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Backward Fokker-Planck Equation

Instead of propagating the probability density P forward in time, one can
instead look backwards in time, i.e. treat P (x, t|x0, t0) as a function of x0
and t0. Reformulating the Chapman-Kolmogorov equation in the following
way

P (x, t|x0, t0) =
∫ ∞

−∞
dξ P (x, t|x0 + ξ, t0 +∆t0)P (x0 + ξ, t0 +∆t0|x0, t0)

and repeating the Kramers-Moyal expansion with respect to x0 and t0
leads to the

Backward Fokker-Planck equation1

∂t0P (x, t|x0, t0) = −A(x0)∂x0P (x, t|x0, t0)−
1

2
D(x0)∂

2
x0
P (x, t|x0, t0)

Note that for a homogeneous process P (x, t|x0, t0) = P (x, 0|x0, t0 − t)
implies ∂tP (x, t|x0, t0) = ∂tP (x, 0|x0, t0 − t) = −∂t0P (x, t|x0, t0).

1Gillespie, Markov Processes, Chapter 2
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Comparison of the forward and backward Fokker-Planck
equations

Forward Fokker-Planck equation

∂tP (x, t|x0, t0) = −∂x [A(x)P (x, t|x0, t0)] + ∂2
x

[
1

2
D(x)P (x, t|x0, t0)

]

Backward Fokker-Planck equation

∂t0P (x, t|x0, t0) = −A(x0)∂x0P (x, t|x0, t0)−
1

2
D(x0)∂

2
x0
P (x, t|x0, t0)

Note that the derivatives act only on P .
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Kramers equation2

Full Brownian motion gives a bivariate Langevin equation

dv

dt
= −γv +

F (x)

m
+

√
2γ

βm
f(t) and

dx

dt
= v

with β = 1/kBT .

Kramers equation ≡ corresponding Fokker-Planck equation

∂tP + v∂xP + F (x)
m ∂vP = γ

 ∂v(vP )︸ ︷︷ ︸
Collision kernel

+ 1
βm∂2

vP


Define the density ρ(x, t) =

∫
dv P (x, v, t)

and the current J(x, t) =
∫
dv vP (x, v, t)

Continuity equation: ∂tρ(x, t) + ∂xJ(x, t) = 0

2See P. Martin’s scriptum, 3.4
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Stationary solution of the Fokker-Planck equation

d

dx
[a(x, t)PS(x)]−

1

2

d2

dx2
[b(x)PS(x)] = − d

dt
PS(x) = 0

So the current is constant

J = a(x)PS(x)−
1

2

d

dx
[b(x)PS(x)] = const

General Stationary solution of Fokker-Planck equation

PS(x) = N0e
−Φ(x) + Je−Φ(x)

∫ x

dx′
1

b(x′)
eΦ(x′)

with Φ(x) = −2
∫ x
0

a(x′)
b(x′) dx

′
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Kramers escape problem3

We want the rate of particles escaping from the well.
Taking the derivative of eβV (x)PS(x), we get

J = −De−βV (x) d

dx

[
eβV (x)PS(x)

]
Integrating
between xmin and A, and assuming PS(A) ≈ 0

J = DeβV (xmin)PS(xmin)

(∫ A

xmin

e−βV (x) dx

)
Moreover, the probability to be in the well is given
by

P =

∫ x2

x1

PS(t) ≈ PS(xmin)e
βV (xmin)

∫
x1

x2e
−βV (x) dx

3See H. Risken, The Fokker-Planck Equation, 5.10
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Kramers escape rate

Escape rate: r = J
P so that

Kramers escape rate

1

r
≈ 2πeβ(V (xmax)−V (xmin))

mγ√
V ′′(xmin)V ′′(xmax)

Where we used asymptotic approximations to evaluate the integrals.
Applications: Laser trapping of particles 4, chemical reaction rates 5 . . .

4
Neuman, Keir C., and Steven M. Block. ”Optical trapping.” Review of scientific instruments 75.9 (2004): 2787-2809.

5
Hänggi, Peter, Peter Talkner, and Michal Borkovec. ”Reaction-rate theory: fifty years after Kramers.” Reviews of modern

physics 62.2 (1990): 251.

Stat. Phys. IV: Lecture 5 Spring 2025 7 / 19



Kramers escape: first passage time6

Probability to stay between a and b until time t

G(x, t) =

∫ b

a
P (x′, t|x, 0) dx′

same as probability that escape time (or first passage) T > t.
This means that the probability distribution for T is

PT (T ) = −∂G(x, t)

∂t

so using integration by part, we find:

T (x) ≡ ⟨T ⟩ = −
∫ ∞

0
t
∂G(x, t)

∂t
dt =

∫ ∞

0
G(x, t) dt

6See Gardiner, Stochastic Methods, 5.2.7
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Kramers escape: first passage time

Using the backward Fokker-Planck equation, we can derive a differential
equation for G and then for T (x)

Differential equation for time of first passage

A(x)∂xT (x) +
1

2
B(x)∂2

xT (x) = −1

Solving with appropriate boundary condition, one gets

T (x) =
∫ b
x

dy
Ψ(y)

∫ y
a

Ψ(z)
B(z)dz with Ψ(x) = exp(

∫ x
0 dx′2A(x′)

B(x′))
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Kramers escape: first passage time
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Application of the Kramers escape rate: Optical tweezers

Svoboda, Karel, et al. ”Direct observation of kinesin stepping by optical trapping interferometry.” Nature 365.6448 (1993): 721.
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Lévy flight versus Brownian motion7

7brockmann˙scaling˙2006.
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The scaling laws of human travel 8

Dispersal of bank notes and humans on geographical scales and
Trajectories of bank notes originating from four different places.

8Vespignani, Alessandro. ”Predicting the behavior of techno-social systems.” Science
325.5939 (2009): 425-428.
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The scaling laws of human travel

Dispersal of bank notes and humans on geographical scales. c, The
short-time dispersal kernel. The measured probability density function
P (r) of traversing a distance r in less than T = 4 days is depicted in blue
symbols. d, The relative proportion P0(t) of secondary reports within a
short radius (r0 = 20km) of the initial entry location as a function of time.
Blue squares show P0(t) averaged over 25,375 initial entry locations.
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Continuous time random walks

Consider processes for which P (y,∆t) = f(y)Φ(∆t) where both fand Φ
are probability density distributions.

Process f Φ P (x,∆t) Scaling

Ordinary diffusion gaussian exponential e−x2/Dt
√
t

t1/2

Levy flight 1
yβ+1 *

Lβ(x/t
1/β)

t1/β
t1/β

Fractional brownian motion gaussian 1
(∆t)α+1

Lβ(x/t
α/2)

tα/2 tα/2

Ambivalent process 1
yβ+1

1
(∆t)α+1 tα/2β
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Asymptotic Universality Classes of CTRWs9

9brockmann˙scaling˙2006.
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Application: sub-recoil laser cooling
During the interaction time with the laser field, an atom will be
trapped for some time intervals τi and will be in the recycling region
for some other intervals τ̂i
The sums formed by summing the trapping times, i.e. τN =

∑N
i=1 τi

are Lévy sums
Main idea: construct a momentum dependent fluorescence rate R(p)
in the trapping region such that R(p) ≈ 0 around p ≈ 0
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Application: sub-recoil laser cooling
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