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Generalized Fluctuation-Dissipation relation?

A process with memory (frequency dependent damping):

t
1}:—/0 ’y(t—s)v(s)d5+@

m

= v[w] = x[w] - Flw]; x[w] = [m(iw + v[w])] " (admittance)

The Generalized FDT states:

mylw] = kBLT /_ Z(F(t)F(t +r)e T g

@ Example: radiation reaction force on a charge implies fluctuating electric field satisfying
the Planck radiation law

'HB Callen and TA Welton. “Irreversibility and generalized noise”. In: Phys. Rev. 83 (1951), p. 34,
R Kubo. “The fluctuation-dissipation theorem”. In: Rep. Prog. Phys. 29.1 (1966), p. 255.
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Proving the GFDT — recapitulation of the steps

@ Formally solve the equation of motion:

t
v(t) :v(O)-mx(t)-l-/O x(t—tYE{)dt
@ Using equipartition (m{v(0)?) = kgT), and (v(0)F(t')) = 0, gives:

(v(t)v(0)) = kBT x(t)

© Equation of motion and Wiener-Khinchin theorem, gives:

| twtenonetat =il [ (FOFO)e ar
@ Rearranging using the symmetry of the correlator, then gives:

/ T (F(O)F(0))e " dt = 2k5T Re [x[w] ]

—00
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GFDT in the quantum limit?

hw
/ R(w ( ehw/kBT 1>dw

(V% ~ szT/ R(w)dw
™ 0

reducing in the classical limit to

e V: fluctuating force
@ R(w): real part of impedance Z(w)
@ Z(w): impedance defined as V = Z(w)Q with response Q

2HB Callen and TA Welton. “Irreversibility and generalized noise”. In: Phys. Rev. 83 (1951), p. 34.
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Application: quantum noise of Josephson junctions?
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FIG. 6. Measured spectral density of current noise in
shunt resistor of junction 2 at 4.2 K (solid circles) and
1.6 K (open circles). Solid lines are prediction of Eq.
(1.4), while dashed lines are
(4hv/R)[expthv/kgT)—1]7".

Si(v) 4hv 1 n 1
V)= -
! R \exp(hv/kpT)—1 2
3Roger H. Koch, D. J. Van Harlingen, and John Clarke. “Measurements of quantum noise in resistively
shunted Josephson junctions”. In: Physical Review B 26.1 (1982).
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Application: Planck radiation from dipole emission®

An oscillating dipole

P = Pysinwt
with equation of motion
d 2 d?
dt + mwox 4+ Fg=F with Fy= —5620_3 dt;)

will feel a fluctuating electrical field

4 [ /1 hw
2y . * - 2
<S>_7rc3/0 <2hw+ehw/kBT_1)w dw

where we can recognize the contribution from Planck radiation.

*HB Callen and TA Welton. “Irreversibility and generalized noise”. In: Phys. Rev. 83 (1951), p. 34.
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Review of conditional probabilities

o Wi(xy,ti;...;2pn,ty)dzy - - - dzy, is the probability to find sample path passing through
each of the intervals (z;, z; + dx;) at time ¢;
o W is a probability distribution satisfying
W >0
[dzy ... de, W =1
symmetric under permutation index pairs
W(ml,tl;.. F X — 1, n— 1 fdl‘n xl,tl;...;xn,tn)
@ For a stationary process
> W(l‘l,tl) = W(l‘l)
> W(l‘l,tl;l’g,tg) = W(CL’l,tl — to; X9, O), and so on...

vV vy VvYy

@ Bayes' theorem gives the conditional probability:

W(xi,t15.. 520, ty)
Wiz, t1;. .5 T, tr)

P(xi,t1;. .5 xp, te| gy, terts - o5 Tny tn) =
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Markov process, Chapman-Kolmogorov equation

A Markov process is memoryless, i.e. it is characterized by

P(xi,ti;. .52k, telokyr, tey1) = Pog, telTpt1, tet)

If it is also stationary, then

P(xp, te|Tet1, thr1) = P(xk, O|Tpg1, Atryr)
s.t. lim  P(xg,O0|zgr1, Atgr1) = Ps(zg)

Atk+1—>00

Any Markov process satisfies the consistency relations

o P(x17t1’x37t3) = fda:Q P(l’l,tl’.ﬁl}'g,t2)P($2,t2‘$3,t3)
o W(.’L‘g,tz) = fd.’El W(.’L‘l,tl)P(l‘l,tl‘ﬂjg,tQ)

Stat. Phys. IV: Lecture 4

Spring 2025 8/13



Fokker-Planck equation via the Kramers-Moyal expansion
© Chapman-Kolmogorov equation:
Plao, tol, to + AF) = /de Plao, tole — e, ) P(x — e, t|z, t + At)
f(z—e)

@ Taylor expand, f(z —¢€) = f(x) + 30, E 07 f(x)
© Inserting this back, and re-arranging:
P(zo,to|z, t + At) — P(zo, to|z, 1)
At At

8"P (x, t|xo, to) X

/de €"P(z,tlx + €t + At)
@ Defining, By (z,t) = limaio 27 [ € P(e, At),

0 P(xo, tola,t) = (_T%ag [Bn(z,t) P(x0, to|x, t)]

n
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Fokker-Planck equation for a continuous Markov process

First, we note from the definition that in fact, B, (z,t) = lima;—0 <ZT;>
Recall, that a continuous Markov process is described by

dx = A(x,t)dt + \/D(x,t) dW

we have,

(xy = Az, t)dt = B; = A(z,t)
(z%) = D(z,t)(Vdt)> = By = D(,t)
(") =0 forn > 2

Thus, the corresponding Fokker-Planck equation is,
1
0P = —0, [A(z,t)P] + §8§ [D(z,t)P)
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Next week's paper

Quantum Mechanics of a Macroscopic Variable:
The Phase Difference of a Josephson Junction

JoHN CLARKE, ANDREW N. CLELAND, MICHEL H. DEVORET, DANIEL ESTEVE,
JoHN M. MARTINIS
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Questions for the paper presentation

What is a Josephson junction? What are the Josphson relations?
Explain how the Kramers escape rate could be applied to a Josephson junction.
How does quantum mechanics modify the classical Kramers escape problem?

How do they measure the energy levels by escape rate? (Explain fig.6)

How will graph 6(a) change as the temperature increases?

Stat. Phys. IV: Lecture 4 Spring 2025 12/13






