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The Jarzynski equation?

Work on a system connected to a reservoir at T', between states with difference of free energy
AF (Helmholtz free energy). In general, we have W > AF.

Jarzynski equality relates Helmholtz free energy differences between two states and the
irreversible work along an ensemble of trajectories joining the same states. Jarzinski equality is
valid, regardless of how fast (out of equilibrium) is the process between the two states. It just
required two initial and final states to be in the thermal equilibrium.

Jarzynski equality

(exp (—AW)) = / exp (—BW) P(W, t,)dW = exp (—BAF), §=1/kpT

1C. Jarsynski, “Nonequilibrium Equality for Free Energy Differences” PRL 1997 and G. E. Crooks, “Entropy
production fluctuation theorem and the nonequilibrium work relation for free energy differences” PRE 1999.
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The Crooks theorem?

The Crooks theorem says if the dynamics of the system satisfies microscopic reversibility, then
the forward time trajectory is exponentially more likely than the reverse.

Crooks theorem

with the probability distribution of the work done during the forward and backward processes.

2C. Jarsynski, “Nonequilibrium Equality for Free Energy Differences” PRL 1997 and G. E. Crooks, “Entropy
production fluctuation theorem and the nonequilibrium work relation for free energy differences” PRE 1999.
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Verification of Crooks Fluctuation Theorem?
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Figure 1| Force-extension curves. The stochasticity of the unfolding and
refolding process is characterized by a distribution of unfolding or refolding
work trajectories. Five unfolding (orange) and refolding (blue) force—
extension curves for the RNA hairpin are shown (loading rate of 7.5 pNs ).
The blue area under the curve represents the work returned to the machine
as the molecule switches from the unfolded to the folded state. The RNA
sequence is shown as an inset.

3D. Collin et al., Nature 437 231-234 (2005)
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Verification of Crooks Fluctuation Theorem?*
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Figure 2 | Test of the CFT using an RNA hairpin. Work distributions for
RNA unfolding (continuous lines) and refolding (dashed lines). We plot
negative work, Pg(—W), for refolding. Statistics: 130 pulls and three
molecules (r=1.5pNs™!), 380 pulls and four molecules (r=7.5pNs™!),
700 pulls and three molecules (r =20.0pNs™"), for a total of ten separate
experiments. Good reproducibility was obtained among molecules (see
Supplementary Fig. $2). Work values were binned into about ten equally
spaced intervals. Unfolding and refolding distributions at different speeds
show a common crossing around AG =1103kgT.

*D. Collin et al., Nature 437 231-234 (2005)
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Verification of Crooks Fluctuation Theorem?®
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Figure 3 | Free-energy recovery and test of the CFT for non-gaussian work
distributions. Experiments were carried out on the wild-type and mutant
S15 three-helix junction without Mg**. Unfolding (continuous lines) and
refolding (dashed lines) work distributions. Statistics: 900 pulls and two
molecules (wild type, purple); 1,200 pulls and five molecules (mutant type,
orange). Crossings between distributions are indicated by black circles.
‘Work histograms were found to be reproducible among different molecules
(error bars indicating the range of variability). Inset, test of the CFT for the
mutant. Data have been linearly interpolated between contiguous bins of the
unfolding and refolding work distributions.

°D. Collin et al., Nature 437 231-234 (2005)
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Experimental test of Jarzynski's equality®
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Fig. 2. Force-extension unfolding curves of PSabc at three different switching rates. (A) Typical 2
force-extension unfolding (U) and refolding (R) curves of the PSabc RNA in 10 mM EDTA in Fig. 1. (A) Sequence and secondary structure of
reversible (blue, 2 to 5 pN/s) and irreversible (red, 52 pN/s) switching conditions. (8) Two || the PSabc RNA. (B) RNA molecules were at-
experiments are shown: one in which a molecule was unfolded at rates of 2 to 5 pN/s and 34 pN/s i | -
(tft pair, blue and green), and another in which the molecule wias unfolded at rates of 2 to 5 pN/s tached between two beads with RNA-DNA hy
and 52 pN/s (right pair, blue and red). Curves (superposition of about 40 curves per experiment) || brid handles.
were smoothed by convolution with a Gaussian kernel.

©J. Liphardt et al., Science 296 1832-1835 (2002)
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Jarzynski equality

Extension z (nm)

Energy (kgT)

Energy (kgT)

Fig. 3. (A) Estimation of free energy profile from reversible switching (r = 2 to 5 pN/s, blue).
For each of the seven data sets, we determined the mean work W, the fluctuation-dissipation
AG estimate W,p, and the AG estimate from Jarzynski’s equality, W,c. Next, we subtracted
W, from those energies. Finally, we averaged those differences over data sets, yielding the
average dissipated work (Wj, - Wi ) (solid yellow band, =k,T/2), (w,n Wi e, (dotted line),
and (W - W,.,) (dashed line). The two AG estimates Wy and W), coincide everywhere to
within 0.1kgT. Both estimates decrease monotonically with extendon, and, by z = 30 nm,
underestimate the average work by ~1.4kgT. (B) Estimation of free energy profile from
irreversible switching (r = 34 pN/s, green, and 52 pN/s, red). Mean energy differences were
computed as in (A). Use of the fluctuation-dissipation relation (dotted lines) yields AG to
within ksT/2 between z = 0 and 18 nm. Beyond z = 18 nm, however, W, underestimates AG
substantially. By contrast, application of Jarzynski's equality (dashed lines) recovers AG to
within experimental error (+k,7/2) from z = 0 to 30 nm. (C to E) Histograms of dissipated
work values at z = 5, 15, and 25 nm. Dissipated work values for a given switching rate were
pooled. Blue, 272; green, 119; red, 153 dissipated work values. Solid lines: Gaussian with mean
and standard deviation of data.
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Spectral line example

@ An observed data set D, for spectral line shape: at frequencies v;, signal strength d; is
measured.

@ A model for spectral line shape with two parameters 17" and v:

T.eXp(_(’jﬁg—;’j)Q)zT.fi

@ Prior information:
Uniform distribution for v (P(v|I)) and Jeffrey's prior for T' (P(T'|I)).
o likelihood function: P(D|Y, 1) = exp{— Zildi=ThH)"y

202

\/(2

@ Metropolis rate:

P(Y|D,I) _ P(T',/{I)P(D|T',//,I)
P(X,|D,I) ~ P(T,,u|I)P(D|T;, 1, 1)
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Spectral line example

Spectral line data consisting of 64 frequency channels obtained with a radio astronomy

spectrometer

Spectral Line Data
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Bayesian Inference ’

Updating a statistical model (H;) using an observed data set (D) and a prior information (I).
According to Bayes theorem:

Posterior probability distribution
P(Hi|1)P(D|H;, I)
P(D|I)

P(H;|D,I) =

P(H;|D,I): The probability after observation of D (posterior).

P(H;|I): The probability before observation of D (prior).

P(D|H;,I): The probability of observing D given the model H; (likelihood).
P(

°
°
°
@ P(DI|I): The probability of observing D given the prior information (global likelihood).

"Chapters 3 Bayesian Logical Data Analysis for the Physical Sciences P. C. Gregory
g 3055 W



Markov Chain Monte Carlo (MCMC)?

For a model with set of parameters { X'} generate a random walk in the parameter (estimation)
space such that the probability of being in the region is proportional to the posterior PDF.
Metropolis-Hastings algorithm
@ Initialize model parameters Xj.
@ obtain a random sample for model parameters (e.g with Normal probability distributions).
© Calculate Metropolis ratio: r = % with X; being model parameters at time step ¢.
Acceptance probability (transition rate): Wy, y = min(1,r)

© If r <1, obtain a uniformly distributed random number between 0 and 1 called u and:

ifu <r: X1 =Y, otherwise: Xi11 = Xy
© return to step 2.

8Chapters 12 Bayesian Logical Data Analysis for the Physical Sciences P. C. Gregory
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Quantization of an electrical circuit

We consider the classical energy of an LC circuit where @) is the charge on the capacitor and
¢ the magnetic flux.

Quantization of the Hamiltonian

QP QP A
_%-Fﬂ—)[{_%—i—ﬁ with  [¢, Q] =ik

Charge and flux can be expressed with the creation and annihj

operators as one can write

2 A h |L
b=dmra+al)  dur=1\5\Z
A (@ —al) _[h|C
Q = szf i szf = 2 L
Inserting this and using the commutation relation [a,af] = 1 yield:

h

. 1
ita+aat) = hw (ata + &
H 2m(aa+aa) hw(aa—l—2>
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Quantization of an electrical circuit®

Even the ground state |0) has fluctuations called

Zero-point fluctuations

205 = (Ag)h, = (04%|0) — (06]0)? = g\/g
2,y = (BQ), = 010%10) - 01Ql0)” = /¢

They respect the Heisenberg uncertainty principle: [(AQ)|O>(A¢)|O> = h/2] > h/2.

Wavefunction representation of the first
eigenstates of a harmonic oscillator.

9See e.g. Quantum Optics 1 by A. Aspect and M. Brune, week 1, on Coursera.
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https://www.coursera.org/learn/quantum-optics-single-photon

Coherent states

We consider a quantum harmonic oscillator of resonance frequency w.
Properties of Fock states |n):

o aln)=+mn—1)and al|n) =vn+1|n+1)

e time evolution: |n(t)) = e~ |n(0))

Definition of a coherent state

_ dal2/2 N g 1)
la) =e 7;)04 il

Properties of coherent states |a):
° dla) = ala)
e Poisson statistics: (i) = (a|afala) = |of? and (A2) — (R)? = |a|?
e time evolution: |a(t)) = [e"“!a(0))
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Coherent states and P-function®

Bargmann states: unnormalized coherent states ||a) = > "7 oL with the property

Vnl
a'|lor) = Dallv).

The set of coherent states is overcomplete: [ = 1 [ d*ala)(a| (I is the identity operator).

Density matrix decomposition in terms of coherent states

p= / P(a)la){alda,

where P(a) = 1/7 [(—B|p|B) exp(|B]> — Ba* + B*a + |a|?)d?B is the Glauber-Sudarshan
phase space function.

10 “Stochastic Methods”, C. Gardiner, Chapter 10.
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Next week's presentation

K ending
PRL 99, 093902 (2007) PHYSICAL REVIEW LETTERS 31 AUGUST 2007

Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion

Florian Marquardt,' Joe P. Chen,** A. A. Clerk,” and S. M. Girvin®
'Depart of Physics, Arnold-Sc ‘enter for Theoretical Physics, and Center for NanoScience,
Luc imili Unive Miinchen, T} i isse 37, 80333 Munich, Germany
2Depumnem of Physics, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120, USA
3Department of Physics, McGill University, 3600 rue University, Montreal, QC Canada H3A 2T8
“Department of Physics, Cornell University, 109 Clark Hall, Ithaca, New York 14853-2501, USA
(Received 22 January 2007; published 28 August 2007)

We present a quantum-mechanical theory of the cooling of a cantilever coupled via radiation pressure to
an illuminated optical cavity. Applying the quantum noise approach to the fluctuations of the radiation
pressure force, we derive the optomechanical cooling rate and the minimum achievable phonon number.
We find that reaching the quantum limit of arbitrarily small phonon numbers requires going into the good-
cavity (resolved phonon sideband) regime where the cavity linewidth is much smaller than the mechanical
frequency and the corresponding cavity detuning. This is in contrast to the common assumption that the
mechanical frequency and the cavity detuning should be comparable to the cavity damping.
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Questions for next week's paper presentation

@ Introduce the optomechanical interaction and its Hamiltonian
e What is the power spectral density (PSD) of the radiation pressure and how it related to
the cooling/heating of the mechanical mode

@ Explain how by choosing the correct cavity detuning, the interaction can result in cooling
of the mechanical mode. What is the phonon occupation of the mechanical mode at the
steady state?

@ Present the complete description of the problem using the quantum Langevin equations
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