

Stat. Phys. IV: Lecture 4

Spring 2025

Generalized Fluctuation-Dissipation relation¹

A process with memory (frequency dependent damping):

$$\begin{aligned}\dot{v} &= - \int_0^t \gamma(t-s)v(s) \, ds + \frac{F(t)}{m} \\ \Rightarrow v[\omega] &= \chi[\omega] \cdot F[\omega]; \quad \chi[\omega] = [m(i\omega + \gamma[\omega])]^{-1} \text{ (admittance)}\end{aligned}$$

The Generalized FDT states:

$$m\gamma[\omega] = \frac{1}{k_B T} \int_{-\infty}^{\infty} \langle F(t)F(t+\tau) \rangle e^{-i\omega\tau} \, d\tau$$

- Example: radiation reaction force on a charge implies fluctuating electric field satisfying the Planck radiation law

¹HB Callen and TA Welton. "Irreversibility and generalized noise". In: *Phys. Rev.* 83 (1951), p. 34, R Kubo. "The fluctuation-dissipation theorem". In: *Rep. Prog. Phys.* 29.1 (1966), p. 255.

Proving the GFDT – recapitulation of the steps

- ➊ Formally solve the equation of motion:

$$v(t) = v(0) \cdot m\chi(t) + \int_0^t \chi(t-t')F(t') dt'$$

- ➋ Using equipartition ($m\langle v(0)^2 \rangle = k_B T$), and $\langle v(0)F(t') \rangle = 0$, gives:

$$\langle v(t)v(0) \rangle = k_B T \chi(t)$$

- ➌ Equation of motion and Wiener-Khinchin theorem, gives:

$$\int_{-\infty}^{\infty} \langle v(t)v(0) \rangle e^{-i\omega t} dt = |\chi[\omega]|^2 \int_{-\infty}^{\infty} \langle F(t)F(0) \rangle e^{-i\omega t} dt$$

- ➍ Rearranging using the symmetry of the correlator, then gives:

$$\int_{-\infty}^{\infty} \langle F(t)F(0) \rangle e^{-i\omega t} dt = 2k_B T \operatorname{Re} [\chi[\omega]^{-1}]$$

GFDT in the quantum limit²

$$\langle V^2 \rangle = \frac{2}{\pi} \int_0^\infty R(\omega) \left(\frac{1}{2} \hbar \omega + \frac{\hbar \omega}{e^{\hbar \omega / k_B T} - 1} \right) d\omega$$

reducing in the classical limit to

$$\langle V^2 \rangle \approx \frac{2}{\pi} k_B T \int_0^\infty R(\omega) d\omega$$

- V : fluctuating force
- $R(\omega)$: real part of impedance $Z(\omega)$
- $Z(\omega)$: impedance defined as $V = Z(\omega) \dot{Q}$ with response \dot{Q}

²HB Callen and TA Welton. "Irreversibility and generalized noise". In: *Phys. Rev.* 83 (1951), p. 34.

Application: quantum noise of Josephson junctions³

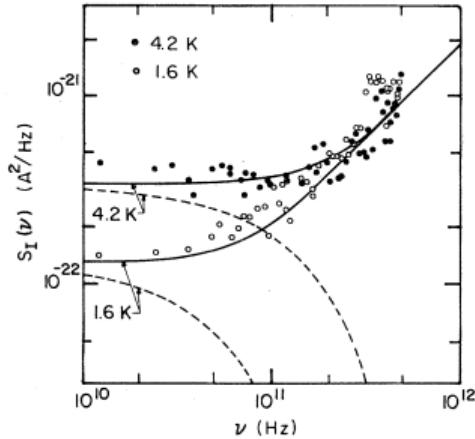


FIG. 6. Measured spectral density of current noise in shunt resistor of junction 2 at 4.2 K (solid circles) and 1.6 K (open circles). Solid lines are prediction of Eq. (1.4), while dashed lines are $(4h\nu/R)[\exp(h\nu/k_B T) - 1]^{-1}$.

$$S_I(\nu) = \frac{4h\nu}{R} \left(\frac{1}{\exp(h\nu/k_B T) - 1} + \frac{1}{2} \right)$$

³Roger H. Koch, D. J. Van Harlingen, and John Clarke. "Measurements of quantum noise in resistively shunted Josephson junctions". In: *Physical Review B* 26.1 (1982).

Application: Planck radiation from dipole emission⁴

An oscillating dipole

$$P = P_0 \sin \omega t$$

with equation of motion

$$m \frac{dv}{dt} + m\omega_0^2 x + F_d = F \quad \text{with} \quad F_d = -\frac{2}{3} e^2 c^{-3} \frac{d^2 v}{dt^2}$$

will feel a fluctuating electrical field

$$\langle \mathcal{E}^2 \rangle = \frac{4}{\pi c^3} \int_0^{\infty} \left(\frac{1}{2} \hbar \omega + \frac{\hbar \omega}{e^{\hbar \omega / k_B T} - 1} \right) \omega^2 d\omega$$

where we can recognize the contribution from Planck radiation.

⁴HB Callen and TA Welton. "Irreversibility and generalized noise". In: *Phys. Rev.* 83 (1951), p. 34.

Review of conditional probabilities

- $W(x_1, t_1; \dots; x_n, t_n) dx_1 \dots dx_n$ is the probability to find sample path passing through each of the intervals $(x_i, x_i + dx_i)$ at time t_i
- W is a probability distribution satisfying
 - ▶ $W > 0$
 - ▶ $\int dx_1 \dots dx_n W = 1$
 - ▶ symmetric under permutation index pairs
 - ▶ $W(x_1, t_1; \dots; x_{n-1}, t_{n-1}) = \int dx_n W(x_1, t_1; \dots; x_n, t_n)$
- For a stationary process
 - ▶ $W(x_1, t_1) \equiv W(x_1)$
 - ▶ $W(x_1, t_1; x_2, t_2) = W(x_1, t_1 - t_2; x_2, 0)$, and so on...
- Bayes' theorem gives the conditional probability:

$$P(x_1, t_1; \dots; x_k, t_k | x_{k+1}, t_{k+1}; \dots; x_n, t_n) = \frac{W(x_1, t_1; \dots; x_n, t_n)}{W(x_1, t_1; \dots; x_k, t_k)}$$

Markov process, Chapman-Kolmogorov equation

A Markov process is memoryless, i.e. it is characterized by

$$P(x_1, t_1; \dots; x_k, t_k | x_{k+1}, t_{k+1}) = P(x_k, t_k | x_{k+1}, t_{k+1})$$

If it is also stationary, then

$$P(x_k, t_k | x_{k+1}, t_{k+1}) = P(x_k, 0 | x_{k+1}, \Delta t_{k+1})$$

s.t. $\lim_{\Delta t_{k+1} \rightarrow \infty} P(x_k, 0 | x_{k+1}, \Delta t_{k+1}) = P_s(x_k)$

Any Markov process satisfies the consistency relations

- $P(x_1, t_1 | x_3, t_3) = \int dx_2 P(x_1, t_1 | x_2, t_2) P(x_2, t_2 | x_3, t_3)$
- $W(x_2, t_2) = \int dx_1 W(x_1, t_1) P(x_1, t_1 | x_2, t_2)$

Fokker-Planck equation via the Kramers-Moyal expansion

① Chapman-Kolmogorov equation:

$$P(x_0, t_0 | x, t_0 + \Delta t) = \int d\epsilon \underbrace{P(x_0, t_0 | x - \epsilon, t) P(x - \epsilon, t | x, t + \Delta t)}_{f(x - \epsilon)}$$

② Taylor expand, $f(x - \epsilon) = f(x) + \sum_{n=1}^{\infty} \frac{(-\epsilon)^n}{n!} \partial_x^n f(x)$

③ Inserting this back, and re-arranging:

$$\frac{P(x_0, t_0 | x, t + \Delta t) - P(x_0, t_0 | x, t)}{\Delta t} = \sum_n \frac{(-1)^n}{\Delta t \cdot n!} \partial_x^n P(x, t | x_0, t_0) \times \int d\epsilon \epsilon^n P(x, t | x + \epsilon, t + \Delta t)$$

④ Defining, $B_n(x, t) = \lim_{\Delta t \rightarrow 0} \frac{1}{\Delta t} \int \epsilon^n P(\epsilon, \Delta t),$

$$\partial_t P(x_0, t_0 | x, t) = \sum_n \frac{(-1)^n}{n!} \partial_x^n [B_n(x, t) P(x_0, t_0 | x, t)]$$

Fokker-Planck equation for a continuous Markov process

First, we note from the definition that in fact, $B_n(x, t) = \lim_{\Delta t \rightarrow 0} \frac{\langle x^n \rangle}{\Delta t}$

Recall, that a continuous Markov process is described by

$$dx = A(x, t)dt + \sqrt{D(x, t)} dW$$

we have,

$$\langle x \rangle = A(x, t)dt \Rightarrow B_1 = A(x, t)$$

$$\langle x^2 \rangle = D(x, t)(\sqrt{dt})^2 \Rightarrow B_2 = D(x, t)$$

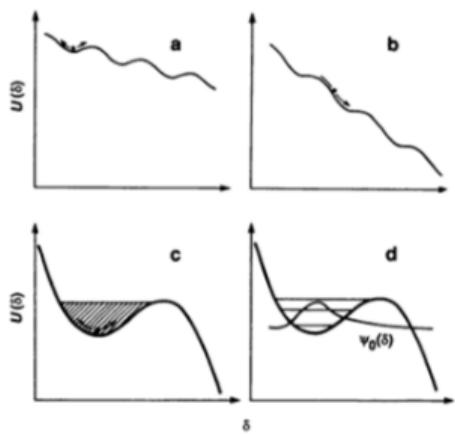
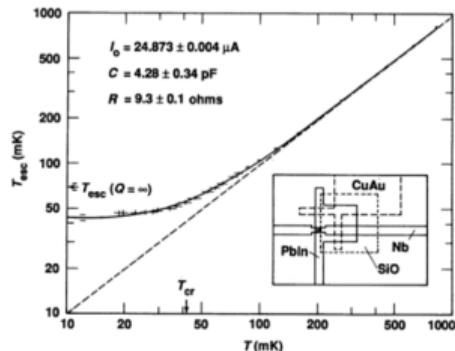
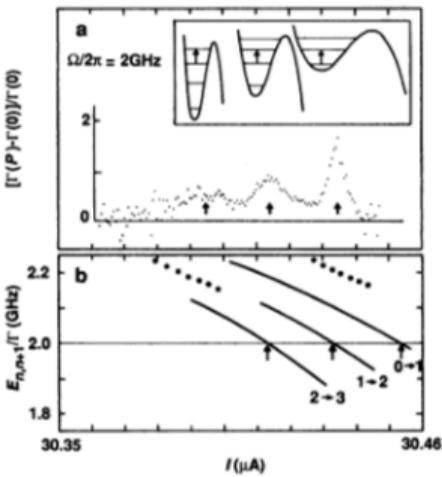
$$\langle x^n \rangle = 0 \text{ for } n > 2$$

Thus, the corresponding Fokker-Planck equation is,

$$\partial_t P = -\partial_x [A(x, t)P] + \frac{1}{2} \partial_x^2 [D(x, t)P]$$

Quantum Mechanics of a Macroscopic Variable: The Phase Difference of a Josephson Junction

JOHN CLARKE, ANDREW N. CLELAND, MICHEL H. DEVORET, DANIEL ESTEVE,
JOHN M. MARTINIS



Questions for the paper presentation

- What is a Josephson junction? What are the Josphson relations?
- Explain how the Kramers escape rate could be applied to a Josephson junction.
- How does quantum mechanics modify the classical Kramers escape problem?
- How do they measure the energy levels by escape rate? (Explain fig.6)
- How will graph 6(a) change as the temperature increases?

