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1D random walk
Probability distribution for each step yn = xn+1 − xn follows:

P(y) = 1√
4πDt

exp(− y2

4Dt) (1)

After n steps at time t = nτ (τ is the time increament), the position xn =
∑n

i=1 yi has
the probability distribution:

P(x,n) = 1√
4πDτn

exp(− x2

4Dτn) (2)

It’s not stable since ⟨x(n)2⟩ = 2Dτn → ∞ as n → ∞
However the probability distribution of the scaled variable un = xn√

n is not dependent on n:

P(u,n) =
√

n · 1√
4πDτn

exp(− u2
n

4Dτ
) =

1√
4πDτ

exp(− u2
n

4Dτ
) (3)
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Lévy-flights, the Cauchy-distribution
Lévy-flight is a random walk for which the length of the steps follow a heavy-tailed
probability distribution.
More precisely, consider a positive-valued homogeneous Markov process xn and define the
increments as yn = xn+1 − xn. Assume

P(y) ≈ b
y1+µ

for y → ∞, µ > 0 (4)

For 0 < µ ≤ 2, the second moment ⟨y2⟩ diverges and the distribution is heavy-tailed
(note: for 0 < µ ≤ 1 the first moment diverges as well)
µ = 1 corresponds to the Cauchy-distribution, which has the exact form

P(y) = 2b
π(y2 + b2)

y ≥ 0 (5)
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The central limit theorem

Question: how are xN =
∑N

i=1 yn (Lévy sums) distributed in the limit of large N?

If µ > 2: central limit theorem (CLT) applies
▶ In this case both the mean ⟨y⟩ and the variance σ exist. Define ξ = xN−⟨y⟩N

σ
√

N

▶ CLT states:
lim

N→∞
P (ξ1 ≤ ξ ≤ ξ2) =

∫ ξ2

ξ1

G(ξ)dξ

where G(ξ) = (2π)−1/2 exp(−ξ2/2) is the ”normal” distribution.

For all the other cases, i.e. when µ ≤ 2, the CLT does not apply!
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The generalized central limit theorem, 2 cases

We discuss the two separate cases 1 < µ < 2 and 0 < µ < 1. The cases µ = 1 or µ = 2
require special discussion (logarithmic correction factors apply).

The case of 1 < µ < 2
▶ In this case the mean ⟨y⟩ is finite but the variance σ diverges. Define ξ = xN−⟨y⟩N

ybN1/µ

▶ Generalized CLT states:
lim

N→∞
P (ξ1 ≤ ξ ≤ ξ2) =

∫ ξ2

ξ1

Lµ(ξ)dξ

where Lµ(ξ) is the Lévy distribution of index µ.
▶ Lµ(ξ) have simple Laplace transforms: LLµ(ξ) = exp(−bµuµ) with bµ = µ−1(µ− 1)Γ(1 − µ)
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The generalized central limit theorem, 2 cases

We discuss the two separate cases 1 < µ < 2 and 0 < µ < 1. The cases µ = 1 or µ = 2
require special discussion (logarithmic correction factors apply).

The case of 0 < µ < 1
▶ In this case neither the mean ⟨y⟩ nor the variance σ is finite. Define ξ = xN

ybN1/µ

▶ Generalized CLT states:
lim

N→∞
P (ξ1 ≤ ξ ≤ ξ2) =

∫ ξ2

ξ1

Lµ(ξ)dξ

where Lµ(ξ) is the Lévy distribution of index µ.
▶ Lµ(ξ) have simple Laplace transforms: LLµ(ξ) = exp(−bµuµ) with bµ = Γ(1 − µ)
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How rare events dominate statistics
Probability to observe an increment y > ȳ is: Q(ȳ) =

∫∞
ȳ P(y) dy

Since probability to observe y < ȳ for (n − 1) times is (1 − Q(ȳ))n−1, it follows:

Q(ȳ,n) = n Q(ȳ) [1 − Q(ȳ)]n−1 .

Most probable value ȳmax is determined by dQ(ȳ,n)
dȳ = 0;

dQ(ȳ,n)
dȳ = ndQ(ȳ)

dȳ (1 − Q(ȳ))n−1 − nQ(ȳ)dQ(ȳ)
dȳ (1 − Q(ȳ))n−2(n − 1)

= ndQ(ȳ)
dȳ (1 − Q(ȳ))n−2(1 − nQ(ȳ)) = 0

this implies

Q(ȳmax) =
1
n .
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How rare events dominate statistics

For Brownian motion, with Gaussian pdf,

lim
n→∞

ȳn√
⟨x2

n⟩
≈ σ

√
2 lnn√
n → 0.

For a Lévy flight, with P(y) = b
y1+µ ,

lim
n→∞

ȳn√
⟨x2

n⟩
≈ n1/µ

n1/µ → 1.

Thus, rare events dominate the statistics of Lévy flights.
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Lévy flight versus Brownian motion1

1brockmann_scaling_2006.
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Continuous time random walks

Consider processes for which P(y,∆t) = f(y)Φ(∆t) where both fand Φ are probability density
distributions.

Process f Φ P(x,∆t) Scaling
Ordinary diffusion gaussian exponential e−x2/Dt

√
t t1/2

Levy flight 1
yβ+1 * Lβ(x/t1/β)

t1/β t1/β

Fractional brownian motion gaussian 1
(∆t)α+1

Lβ(x/tα/2)

tα/2 tα/2

Ambivalent process 1
yβ+1

1
(∆t)α+1 tα/2β
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Asymptotic Universality Classes of CTRWs2

2brockmann_scaling_2006.
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Application: sub-recoil laser cooling
During the interaction time with the laser field, an atom will be trapped for some time
intervals τi and will be in the recycling region for some other intervals τ̂i
The sums formed by summing the trapping times, i.e. τN =

∑N
i=1 τi are Lévy sums

Main idea: construct a momentum dependent fluorescence rate R(p) in the trapping
region such that R(p) ≈ 0 around p ≈ 0
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Application: sub-recoil laser cooling
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Arrhenius Cascade
A good example of the applications of Lévy flights is the Arrhenius cascade (c.f. Martin, 3.8.4).

For exponentially distributed potential barrier heights, the probability distribution of the total time it
takes to cross n barriers is distributed according to:

P(τ) = µ
τµ0

τ1+µ
,

where µ = kBT
E0

and τ0 and E0 are characteristic time and energy scales respectively.Stat. Phys. IV: lecture 6 Spring 2025 14 / 17



Questions for the paper presentation

Explain the basic principles of atomic laser cooling.
Explain what is a ”dark” state and why it is important to the cooling.
What process is simulated in Fig1, and how is it simulated? Why does the simulation
indicate the interval distribution is long-tailed?
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