

Stat. Phys. IV: Lecture 5

Spring 2025

Backward Fokker-Planck Equation

Instead of propagating the probability density P forward in time, one can instead look backwards in time, i.e. treat $P(x, t|x_0, t_0)$ as a function of x_0 and t_0 . Reformulating the Chapman-Kolmogorov equation in the following way

$$P(x, t|x_0, t_0) = \int_{-\infty}^{\infty} d\xi P(x, t|x_0 + \xi, t_0 + \Delta t_0) P(x_0 + \xi, t_0 + \Delta t_0|x_0, t_0)$$

and repeating the Kramers-Moyal expansion with respect to x_0 and t_0 leads to the

Backward Fokker-Planck equation¹

$$\partial_{t_0} P(x, t|x_0, t_0) = -A(x_0) \partial_{x_0} P(x, t|x_0, t_0) - \frac{1}{2} D(x_0) \partial_{x_0}^2 P(x, t|x_0, t_0)$$

Note that for a homogeneous process $P(x, t|x_0, t_0) = P(x, 0|x_0, t_0 - t)$ implies $\partial_t P(x, t|x_0, t_0) = \partial_t P(x, 0|x_0, t_0 - t) = -\partial_{t_0} P(x, t|x_0, t_0)$.

¹Gillespie, Markov Processes, Chapter 2

Comparison of the forward and backward Fokker-Planck equations

Forward Fokker-Planck equation

$$\partial_t P(x, t|x_0, t_0) = -\partial_x [A(x)P(x, t|x_0, t_0)] + \partial_x^2 \left[\frac{1}{2} D(x)P(x, t|x_0, t_0) \right]$$

Backward Fokker-Planck equation

$$\partial_{t_0} P(x, t|x_0, t_0) = -A(x_0)\partial_{x_0} P(x, t|x_0, t_0) - \frac{1}{2} D(x_0)\partial_{x_0}^2 P(x, t|x_0, t_0)$$

Note that the derivatives act only on P .

Kramers equation²

Full Brownian motion gives a bivariate Langevin equation

$$\frac{dv}{dt} = -\gamma v + \frac{F(x)}{m} + \sqrt{\frac{2\gamma}{\beta m}} f(t) \quad \text{and} \quad \frac{dx}{dt} = v$$

with $\beta = 1/k_B T$.

Kramers equation \equiv corresponding Fokker-Planck equation

$$\partial_t P + v \partial_x P + \frac{F(x)}{m} \partial_v P = \gamma \left(\underbrace{\partial_v(vP)}_{\text{Collision kernel}} + \frac{1}{\beta m} \partial_v^2 P \right)$$

Define the density $\rho(x, t) = \int dv P(x, v, t)$

and the current $J(x, t) = \int dv v P(x, v, t)$

Continuity equation: $\partial_t \rho(x, t) + \partial_x J(x, t) = 0$

²See P. Martin's scriptum, 3.4

Stationary solution of the Fokker-Planck equation

$$\frac{d}{dx} [a(x, t) P_S(x)] - \frac{1}{2} \frac{d^2}{dx^2} [b(x) P_S(x)] = -\frac{d}{dt} P_S(x) = 0$$

So the current is constant

$$J = a(x) P_S(x) - \frac{1}{2} \frac{d}{dx} [b(x) P_S(x)] = \text{const}$$

General Stationary solution of Fokker-Planck equation

$$P_S(x) = N_0 e^{-\Phi(x)} + J e^{-\Phi(x)} \int^x dx' \frac{1}{b(x')} e^{\Phi(x')}$$

$$\text{with } \Phi(x) = -2 \int_0^x \frac{a(x')}{b(x')} dx'$$

Kramers escape problem³

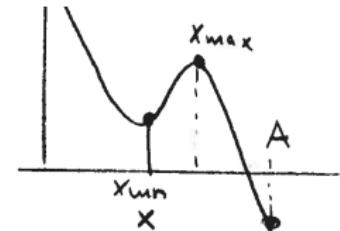
We want the rate of particles escaping from the well.

Taking the derivative of $e^{\beta V(x)} P_S(x)$, we get

$$J = -D e^{-\beta V(x)} \frac{d}{dx} \left[e^{\beta V(x)} P_S(x) \right]$$

Integrating

between x_{\min} and A , and assuming $P_S(A) \approx 0$



$$J = D e^{\beta V(x_{\min})} P_S(x_{\min}) \left(\int_{x_{\min}}^A e^{-\beta V(x)} dx \right)$$

Moreover, the probability to be in the well is given by

$$P = \int_{x_1}^{x_2} P_S(t) \approx P_S(x_{\min}) e^{\beta V(x_{\min})} \int_{x_1}^{x_2} x_2 e^{-\beta V(x)} dx$$

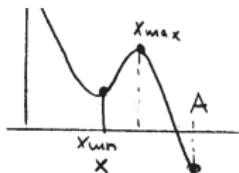
³See H. Risken, The Fokker-Planck Equation, 5.10

Kramers escape rate

Escape rate: $r = \frac{J}{P}$ so that

Kramers escape rate

$$\frac{1}{r} \approx 2\pi e^{\beta(V(x_{\max}) - V(x_{\min}))} \frac{m\gamma}{\sqrt{V''(x_{\min})V''(x_{\max})}}$$



Where we used asymptotic approximations to evaluate the integrals.

Applications: Laser trapping of particles ⁴, chemical reaction rates ⁵ ...

⁴ Neuman, Keir C., and Steven M. Block. "Optical trapping." *Review of scientific instruments* 75.9 (2004): 2787-2809.

⁵ Hänggi, Peter, Peter Talkner, and Michal Borkovec. "Reaction-rate theory: fifty years after Kramers." *Reviews of modern physics* 62.2 (1990): 251.

Kramers escape: first passage time⁶

Probability to stay between a and b until time t

$$G(x, t) = \int_a^b P(x', t|x, 0) dx'$$

same as probability that escape time (or first passage) $T > t$.
This means that the probability distribution for T is

$$P_T(T) = -\frac{\partial G(x, t)}{\partial t}$$

so using integration by part, we find:

$$T(x) \equiv \langle T \rangle = - \int_0^\infty t \frac{\partial G(x, t)}{\partial t} dt = \int_0^\infty G(x, t) dt$$

⁶See Gardiner, Stochastic Methods, 5.2.7

Kramers escape: first passage time

Using the backward Fokker-Planck equation, we can derive a differential equation for G and then for $T(x)$

Differential equation for time of first passage

$$A(x)\partial_x T(x) + \frac{1}{2}B(x)\partial_x^2 T(x) = -1$$

Solving with appropriate boundary condition, one gets

$$T(x) = \int_x^b \frac{dy}{\Psi(y)} \int_a^y \frac{\Psi(z)}{B(z)} dz \text{ with } \Psi(x) = \exp\left(\int_0^x dx' 2\frac{A(x')}{B(x')}\right)$$

Kramers escape: first passage time

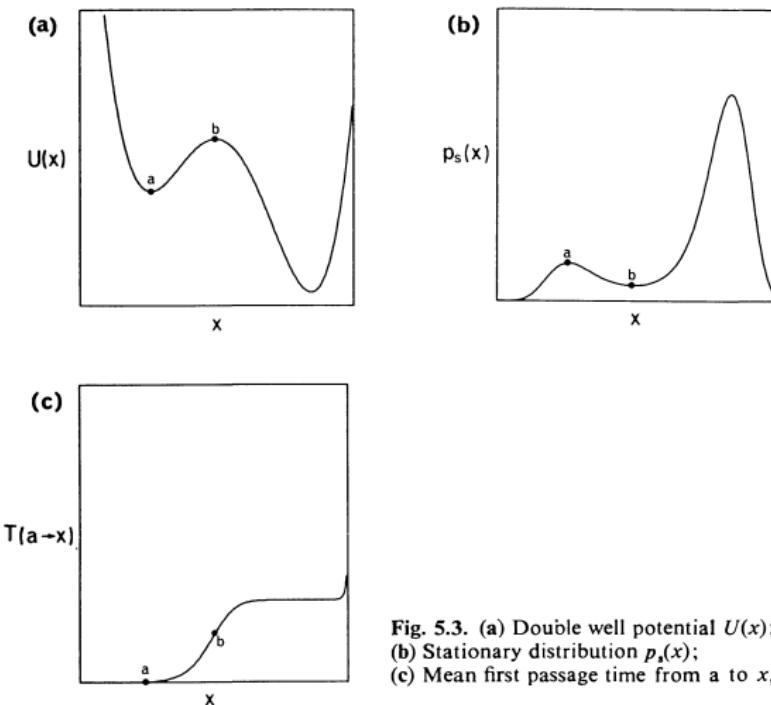


Fig. 5.3. (a) Double well potential $U(x)$;
(b) Stationary distribution $p_s(x)$;
(c) Mean first passage time from a to x , $T(a \rightarrow x_0)$

Application of the Kramers escape rate: Optical tweezers

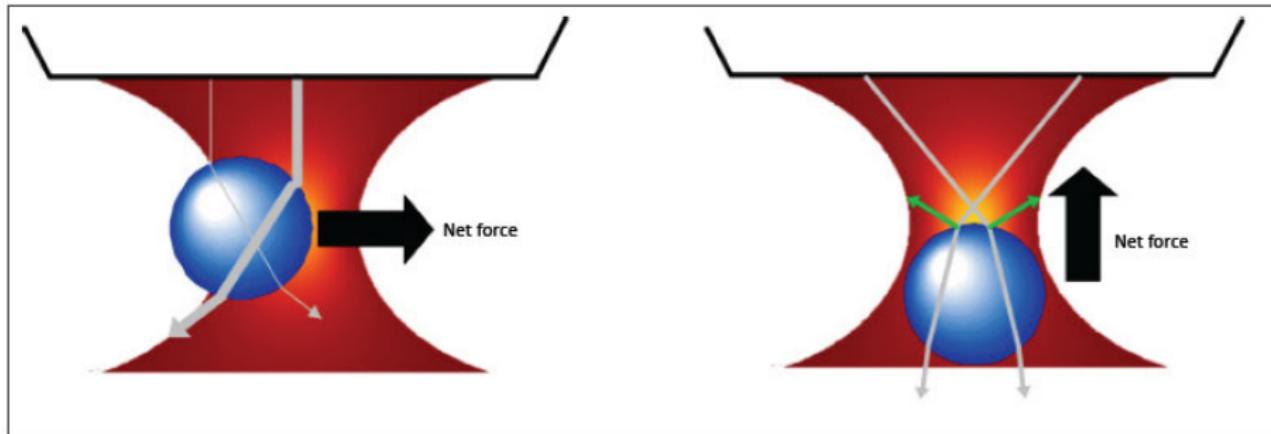


FIGURE 1: The refracted rays (grey) produce corresponding forces on the bead, resulting in a net force toward the most intense region of the beam. In the axial direction, the gradient force must be greater than the scattering force to obtain three-dimensional trapping.

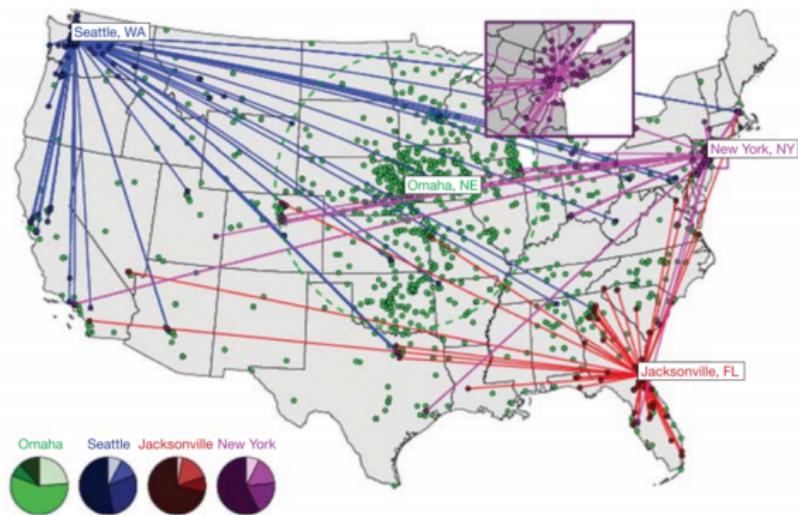
$$F_{\text{grad}} = \frac{1}{2} n_m \alpha \nabla |E|^2 = \frac{n_m^3 \left(\frac{d}{2}\right)^3}{2} \left(\frac{n_p^2 - n_m^2}{n_p^2 + 2n_m^2} \right)^2 \nabla |E|^2,$$

Svoboda, Karel, et al. "Direct observation of kinesin stepping by optical trapping interferometry." *Nature* 365.6448 (1993): 721.

Lévy flight versus Brownian motion⁷

⁷brockmann scaling 2006.

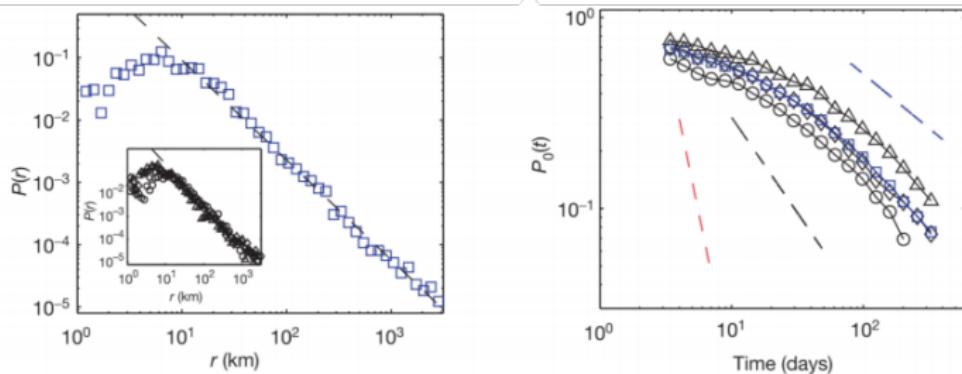
The scaling laws of human travel ⁸



Dispersal of bank notes and humans on geographical scales and
Trajectories of bank notes originating from four different places.

⁸Vespignani, Alessandro. "Predicting the behavior of techno-social systems." *Science* 325.5939 (2009): 425-428.

The scaling laws of human travel



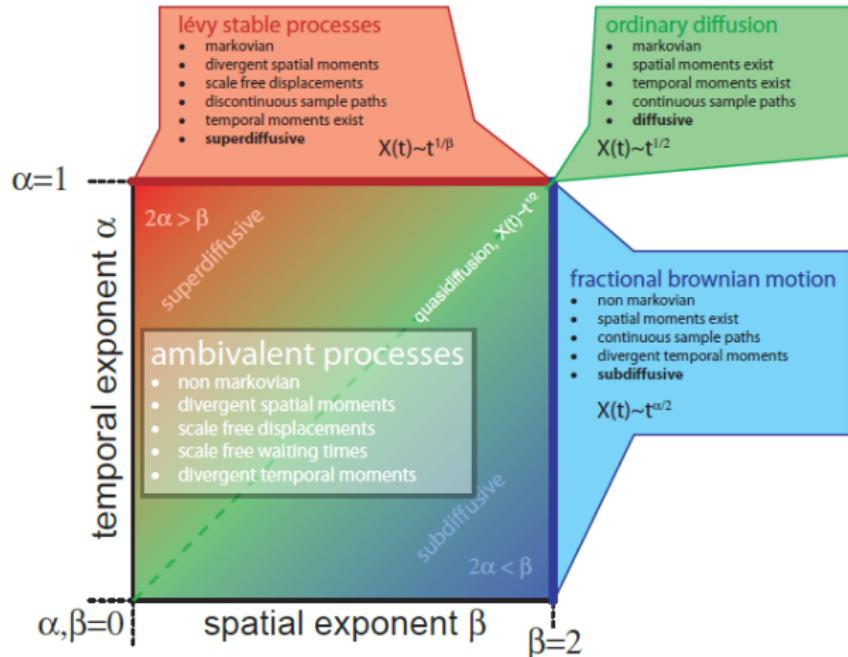
Dispersal of bank notes and humans on geographical scales. *c*, The short-time dispersal kernel. The measured probability density function $P(r)$ of traversing a distance r in less than $T = 4$ days is depicted in blue symbols. *d*, The relative proportion $P_0(t)$ of secondary reports within a short radius ($r_0 = 20\text{km}$) of the initial entry location as a function of time. Blue squares show $P_0(t)$ averaged over 25,375 initial entry locations.

Continuous time random walks

Consider processes for which $P(y, \Delta t) = f(y)\Phi(\Delta t)$ where both f and Φ are probability density distributions.

Process	f	Φ	$P(x, \Delta t)$	Scaling
Ordinary diffusion	gaussian	exponential	$\frac{e^{-x^2/Dt}}{\sqrt{t}}$	$t^{1/2}$
Levy flight	$\frac{1}{y^{\beta+1}}$	*	$\frac{L_\beta(x/t^{1/\beta})}{t^{1/\beta}}$	$t^{1/\beta}$
Fractional brownian motion	gaussian	$\frac{1}{(\Delta t)^{\alpha+1}}$	$\frac{L_\beta(x/t^{\alpha/2})}{t^{\alpha/2}}$	$t^{\alpha/2}$
Ambivalent process	$\frac{1}{y^{\beta+1}}$	$\frac{1}{(\Delta t)^{\alpha+1}}$		$t^{\alpha/2\beta}$

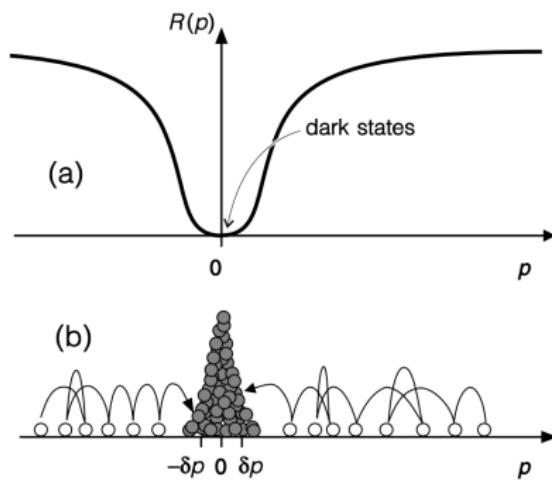
Asymptotic Universality Classes of CTRWs⁹



⁹brockmann scaling 2006.

Application: sub-recoil laser cooling

- During the interaction time with the laser field, an atom will be trapped for some time intervals τ_i and will be in the recycling region for some other intervals $\hat{\tau}_i$
- The sums formed by summing the trapping times, i.e. $\tau_N = \sum_{i=1}^N \tau_i$ are Lévy sums
- Main idea: construct a momentum dependent fluorescence rate $R(p)$ in the trapping region such that $R(p) \approx 0$ around $p \approx 0$



Application: sub-recoil laser cooling

VOLUME 72, NUMBER 2

PHYSICAL REVIEW LETTERS

10 JANUARY 1994

Subrecoil Laser Cooling and Lévy Flights

F. Bardou,¹ J. P. Bouchaud,² O. Emile,^{1,*} A. Aspect,^{1,†} and C. Cohen-Tannoudji¹

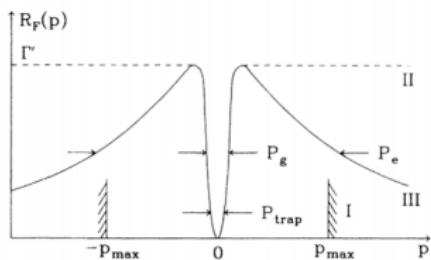


FIG. 2. Variations with p of the fluorescence rate $R_F(p)$ (see text). The narrow dip around $p=0$, with a width p_g , is due to VSCPT. The trapping zone is defined by $|p| < p_{\text{trap}}$. Three different models are taken for the variations of $R_F(p)$ at large p . Model I: walls confining the atomic momentum to $|p| \leq p_{\text{max}}$. Model II: constant fluorescence rate equal to Γ' out of the dip (interrupted line). Model III (corresponding to actual experiments, full line): decrease of the fluorescence rate for $|p| > p_e$, due to a Doppler detuning from the optical resonance.

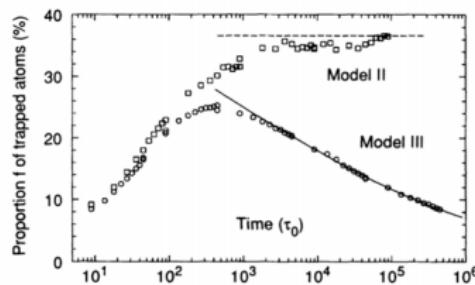


FIG. 3. Variations with the interaction time θ of the proportion f of trapped atoms ($|p| < p_{\text{trap}}$), calculated from N Monte Carlo runs for the models II and III of Fig. 2. Model II (squares): $N = 4000$, $p_g = 0.5\hbar k$, $p_{\text{trap}} = 0.08\hbar k$; the interrupted line represents the asymptotic theoretical prediction $f = 0.365$ corresponding to $E_R/\hbar\Gamma' = 0.59$. Model III (circles): $N = 16000$, $p_g = 0.5\hbar k$, $p_{\text{trap}} = 0.08\hbar k$, $p_e = 9.4\hbar k$; the full line represents the best fit for the asymptotic theoretical prediction (see text). Model II requires more computer time than model III. This is why N is smaller and the statistical uncertainty larger.

