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Backward Fokker-Planck Equation

Instead of propagating the probability density P forward in time, one can
instead look backwards in time, i.e. treat P (x,t|xo, o) as a function of xg
and tg. Reformulating the Chapman-Kolmogorov equation in the following
way

P (z,t|zg, to) = / d§ P (z,t|lwg 4 &, to + Ato) P (xo + &, to + Ato|xo, to)

—00

and repeating the Kramers-Moyal expansion with respect to xg and g
leads to the

Backward Fokker-Planck equation®

1
Ot P (z,t|w0, t0) = —A(20)0z, P (, t|z0, t0) — §D(370)3§0P($7t|$0,t0)

Note that for a homogeneous process P(x,t|zg,to) = P(x,0|xg,to — t)
implies O, P(x,t|zo,t0) = 0¢P(x,0|xg,to — t) = —04 P(x, t|xo, to).

1Gillespie, Markov Processes, Chapter 2
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Comparison of the forward and backward Fokker-Planck
equations

Forward Fokker-Planck equation

O P (x,t|zo, t0) = —0, [A(x)P (2, t|x0, to)] + 02 %D(x)P (z,t|zo, to)

Backward Fokker-Planck equation

1
atOP (:E,t|330,t0) = —A(xo)amP (x,t|xo,t0) — §D(x0)8§OP ((E,tlﬂ?o,to)

V.

Note that the derivatives act only on P.
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Kramers equation?

Full Brownian motion gives a bivariate Langevin equation

dv F(x) 2y dv
i + - + Bmf(t) and priak
with 8 = 1/kpT.

Kramers equation = corresponding Fokker-Planck equation

P +v0, P+ E20,P =y | 0,(P) +5-02P
~——

Collision kernel

Define the density p(z,t) = [ dv P(x,v,t)
and the current J(z,t) = [ dvvP(z,v,t)
Continuity equation: Oip(x,t) + 833J(m,t) =0

2See P. Martin’s scriptum, 3.4
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Stationary solution of the Fokker-Planck equation

d 1 d? d

o (@, 1) Ps(@)] = 5 =5 [b(2) Ps(2)] = — - Ps(z) = 0

So the current is constant

J = a(z) Ps(z) — %% [b(x) Ps(x)] = const

General Stationary solution of Fokker-Planck equation

r 1 /
Ps(x) = Noe~®@) 4 je=2@ / dz’ b e®@)

with @ (z —2f
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Kramers escape problem?

We want the rate of particles escaping from the well.
Taking the derivative of €V (®) Pg(z), we get

J__ DewV(x)di [eﬁV(w) ps(x)]

X

Integrating
between xy,in and A, and assuming Pg(A) ~ 0

J = De/BV(xmin)PS(l»min) (/

Moreover, the probability to be in the well is given
by

A

min

z2
P :/ Ps(t) ~ Pg(xmin)eﬂv(“mi“)/ 20 PV () dy
T 1

3See H. Risken, The Fokker-Planck Equation, 5.10
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Kramers escape rate
Escape rate: r = }% so that
Kramers escape rate

1 27 BV (@mad) =V (@min) my
r \/V” (xmin)vﬂ (xmax)

Where we used asymptotic approximations to evaluate the integrals.
Applications: Laser trapping of particles #, chemical reaction rates ° ...

4Neuman, Keir C., and Steven M. Block. " Optical trapping.” Review of scientific instruments 75.9 (2004): 2787-2809.

sHénggi, Peter, Peter Talkner, and Michal Borkovec. " Reaction-rate theory: fifty years after Kramers.” Reviews of modern
physics 62.2 (1990): 251.
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Kramers escape: first passage time®
Probability to stay between a and b until time ¢
b
G(z,t) =/ P2/, t|z,0) d2’

same as probability that escape time (or first passage) T > t.
This means that the probability distribution for T is

_ 0G(z,1)
Pril) ==—%—
so using integration by part, we find:
T(z) = (T) = —/ 20w :/ G(,t) dt
0 ot 0

6See Gardiner, Stochastic Methods, 5.2.7
Sl 0 oY



Kramers escape: first passage time

Using the backward Fokker-Planck equation, we can derive a differential
equation for G and then for T'(z)

Differential equation for time of first passage

A@)3,T(z) + %B(x)agT(x) — 1

Solving with appropriate boundary condition, one gets

b z . x x’
T(@) = [} 5t Ji Bds with ¥(z) = exp(j da'259)
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Kramers escape: first passage time

@) (b)
b
Ulx) Ps(x)
a
a
b
X b3
(c)
Tla=x),
4 Fig. 5.3. (a) Double well potential U(x);
(b) Stationary distribution p,(x);
3 () Mean first passage time from a to x, T(a — X,)
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Application of the Kramers escape rate: Optical tweezers

E | E Net force E Net force

FIGURE 1: The refracted rays (grey) produce corresponding forces on the bead, resulting in a net force toward the most intense region of the beam. In the axial direction,
the gradient force must be greater than the scattering force to obtain three-dimensional trapping.

3

0 n [%] W — :

Frg == mpaV|E[ =24 2 |y
e = 2 (n2+2n]

Svoboda, Karel, et al. " Direct observation of kinesin stepping by optical trapping interferometry.” Nature 365.6448 (1993): 721.
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Lévy flight versus Brownian motion’

"brockmann’scaling 2006.
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The scaling laws of human travel &

Omaha  Seattle Jacksonville New York

066

Dispersal of bank notes and humans on geographical scales and
Trajectories of bank notes originating from four different places.

8Vespignani, Alessandro. " Predicting the behavior of techno-social systems.” Science
325.5939 (2009): 425-428.
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The scaling laws of human travel
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Dispersal of bank notes and humans on geographical scales. ¢, The
short-time dispersal kernel. The measured probability density function
P(r) of traversing a distance r in less than 7" = 4 days is depicted in blue
symbols. d, The relative proportion Py(t) of secondary reports within a
short radius (g = 20km) of the initial entry location as a function of time.
Blue squares show Py(t) averaged over 25,375 initial entry locations.
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Continuous time random walks

Consider processes for which P(y, At) = f(y)®(At) where both fand ®
are probability density distributions.

Process f ) P(xz,At) | Scaling
2

Ordinary diffusion gaussian | exponential | ¢ \/th t1/2
VL]

Levy flight # * % t1/8
a/2

Fractional brownian motion | gaussian (At)laﬂ Lﬁ(fa/fQ ) te/?

Ambivalent process yﬁlﬂ (At)la+1 /28

Stat. Phys. IV: Lecture 5 Spring 2025 15/19



9

Asymptotic Universality Classes of CTRWs

o=1

ambivalent processes
+ non markovian

+ divergent spatial moments

« scale free displacements

« scale free waiting times

= divergent temporal moments

temporal exponent o

o, =0 spatial exponent B2

brockmann’scaling 2006.
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Application: sub-recoil laser cooling

@ During the interaction time with the laser field, an atom will be
trapped for some time intervals 7; and will be in the recycling region
for some other intervals 7;

@ The sums formed by summing the trapping times, i.e. 7y = ZZ]\LI T;
are Lévy sums

@ Main idea: construct a momentum dependent fluorescence rate R(p)
in the trapping region such that R(p) ~ 0 around p ~ 0

R(p)

dark states

(a)

(b)

—-5p 0 3p P
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Application: sub-recoil laser cooling

VOLUME 72, NUMBER 2

PHYSICAL REVIEW LETTERS

10 JANUARY 1994

Subrecoil Laser Cooling and Lévy Flights

F. Bardou,' J. P. Bouchaud,? O. Emile,'* A. Aspect,"! and C. Cohen-Tannoudji'

| T
1

Pmax P

“Pmax 0

FIG. 2. Variations with p of the fluorescence rate Rr(p) (see
text). The narrow dip around p=0, with a width pg, is due to
VSCPT. The trapping zone is defined by |p| < puap. Three
different models are taken for the variations of Rr(p) at large
p. Model I: walls confining the atomic momentum to |p|
= pmax. Model II: constant fluorescence rate equal to I out of

40 T T ™ T o

Model Il

A
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FIG. 3. Variations with the interaction time 6 of the propor-
tion f of trapped atoms (|p| < purap), calculated from N Monte
Carlo runs for the models II and IIl of Fig. 2. Model II
(squares): N =4000, p; =0.5hK, puap=0.08hk; the interrupted

line represents the asymptotic theoretical prediction f=0.365

the dip (interrupted line). Model 111 (cor to actual
experiments, full line): decrease of the fluorescence rate for
|p| > pe. due to a Doppler detuning from the optical resonance.
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to Ep/hT'=0.59. Model III (circles): N
=16000, p;=0.5hK, piap=0.08hk, p.=9.4hk; the full line
represents the best fit for the asymptotic theoretical prediction
(see text). Model Il requires more computer time than model
III. This is why N is smaller and the statistical uncertainty
larger.

cor
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