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Generalized Fluctuation-Dissipation relation1

A process with memory (frequency dependent damping):

v̇ = −
∫ t

0
γ(t− s)v(s) ds+

F (t)

m

⇒ v[ω] = χ[ω] · F [ω]; χ[ω] = [m(iω + γ[ω])]−1 (admittance)

The Generalized FDT states:

mγ[ω] =
1

kBT

∫ ∞

−∞
⟨F (t)F (t+ τ)⟩e−iωτ dτ

Example: radiation reaction force on a charge implies fluctuating electric field satisfying
the Planck radiation law

1HB Callen and TA Welton. “Irreversibility and generalized noise”. In: Phys. Rev. 83 (1951), p. 34,
R Kubo. “The fluctuation-dissipation theorem”. In: Rep. Prog. Phys. 29.1 (1966), p. 255.
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Proving the GFDT – recapitulation of the steps
1 Formally solve the equation of motion:

v(t) = v(0) ·mχ(t) +

∫ t

0
χ(t− t′)F (t′) dt′

2 Using equipartition (m⟨v(0)2⟩ = kBT ), and ⟨v(0)F (t′)⟩ = 0, gives:

⟨v(t)v(0)⟩ = kBT χ(t)

3 Equation of motion and Wiener-Khinchin theorem, gives:∫ ∞

−∞
⟨v(t)v(0)⟩e−iωt dt = |χ[ω]|2

∫ ∞

−∞
⟨F (t)F (0)⟩e−iωt dt

4 Rearranging using the symmetry of the correlator, then gives:∫ ∞

−∞
⟨F (t)F (0)⟩e−iωt dt = 2kBT Re

[
χ[ω]−1

]
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GFDT in the quantum limit2

⟨V 2⟩ = 2

π

∫ ∞

0
R(ω)

(
1

2
ℏω +

ℏω
eℏω/kBT − 1

)
dω

reducing in the classical limit to

⟨V 2⟩ ≈ 2

π
kBT

∫ ∞

0
R(ω)dω

V : fluctuating force

R(ω): real part of impedance Z(ω)

Z(ω): impedance defined as V = Z(ω)Q̇ with response Q̇

2HB Callen and TA Welton. “Irreversibility and generalized noise”. In: Phys. Rev. 83 (1951), p. 34.
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Application: quantum noise of Josephson junctions380 KOCH, Van HARLINGEN, AND CLARKE 26
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FIG. 6. Measured spectral density of current noise in
shunt resistor of junction 2 at 4.2 K (solid circles) and
1.6 K (open circles). Sohd lines are prediction of Eq.
(1.4), while dashed lines are
(4h v/R )[exp(h v/kq T)—1]

o-
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v(mv)
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values of v=2eV/h, R, and T. The slight increase
of the data above the theory at the highest voltages
may reflect the presence of a resonance on the IV-
characteristic. The agreement between the data
and the predictions is rather good, bearing in mind
that, once again, no fitting parameters are used.
By contrast, the dashed lines represent the theoreti-
cal prediction in the absence of the zero-point
term,

(4h v/R )[exp(h v/ks T)—1]
and fall far below the data at the higher frequen-
cies. The existence of zero-point fluctuations in
the measured spectral density of the current noise
is rather convincingly demonstrated.

FIG. 7. 5 {0)at 183 kHz vs V for junction 3 at 4 2
K for four values of Io. Notation is as for Fig. 4.

somewhat above the prediction of Eq. (1.5). Apart
from this discrepancy, the measured total noise
and the measured mixed-down noise are in very
good agreement with the predictions. For ~=0.6S,
the data lie convincingly above the theory that
does not include the mixed-down zero-point fluc-
tuations, while for a.=0.07 the contribution of the
zero-point term is less than our experimental error.
Once again, the correct observed dependence of the
noise on Io demonstrates the absence of any signi-
ficant extraneous noise.

D. Junction 4

C. Junction 3

An alternative means of varying the mixed-down
noise between the quantum and thermal limits is to
change Io at fixed temperature. The critical
current was lowered by trapping flux in the junc-
tion. The 1/f noise in junction 3 at 183 kHz was
insignificant ( &2%), but the heating correction at
the higher voltages was substantial, so that it was
necessary to correct the mixed-down noise in addi-
tion to the noise generated at the measurement fre-
quency. In Fig. 7 we plot S„(0)/RD vs V at 4.2 K
for four values of Io corresponding to values of a.
ranging from 0.6S to 0.07. At the highest two
values of Io, the presence of a resonance near 200
(MV increased the magnitude of the measured noise

As noted earlier, some junctions contain reso-
nances that can effect the magnitude of the noise
mixed-down to the measurement frequency. Junc-
tion 4 exhibited strong resonant structure, and we
have investigated its origin and its effect on the
noise in some detail. Figure 8 shows the I-V and
(d V/dI)- V characteristics at 1.1 K for four values
of critical current; the three lowest values were ob-
tained by trapping flux in the junction. The struc-
ture arises from the resonant circuit formed by the
shunt inductance L, and junction capacitance C;
the equivalent circuit is shown in the inset in Fig.
9. The resonant circuit pulls the Josephson fre-
quency slightly so that it become more closely a
subharrnonic of the resonant frequency. Hence, as
the current bias is increased, the dynamic resis-

SI(ν) =
4hν

R

(
1

exp(hν/kBT )− 1
+

1

2

)
3Roger H. Koch, D. J. Van Harlingen, and John Clarke. “Measurements of quantum noise in resistively

shunted Josephson junctions”. In: Physical Review B 26.1 (1982).
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Application: Planck radiation from dipole emission4

An oscillating dipole
P = P0 sinωt

with equation of motion

m
dv

dt
+mω2

0x+ Fd = F with Fd = −2

3
e2c−3d

2v

dt2

will feel a fluctuating electrical field

⟨E2⟩ = 4

πc3

∫ ∞

0

(
1

2
ℏω +

ℏω
eℏω/kBT − 1

)
ω2dω

where we can recognize the contribution from Planck radiation.

4HB Callen and TA Welton. “Irreversibility and generalized noise”. In: Phys. Rev. 83 (1951), p. 34.
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Review of conditional probabilities

W (x1, t1; . . . ;xn, tn)dx1 · · · dxn is the probability to find sample path passing through
each of the intervals (xi, xi + dxi) at time ti
W is a probability distribution satisfying

▶ W > 0
▶

∫
dx1 . . . dxn W = 1

▶ symmetric under permutation index pairs
▶ W (x1, t1; . . . ;xn−1, tn−1) =

∫
dxn W (x1, t1; . . . ;xn, tn)

For a stationary process
▶ W (x1, t1) ≡ W (x1)
▶ W (x1, t1;x2, t2) = W (x1, t1 − t2;x2, 0), and so on...

Bayes’ theorem gives the conditional probability:

P (x1, t1; . . . ;xk, tk|xk+1, tk+1; . . . ;xn, tn) =
W (x1, t1; . . . ;xn, tn)

W (x1, t1; . . . ;xk, tk)
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Markov process, Chapman-Kolmogorov equation

A Markov process is memoryless, i.e. it is characterized by

P (x1, t1; . . . ;xk, tk|xk+1, tk+1) = P (xk, tk|xk+1, tk+1)

If it is also stationary, then

P (xk, tk|xk+1, tk+1) = P (xk, 0|xk+1,∆tk+1)

s.t. lim
∆tk+1→∞

P (xk, 0|xk+1,∆tk+1) = Ps(xk)

Any Markov process satisfies the consistency relations

P (x1, t1|x3, t3) =
∫
dx2 P (x1, t1|x2, t2)P (x2, t2|x3, t3)

W (x2, t2) =
∫
dx1W (x1, t1)P (x1, t1|x2, t2)
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Fokker-Planck equation via the Kramers-Moyal expansion
1 Chapman-Kolmogorov equation:

P (x0, t0|x, t0 +∆t) =

∫
dϵ P (x0, t0|x− ϵ, t)P (x− ϵ, t|x, t+∆t)︸ ︷︷ ︸

f(x−ϵ)

2 Taylor expand, f(x− ϵ) = f(x) +
∑∞

n=1
(−ϵ)n

n! ∂n
xf(x)

3 Inserting this back, and re-arranging:

P (x0, t0|x, t+∆t)− P (x0, t0|x, t)
∆t

=
∑
n

(−1)n

∆t · n!
∂n
xP (x, t|x0, t0)×∫

dϵ ϵnP (x, t|x+ ϵ, t+∆t)

4 Defining, Bn(x, t) = lim∆t→0
1
∆t

∫
ϵnP (ϵ,∆t),

∂tP (x0, t0|x, t) =
∑
n

(−1)n

n!
∂n
x [Bn(x, t)P (x0, t0|x, t)]
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Fokker-Planck equation for a continuous Markov process

First, we note from the definition that in fact, Bn(x, t) = lim∆t→0
⟨xn⟩
∆t

Recall, that a continuous Markov process is described by

dx = A(x, t)dt+
√

D(x, t) dW

we have,

⟨x⟩ = A(x, t)dt ⇒ B1 = A(x, t)

⟨x2⟩ = D(x, t)(
√
dt)2 ⇒ B2 = D(x, t)

⟨xn⟩ = 0 for n > 2

Thus, the corresponding Fokker-Planck equation is,

∂tP = −∂x [A(x, t)P ] +
1

2
∂2
x [D(x, t)P ]
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Next week’s paper
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Questions for the paper presentation

What is a Josephson junction? What are the Josphson relations?

Explain how the Kramers escape rate could be applied to a Josephson junction.

How does quantum mechanics modify the classical Kramers escape problem?

How do they measure the energy levels by escape rate? (Explain fig.6)

How will graph 6(a) change as the temperature increases?
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