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Problem formulation: an example

Consider the (classical) ideal harmonic oscillator with the following equation of motion (g
denotes position):

j+w?q=0.
To add damping to the system we simply add a term —g on the right-hand side:
G+7q+wqg=0.
Now consider the quantum mechanical case (with damping):

[@ﬂZm;é=B,p——qu P .

We can calculate the derivative of the commutator:
d. .. A 58] — ihe
3 [P] = —[a.p] so [4,p] = ihe ™.
In other words the commutator decays with time! This violates the Heisenberg uncertainty
principle!
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Examples of open quantum systems

In what contexts does damping quantum systems play a role?
© Laser systems / Optical cavities
@ Lossy LC circuits

© Spontaneous emission
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System plus reservoir approach

Let's take a simple example:

I:Isys +Hbath = hwa'a +Zhwk?7,t@k .

SYSTEM K

BATH

We can introduce an interaction between system and bath of the following form (in the
rotating wave approximation):

Hine =} 7131 <a+ﬁk +€IBZ> .
%
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System plus reservoir approach (2)?

Let’s solve the equations of motion for the Hamiltonian = I:Isys + Hint + Hbath from the
previous page.

A i 2 (OO ] b
o= ﬁ[H’a] :—zwa(t)—l;gkbk(t)

b = iwdy— iga(t)
We now formally integrate the equation for Ek and insert back into the equation for 4.

t
bk(t) = bk(o)e_iwkt _ lgk / dt/ﬁ(t/)e_iwk(t_t/)
0

t
i) = —iwa—Y g2 / ' a(t)e =) 4 f (1)
k%

falt) = —i;gkf?k(o)e_iw"t

1See Scully " Quantum Optics”
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Quantum Langevin Equation

First we move to a rotating reference frame: & = a(t)e!.
Then we simplify the expressions by using the Markov approximation (assuming g(w) to be
frequency independent) and assuming the mode spacing is small (see next slide):

- ¥ 1 .
ng/dt’ iw—w)(t=F) Exa(t) , K= Zn‘g(w)‘zD(w)

where D(w) is the density of states. In the original frame we obtain

QUANTUM LANGEVIN EQUATION

d

&a(t) = —iwi(t) — za(t) + fa(t)

NIP%
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Mathematical details
In the previous slide we first converted the summation over k to an integral:

7

Yog= /dwk D(wy)|g(wp)?
r

where D(w) is the density of states. Secondly we assumed that the coupling gy is
approximately frequency independent. This is called the 1st Markov approximation.

Zgz/dt A )e W) t=t) = /dwk D(wk)|8(wk)|2/dtlﬁ(f')e_i(w"_“’)(t_t')
0 0

t [e9)
Dw)|g(@)[* [#(¢) [ d dwye et

1%
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Quantum to Classical, Assumptions about the bath modes

. —BEn . . .
For a thermal state described by p = pu; and pyy, = i,ng (the off-diagonal elements vanish in a thermal state):

(b(0)), = (5}(0)) =0, (BH0)B(0)) , = b,

Index R means averaging over the reservoir modes. Let's calculate <F(t)> =0 and:

<ﬁ+(t)ﬁ(t')> = 1) ssw <1A711:1A7k/>e’i(“’k"")t*i(“’k”“’)ﬂ
K K

[ Dwi)lg(@p] dagel@ ety
0

= xa(w)é(t—t).

We notice that this is in perfect analogy with the classical Langevin equations:

a N

<F(t)p+(t)> = «x[f(w) +1]6(t—1') <ﬁ(t)ﬁ(t')> =0.
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Quantum theory of damping

at<ﬁ+(t)ﬁ( >—8t<n )) = < it fz(t)} <ﬁ*(t)at(ﬁ(t))>
9 (a(MF" (1)) = —r (BOF (1)) + r(A(ew) +1)

We see that the energy of the system decays twice as fast as the amplitude of our operators. If
we check the commutator again:
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Quantum theory of damping(2)

Fourier transform (spectrum):
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Quantum Langevin Equations for a two level system (1)

Pauli matrices:
&_1 0 &_01 &_00
27 \lo =1} """ \o o)/ """ {10

Let's assume our two level system is coupled to an electromagnetic field with infinitely many
modes:

R 1. . on
Hsys = Ehﬂo'z , Hpath = Zhwkbzbk ’
k
Hint = Zhgk (@LBZ + 5’+ZA?k)
k
Using the same procedure as previously (c.f. homework) we obtain:
Q- = —iQo_ — gﬁ_ + V/K0Din (1)
o = i, — gm + V/xbin (1)

W = —x(1+0,) —2vx (&+Bin(t) + IAaiJrn(t)?L>
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Quantum Langevin Equations for a two level system (2)
The above equations are not closed and simplify significantly if we assume that the atom is
initially in the excited state |2) and that the field is in the vacuum state <I§Z(t)f)k(t)> =0 at

time t = ty. Then
(@) = <—iQ—Z> @),

(00y) =
(010z) = —x(1+(
where we have assumed <&Z?J;n(t)> = (0z) <Ein(t)> (

Hence the atom decays as:

(62(1)) = (0)e ™, x = 27t|gx|*D(w)

2 . : e : :
Here D(w) = = is the density of states of the electromagnetic field. We obtain a rigorous
3,2/117
expression for the atomic decay x = %
TTEYC
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Nobel Prize 2012 - Serge Haroche

He,, = hwi'a
~ 1 .
Hatom - EhQUZ i

Hpath = hzwkl;]tgk
p

™ = hg(ota4oat)
I:Iicnatv = hzgli@f?lt +ﬁ+l;k> Figure: R.J. Schoelkopf, S.M. Girvin,
k Nature 451, 664-669 (2008)
We can consider a simple case where ficw > kgT (i.e. 7ith = 0). Then, under the weak
coupling condition ¢ < «:
(0:(£)) = —1 4 274/

The atomic decay rate is thus I', = 4%2. This enhancement of the spontaneous emission rate
(i.e. it is faster than in free space) is called the Purcell Effect (Phys. Rev. 69, 37 (1946)).
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