{B}_0 field and the \mathbf{B}_{eff} .

Hint: Replace γB_0 by $\omega_0 = -\gamma B_0$

$$\tan\theta = f(\omega, \omega_0, \omega_1)$$

- d) Discuss the effect of B_{eff} on the spin motion depending on ω .
- e) Draw the precession of the spin in case of resonance ($\omega = \omega_0$).