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Problem formulation: an example
Consider the (classical) ideal harmonic oscillator with the following equation of motion (q
denotes position):

q̈ + ω2q = 0 .

To add damping to the system we simply add a term −γq̇ on the right-hand side:

q̈ + γq̇ + ω2q = 0 .

Now consider the quantum mechanical case (with damping):[
q̂, p̂
]
= ih̄ ; ˙̂q =

p̂
m

; ˙̂p = −mω2q̂ − γp̂ .

We can calculate the derivative of the commutator:

d
dt
[
q̂, p̂
]
= −γ

[
q̂, p̂
]
so
[
q̂, p̂
]
= ih̄e−γt .

In other words the commutator decays with time! This violates the Heisenberg uncertainty
principle!
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Examples of open quantum systems

In what contexts does damping quantum systems play a role?

1 Laser systems / Optical cavities

2 Lossy LC circuits

3 Spontaneous emission
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System plus reservoir approach

Let’s take a simple example:

Ĥsys + Ĥbath = h̄ωâ†â︸ ︷︷ ︸
SYSTEM

+∑
k

h̄ωkb̂†
k b̂k︸ ︷︷ ︸

BATH

.

We can introduce an interaction between system and bath of the following form (in the
rotating wave approximation):

Ĥint = ∑
k

h̄gk

(
â†b̂k + âb̂†

k

)
.
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System plus reservoir approach (2)1

Let’s solve the equations of motion for the Hamiltonian Ĥ = Ĥsys + Ĥint + Ĥbath from the
previous page.

˙̂a =
i
h̄
[H, â] = −iωâ(t)− i ∑

k
gkb̂k(t)

˙̂bk = iωkb̂k − igkâ(t)

We now formally integrate the equation for b̂k and insert back into the equation for â.

b̂k(t) = b̂k(0)e
−iωkt − igk

t∫
0

dt′ â(t′)e−iωk(t−t′)

˙̂a(t) = −iωâ − ∑
k

g2
k

t∫
0

dt′ â(t′)e−iωk(t−t′) + f̂a(t)

f̂a(t) = −i ∑
k

gkb̂k(0)e
−iωkt

1See Scully ”Quantum Optics”
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Quantum Langevin Equation

First we move to a rotating reference frame: ˆ̃a = â(t)eiωt.
Then we simplify the expressions by using the Markov approximation (assuming g(ω) to be
frequency independent) and assuming the mode spacing is small (see next slide):

∑
k

g2
k

t∫
0

dt′ ˆ̃a(t′)e−i(ωk−ω)(t−t′) ≈ 1
2

κ ˆ̃a(t) , κ = 2π
∣∣g(ω)

∣∣2D(ω) ,

where D(ω) is the density of states. In the original frame we obtain

QUANTUM LANGEVIN EQUATION

d
dt

â(t) = −iωâ(t)− κ

2
â(t) + f̂a(t)
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Mathematical details
In the previous slide we first converted the summation over k to an integral:

∑
k

g2
k =

∞∫
0

dωk D(ωk)
∣∣g(ωk)

∣∣2 ,

where D(ω) is the density of states. Secondly we assumed that the coupling gk is
approximately frequency independent. This is called the 1st Markov approximation.

∑
k

g2
k

t∫
0

dt′ ˆ̃a(t′)e−i(ωk−ω)(t−t′) =

∞∫
0

dωk D(ωk)
∣∣g(ωk)

∣∣2 t∫
0

dt′ ˆ̃a(t′)e−i(ωk−ω)(t−t′)

∼= D(ω)
∣∣g(ω)

∣∣2 t∫
0

ˆ̃a(t′)
∞∫

0

dt′ dωk e−i(ωk−ω)(t−t′)

∼= D(ω)
∣∣g(ω)

∣∣2 t∫
0

dt′ ˆ̃a(t′)2πδ(t − t′)

= 2πD(ω)
∣∣g(ω)

∣∣2 1
2

ˆ̃a(t) ≡ κ

2
ˆ̃a(t)
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Quantum to Classical, Assumptions about the bath modes
For a thermal state described by ρ = ρnn and ρnn = e−βEn

e−βH (the off-diagonal elements vanish in a thermal state):〈
b̂k(0)

〉
R
=
〈

b̂†
k (0)

〉
R
= 0 ,

〈
b̂†

k (0)b̂k′ (0)
〉

R
= n̄kδk,k′ ,〈

b̂k(0)b̂
†
k′ (0)

〉
R
= (n̄k + 1)δk,k′ ,

〈
b̂†

k (0)b̂
†
k (0)

〉
R
=
〈

b̂k(0)b̂k(0)
〉

R
= 0 .

Index R means averaging over the reservoir modes. Let’s calculate
〈

F̂(t)
〉
= 0 and:〈

F̂†(t)F̂(t′)
〉

= ∑
k

∑
k′

gkgk′
〈

b̂†
k b̂k′
〉

e−i(ωk−ω)t+i(ωk′−ω)t′

=

∞∫
0

D(ωk)
∣∣g(ωk)

∣∣2 dωk ei(ωk−ω)(t−t′)n̄(ωk)

= κn̄(ω)δ(t − t′) .

We notice that this is in perfect analogy with the classical Langevin equations:〈
F̂(t)F̂†(t)

〉
= κ[n̄(ω) + 1]δ(t − t′) ,

〈
F̂(t)F̂(t′)

〉
= 0 .
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Quantum theory of damping

∂t

〈
ˆ̃a†(t) ˆ̃a(t)

〉
= ∂t

〈
n(t)

〉
=
〈

∂t( ˆ̃a†(t)) ˆ̃a(t)
〉
+
〈

ˆ̃a†(t)∂t( ˆ̃a(t))
〉

∂t

〈
ˆ̃a(t) ˆ̃a†(t)

〉
= −κ

〈
ˆ̃a(t) ˆ̃a†(t)

〉
+ κ(n̄(ω) + 1)

We see that the energy of the system decays twice as fast as the amplitude of our operators. If
we check the commutator again:

d
dt

[
ˆ̃a(t), ˆ̃a†(t)

]
=

d
dt

( ˆ̃a(t) ˆ̃a†(t))− d
dt

( ˆ̃a†(t) ˆ̃a(t))

= −κ
[

ˆ̃a(t), ˆ̃a†(t)
]
+ κ = 0 .

Thus, the commutator is preserved: [
ˆ̃a(t), ˆ̃a†(t)

]
= 1 .
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Quantum theory of damping(2)

ˆ̃a(t) = −κ

2
ˆ̃a(t) + F̂(t)

Fourier transform (spectrum):

Saa(ω) =
⟨n⟩
π

κ/2
(ω − ωc)2 + κ2/4
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Quantum Langevin Equations for a two level system (1)
Pauli matrices:

σ̂z =

(
1 0
0 −1

)
, σ̂+ =

(
0 1
0 0

)
, σ̂− =

(
0 0
1 0

)
Let’s assume our two level system is coupled to an electromagnetic field with infinitely many
modes:

Ĥsys =
1
2

h̄Ωσ̂z , Ĥbath = ∑
k

h̄ωkb̂†
k b̂k ,

Ĥint = ∑
k

h̄gk

(
σ̂−b̂†

k + σ̂+b̂k

)
Using the same procedure as previously (c.f. homework) we obtain:

∂tσ̂− = −iΩσ̂− − κ

2
σ̂− +

√
κσ̂zb̂in(t)

∂tσ̂+ = iΩσ̂+ − κ

2
σ̂+ +

√
κσ̂zb̂in(t)

∂tσ̂z = −κ(1 + σ̂z)− 2
√

κ
(

σ̂+b̂in(t) + b̂†
in(t)σ̂−

)
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Quantum Langevin Equations for a two level system (2)
The above equations are not closed and simplify significantly if we assume that the atom is

initially in the excited state |2⟩ and that the field is in the vacuum state
〈

b̂†
k(t)b̂k(t)

〉
= 0 at

time t = t0. Then

⟨∂tσ̂−⟩ =

(
−iΩ − κ

2

)
⟨σ̂−⟩ ,

⟨∂tσ̂+⟩ =

(
iΩ − κ

2

)
⟨σ̂+⟩ ,

⟨∂tσ̂z⟩ = −κ (1 + ⟨σ̂z⟩) ,

where we have assumed
〈

σ̂zb̂in(t)
〉
= ⟨σ̂z⟩

〈
b̂in(t)

〉
(i.e. the system is in a separable state).

Hence the atom decays as:〈
σ̂z(t)

〉
= σ̂z(0)e−κt, κ = 2π

∣∣gk
∣∣2D(ω) .

Here D(ω) = ω2

c3π2 is the density of states of the electromagnetic field. We obtain a rigorous

expression for the atomic decay κ = ω3e2⟨1|⃗r|2⟩
3πϵ0c3 .
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Nobel Prize 2012 - Serge Haroche

Figure: R.J. Schoelkopf, S.M. Girvin,
Nature 451, 664-669 (2008)

Ĥcav = h̄ωcâ†â

Ĥatom =
1
2

h̄Ωσ̂z

Ĥbath = h̄ ∑
k

ωkb̂†
k b̂k

Ĥatom
int = h̄g(σ+â + σ−â†)

Ĥcav
int = h̄ ∑

k
gc

k(âb̂†
k + â†b̂k)

We can consider a simple case where h̄ω ≫ kBT (i.e. n̄th ≃ 0). Then, under the weak
coupling condition g ≪ κ: 〈

σ̂z(t)
〉
= −1 + 2e−4g2t/κ .

The atomic decay rate is thus Γc =
4g2

κ . This enhancement of the spontaneous emission rate
(i.e. it is faster than in free space) is called the Purcell Effect (Phys. Rev. 69, 37 (1946)).
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