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1D random walk

@ Probability distribution for each step vy, = z,+1 — z, follows:

1 e
P(y) = mexp(—rm) (1)

o After n steps at time ¢ = n7 (7 is the time increament), the position z, = >_7 | y; has
the probability distribution:

1
VarDrn

e It's not stable since (z(n)?) = 2Drn — o0 as n — o0

P(z,n) =

exp(~5—) @

@ However the probability distribution of the scaled variable u,, = %% is not dependent on n:

T Vn
1 u? 1 u?
P = D — — n = — n
() =V Do P D7) = Vamp: Capy) )
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Lévy-flights, the Cauchy-distribution

o Lévy-flight is a random walk for which the length of the steps follow a heavy-tailed
probability distribution.

@ More precisely, consider a positive-valued homogeneous Markov process x, and define the
increments as Yy, = Tpy1 — Tn. Assume

b
y1+u

P(y) ~ for y = o0, >0 (4)

@ For 0 < i < 2, the second moment (3?) diverges and the distribution is heavy-tailed
(note: for 0 < p <1 the first moment diverges as well)

@ 1 =1 corresponds to the Cauchy-distribution, which has the exact form

P(?/):ﬂ(yfibg) y=>0 (5)
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The central limit theorem

@ Question: how are zy = Zf\il yn (Lévy sums) distributed in the limit of large N?

If 1> 2: central limit theorem (CLT) applies

o = o . . ?EN—<ZI>N
In this case both the mean (y) and the variance o exist. Define £ = -
CLT states: c
2
lim P (& <E<&)= [ G(E)dE
N— oo &

where G(¢) = (2m)~ /2 exp(—£2/2) is the "normal” distribution.

o For all the other cases, i.e. when p < 2, the CLT does not apply!
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The generalized central limit theorem, 2 cases

@ We discuss the two separate cases 1 < u <2 and 0 < pu < 1. Thecases u=1or y=2
require special discussion (logarithmic correction factors apply).

The case of 1 < 1 < 2

In this case the mean (y) is finite but the variance o diverges. Define £ = ””;Vb;\,(ly)“N

Generalized CLT states: ¢
2
ln P& <E<) = [ Lo

N—oo

where L, (&) is the Lévy distribution of index p.

L, (€) have simple Laplace transforms: £L,(£) = exp(—b,u*) with b, = = (u — 1)I'(1 — )
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The generalized central limit theorem, 2 cases

@ We discuss the two separate cases 1 < u < 2and 0 < p < 1. Thecases p=1or p =2
require special discussion (logarithmic correction factors apply).

The case of 0 < < 1

In this case neither the mean (y) nor the variance o is finite. Define £ = yb]f;;’m

Generalized CLT states:

&2
i P& <¢<e)= [ L

N—oo

where L, (€) is the Lévy distribution of index (.

L, (&) have simple Laplace transforms: L£L, (&) = exp(—b,ut) with b, =T'(1 — )
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How rare events dominate statistics

Probability to observe an increment y > yis: Q(y) = f;o P(y) dy

Since probability to observe y < 7 for (n— 1) times is (1 — Q(y))™ !, it follows:
QE:m =nQ(@) [1-Q@" .
Most probable value §max is determined by dQ(y n —
dQ(@a TL) _ dQ( ) n—1 Q ?_/) _ 7))n—2 _
1) B 1 gyt - nem) S (1 - Q)2 )
= 2% )21 - ) = 0
Y
this implies
N
Q(ymax) - E
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How rare events dominate statistics

For Brownian motion, with Gaussian pdf,

lim @n 0\/2lnn
n—oo \ / \/_

For a Lévy flight, with P(y) = —%

yl+u ’

— 0.

Un nl/ jz
/ 1/p
n—>oo n n /

Thus, rare events dominate the statistics of Lévy flights.
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Lévy flight versus Brownian motion!

'brockmann_scaling_2006.
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Continuous time random walks

Consider processes for which P(y, At) = f(y)®(At) where both fand & are probability density

distributions.
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Process f o P(z, At) | Scaling
2

Ordinary diffusion gaussian | exponential GT:DZ /2

178
Levy flight # * % /8

/2
Fractional brownian motion | gaussian (At)1a+1 Lﬁ(ti//tz )| g2
Ambivalent process yﬁ—lﬂ (At);a“'l /28
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2

Asymptotic Universality Classes of CTRWs

o=1

ambivalent processes
« non markovian

« divergent spatial moments

« scale free displacements

« scale free walting times

« divergent temporal moments

temporal exponent o

o,=0 spatial exponent 3 B2

brockmann_scaling_2006.



Application: sub-recoil laser cooling
@ During the interaction time with the laser field, an atom will be trapped for some time
intervals 7; and will be in the recycling region for some other intervals 7;
@ The sums formed by summing the trapping times, i.e. Ty = Zf\il 7; are Lévy sums

@ Main idea: construct a momentum dependent fluorescence rate R(p) in the trapping
region such that R(p) ~ 0 around p~ 0

R(p)
(a)
t >
Y P
(b)
-3p 0 8p P
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Application: sub-recoil laser cooling

VOLUME 72, NUMBER 2

PHYSICAL REVIEW LETTERS

10 JANUARY 1994

Subrecoil Laser Cooling and Lévy Flights

F. Bardou,' J. P. Bouchaud,? O. Emile,"* A. Aspect,"" and C. Cohen-Tannoudji'
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FIG. 2. Variations with p of the fluorescence rate Re(p) (see
text). The narrow dip around p=0, with a width py, is due to
VSCPT. The trapping zone is defined by |p| < puap. Three
different models are taken for the variations of Rr(p) at large
p. Model I: walls confining the atomic momentum to [p|
= pmax. Model II: constant fluorescence rate equal to I' out of
the dip (interrupted line). Model 111 (corresponding to actual
experiments, full line): decrease of the fluorescence rate for
|p| > pe, due to a Doppler detuning from the optical resonance.
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FIG. 3. Variations with the interaction time 8 of the propor-
tion f of trapped atoms (|p| < pinp), calculated from N Monte
Carlo runs for the models Il and III of Fig. 2. Model II
(squares): N =4000, p; =0.5h K, purap=0.08k; the interrupted
line represents the asymptotic theoretical prediction f=0.365
corresponding to Eg/hI"'=0.59. Model III (circles): N
=16000, pg=0.5hk, piap=0.08hk, pe=9.4hk; the full line
represents the best fit for the asymptotic theoretical prediction
(see text). Model Il requires more computer time than model
III. This is why N is smaller and the statistical uncertainty
larger.
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Arrhenius Cascade
A good example of the applications of Lévy flights is the Arrhenius cascade (c.f. Martin, 3.8.4).

Le |

détection
. _——
> @

i=n

For exponentially distributed potential barrier heights, the probability distribution of the total time it
takes to cross n barriers is distributed according to:
0
P(r) = 7
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Questions for the paper presentation

@ Explain the basic principles of atomic laser cooling.
@ Explain what is a "dark” state and why it is important to the cooling.

@ What process is simulated in Figl, and how is it simulated? Why does the simulation
indicate the interval distribution is long-tailed?
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