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The Jarzynski equation1

Work on a system connected to a reservoir at T , between states with difference of free energy
∆F (Helmholtz free energy). In general, we have W ≥ ∆F .
Jarzynski equality relates Helmholtz free energy differences between two states and the
irreversible work along an ensemble of trajectories joining the same states. Jarzinski equality is
valid, regardless of how fast (out of equilibrium) is the process between the two states. It just
required two initial and final states to be in the thermal equilibrium.

Jarzynski equality

⟨exp (−βW )⟩ =
∫

exp (−βW )P (W, ts)dW = exp (−β∆F ) , β = 1/kBT

1C. Jarsynski, “Nonequilibrium Equality for Free Energy Differences” PRL 1997 and G. E. Crooks, “Entropy
production fluctuation theorem and the nonequilibrium work relation for free energy differences” PRE 1999.
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The Crooks theorem2

The Crooks theorem says if the dynamics of the system satisfies microscopic reversibility, then
the forward time trajectory is exponentially more likely than the reverse.

Crooks theorem

Pf (W )

Pb(−W )
= exp

(
W −∆F

kBT

)
with the probability distribution of the work done during the forward and backward processes.

2C. Jarsynski, “Nonequilibrium Equality for Free Energy Differences” PRL 1997 and G. E. Crooks, “Entropy
production fluctuation theorem and the nonequilibrium work relation for free energy differences” PRE 1999.
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Verification of Crooks Fluctuation Theorem3

3D. Collin et al., Nature 437 231-234 (2005)
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Verification of Crooks Fluctuation Theorem5

5D. Collin et al., Nature 437 231-234 (2005)
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Experimental test of Jarzynski’s equality6

6J. Liphardt et al., Science 296 1832-1835 (2002)
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Jarzynski equality
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Spectral line example

An observed data set D, for spectral line shape: at frequencies νi, signal strength di is
measured.

A model for spectral line shape with two parameters T and ν:

T · exp (−(νi − ν)2

σ2
) = T · fi

Prior information:
Uniform distribution for ν (P (ν|I)) and Jeffrey’s prior for T (P (T |I)).

likelihood function: P (D|Y, I) = 1√
(2πσ2)N

exp{−
∑

i(di−Tfi)
2

2σ2 }

Metropolis rate:

r =
P (Y |D, I)

P (Xt|D, I)
=

P (T ′, ν ′|I)P (D|T ′, ν ′, I)

P (Tt, νt|I)P (D|Tt, νt, I)
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Spectral line example
Spectral line data consisting of 64 frequency channels obtained with a radio astronomy
spectrometer
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Bayesian Inference 7

Updating a statistical model (Hi) using an observed data set (D) and a prior information (I).
According to Bayes theorem:

Posterior probability distribution

P (Hi|D, I) =
P (Hi|I)P (D|Hi, I)

P (D|I)

P (Hi|D, I): The probability after observation of D (posterior).

P (Hi|I): The probability before observation of D (prior).

P (D|Hi, I): The probability of observing D given the model Hi (likelihood).

P (D|I): The probability of observing D given the prior information (global likelihood).

7Chapters 3 Bayesian Logical Data Analysis for the Physical Sciences P. C. Gregory
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Markov Chain Monte Carlo (MCMC)8

For a model with set of parameters {X} generate a random walk in the parameter (estimation)
space such that the probability of being in the region is proportional to the posterior PDF.

Metropolis-Hastings algorithm

1 Initialize model parameters X0.

2 obtain a random sample for model parameters (e.g with Normal probability distributions).

3 Calculate Metropolis ratio: r = P (Y |D,I)
P (Xt|D,I) with Xt being model parameters at time step t.

Acceptance probability (transition rate): WXt,Y = min(1, r)

4 If r < 1, obtain a uniformly distributed random number between 0 and 1 called u and:

if u ≤ r : Xt+1 = Y, otherwise: Xt+1 = Xt

5 return to step 2.

8Chapters 12 Bayesian Logical Data Analysis for the Physical Sciences P. C. Gregory
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Quantization of an electrical circuit
We consider the classical energy of an LC circuit where Q is the charge on the capacitor and
ϕ the magnetic flux.

Quantization of the Hamiltonian

H =
Q2

2C
+

ϕ2

2L
→ Ĥ =

Q̂2

2C
+

ϕ̂2

2L
with [ϕ̂, Q̂] = iℏ

Charge and flux can be expressed with the creation and annihilation operators as one can write

ϕ̂ = ϕzpf (â+ â†) ϕzpf =

√
ℏ
2

√
L

C

Q̂ = Qzpf
(â− â†)

i
Qzpf =

√
ℏ
2

√
C

L

Inserting this and using the commutation relation [â, â†] = 1 yield:

Ĥ =
ℏ

2
√
LC

(
â†â+ ââ†

)
= ℏω

(
â†â+

1

2

)
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Quantization of an electrical circuit9

Even the ground state |0⟩ has fluctuations called

Zero-point fluctuations

ϕ2
zpf = (∆ϕ)2|0⟩ = ⟨0|ϕ̂2|0⟩ − ⟨0|ϕ̂|0⟩2 = ℏ

2

√
L
C

Q2
zpf = (∆Q)2|0⟩ = ⟨0|Q̂2|0⟩ − ⟨0|Q̂|0⟩2 = ℏ

2

√
C
L

They respect the Heisenberg uncertainty principle:
[
(∆Q)|0⟩(∆ϕ)|0⟩ = ℏ/2

]
≥ ℏ/2.

Wavefunction representation of the first
eigenstates of a harmonic oscillator.

9See e.g. Quantum Optics 1 by A. Aspect and M. Brune, week 1, on Coursera.
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Coherent states

We consider a quantum harmonic oscillator of resonance frequency ω.
Properties of Fock states |n⟩:

â |n⟩ =
√
n |n− 1⟩ and â† |n⟩ =

√
n+ 1 |n+ 1⟩

time evolution: |n(t)⟩ = e−iωnt |n(0)⟩

Definition of a coherent state

|α⟩ ≡ e−|α|2/2
∞∑
n=0

αn |n⟩√
n!

Properties of coherent states |α⟩:
â |α⟩ = α |α⟩
Poisson statistics: ⟨n̂⟩ = ⟨α|â†â|α⟩ = |α|2 and ⟨n̂2⟩ − ⟨n̂⟩2 = |α|2

time evolution: |α(t)⟩ = |e−iωtα(0)⟩
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Coherent states and P -function10

Bargmann states: unnormalized coherent states ||α⟩ =
∑∞

n=0 α
n |n⟩√

n!
with the property

â†||α⟩ = ∂α||α⟩.

The set of coherent states is overcomplete: Î = 1
π

∫
d2α|α⟩⟨α| (Î is the identity operator).

Density matrix decomposition in terms of coherent states

ρ̂ =

∫
P (α)|α⟩⟨α|d2α,

where P (α) = 1/π
∫
⟨−β|ρ̂|β⟩ exp(|β|2 − βα∗ + β∗α+ |α|2)d2β is the Glauber-Sudarshan

phase space function.

10“Stochastic Methods”, C. Gardiner, Chapter 10.
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Next week’s presentation
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Questions for next week’s paper presentation

Introduce the optomechanical interaction and its Hamiltonian

What is the power spectral density (PSD) of the radiation pressure and how it related to
the cooling/heating of the mechanical mode

Explain how by choosing the correct cavity detuning, the interaction can result in cooling
of the mechanical mode. What is the phonon occupation of the mechanical mode at the
steady state?

Present the complete description of the problem using the quantum Langevin equations

Stat. Phys. IV: Summary slides on the lecture 8 Spring 2025 18 / 19



Stat. Phys. IV: Summary slides on the lecture 8 Spring 2025 19 / 19


