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Note on the Fourier transform and spectral densities
The definition of the Fourier transform alters in different references, here we consider (Risken’s
definition):

Fourier transform

X̃(ω) =
∫∞
−∞X(t)e−iωtdt

X(t) = 1
2π

∫∞
−∞ X̃(ω)eiωtdω

1/2π factor can also be moved to the other side as done in Gardiner and Zoller.

2πδ(ω − ω′) =
∫∞
−∞ e−i(ω−ω′)tdt

For a real valued signal: X̃(ω) = X̃∗(−ω)

Real signals from measurements are limited in time (T). For these signals gated Fourier
transform is defined by:

Gated Fourier transform

X̃T (ω) =
∫ T
0 X(t)e−iωtdt
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Stochastic processes

Autocorrelation (For Ergodic processes)

CXX(τ) = ⟨X(t)X(t+ τ)⟩

⟨X̃(ω)X̃∗(ω′)⟩ =
∫ ∞

−∞

∫ ∞

−∞
⟨X(t)X(t+ τ)⟩e−i(ω−ω′)te−iωτdtdτ =

= 2πδ(ω − ω′)

∫ ∞

−∞
CXX(τ)e−iωτdτ

Wiener-Khinchin theorem

2πδ(ω − ω′)SXX(ω) = ⟨X̃(ω)X̃∗(ω′)⟩

SXX(ω) =

∫ ∞

−∞
CXX(τ)e−iωτdτ
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Power spectral density with gated Fourier transform

We can define the power of a stochastic process X(t) as:

P = lim
T→∞

1

T

∫ T

0
⟨|X(t)|2⟩dt =

∫ +∞

−∞
lim
T→∞

⟨|X̃T (ω)|2⟩
T︸ ︷︷ ︸

SXX(ω)

dω

Power spectral density with gated Fourier transform

SXX(ω) = limT→∞
⟨|X̃T (ω)|2⟩

T

Another approach is to define gated Fourier transform as: X̃ ′
T (ω) =

1√
T

∫ T
0 X(t)e−iωtdt.

In this case we can define power spectral density as:

SXX(ω) = lim
T→∞

⟨|X̃ ′
T (ω)|2⟩
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Two-force hypothesis (molecular impingement model)1

Langevin equation

m
dv

dt
(t) = −γv(t) + fΓ(t) with f =

√
2γkBT (from equipartition)

γ: drag coefficient; Γ(t): Gaussian white noise.

This equation can be derived by considering velocity of a particle as a Markov jump
process (also called a continuous-time random walk) in 1D

for P (v, t) (probability of the particle having velocity v at time t) we can derive (by
invoking Boltzmann distribution):

Fokker-Planck equation

∂tP (v, t) =
γ

m
∂v[vP (v, t)] +

γkBT

m2
∂2
vP (v, t)

it can be shown using the Kramers-Moyal expansion that this is equivalent to the
Langevin-equation

1D. T. Gillespie. “Fluctuation and dissipation in Brownian motion”. In: Am. J. Phys. 51.1077 (1993).
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A molecular impingement model of Brownian motion2

Jumping probabilities:
W+(v) = B(1− v/A) and W−(v) = B(1 + v/A)
Leading to the Fokker-Planck equation:

Fokker-Planck equation

∂

∂t
P (v, t) = C1

∂

∂v
[vP (v, t)] + C2

∂2

∂v2
P (v, t)

where C1 = lim
N→∞

2B

N
and C2 = lim

N→∞

BA2

N2

Downloaded 06 Mar 2013 to 128.178.175.244. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission

Note: as N → ∞, also A → ∞ in a way that ∆ =
A

N
→ 0

2See “Fluctuaction and dissipation in Brownian motion” by Gillespie
Stat. Phys. IV: Lecture 3 Spring 2024 6 / 15



Wiener increment, Itō’s lemma

given a stochastic process X(t) which obeys

dX = A(X(t), t)dt+
√
D(X(t), t)dW

dW = Γ(t)dt = lim
dt→∞

[
N (0, 1)/

√
dt
]
dt: Wiener increment

What does the increment look like for f(X(t))?

Itō’s lemma

df =

(
A(X(t), t)f ′ +

1

2
D(X(t), t)f ′′

)
dt+

√
D(X(t), t)f ′dW
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Summary of Fluctuation dissipation theorems
Langevin approach to Brownian motion → Einstein relation:

D =

∫ ∞

0

⟨v(t)v(t+ t′)⟩ dt′ = kBT

mγ

Case of Johnson noise in an electric circuit:

R−1 =
1

kBT

∫ ∞

0

⟨I(t)I(t+ t′)⟩ dt′

Generally the damping can be frequency dependent3. For the equation of motion:

v̇(t) = −
t∫

0

γ(t− s)v(s)ds+
F (t)

m
, (1)

we can prove the Generalised Fluctuation Dissipation Theorem (GFDT).

Generalised Fluctuation Dissipation Theorem

mγ[ω] =
1

kBT

∫ ∞

0

⟨F (t0)F (t0 + t)⟩ e−iωtdt

3Herbert B. Callen and Theodore A. Welton. “Irreversibility and Generalized Noise”. In: Physical Review
83.1 (July 1951), pp. 34–40. Stat. Phys. IV: Lecture 3 Spring 2024 8 / 15



Proof of GFDT4

We start with equation (1) and define the susceptibility as χ[ω] = 1
m(iω+γ[w]) , so that

v[ω] = χ[ω]F [ω]. We then have to prove: Lemma I:

⟨v(t)v(0)⟩ = kBTχ(t) ,

Lemma II:
∞∫

−∞

⟨F (t)F (0)⟩ e−iωtdt = 2kBT Re
{
χ−1[ω]

}
.

With these two steps we can prove the GFDT

Generalised Fluctuation Dissipation Theorem

mγ[ω] =
1

kBT

∫ ∞

0
⟨F (t0)F (t0 + t)⟩ e−iωtdt

4R. Kubo. “The fluctuation-dissipation theorem”. en. In: Reports on Progress in Physics 29.1 (1966),
p. 255. issn: 0034-4885.
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GFDT in the quantum limit5

〈
V 2

〉
=

2

π

∫ ∞

0
R(ω)

(
1

2
ℏω +

ℏω
eℏω/kBT − 1

)
dω

reducing in the classical limit to

〈
V 2

〉
≈ 2

π
kBT

∫ ∞

0
R(ω)dω

V : fluctuating force

R(ω): real part of impedance Z(ω)

Z(ω): impedance defined as V = Z(ω)Q̇ with response Q̇

5Herbert B. Callen and Theodore A. Welton. “Irreversibility and Generalized Noise”. In: Physical Review
83.1 (July 1951), pp. 34–40.
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Alternative formulations of the GFDT67

We take the example of a damped harmonic oscillator so that the displacement δx[ω] is
related to the Langevin force by:

δx[ω] = χ[ω]FT [ω] with χ[ω] =
1

M(ω2
M − ω2 − iω2

Mϕ[ω])
(2)

In this formulation we can write the fluctuation dissipation theorem as (SFT
is the spectrum of

the langevin force):

SFT
[ω] = −2kBT

ω
Im

{
1

χ[ω]

}
In this formulation ϕ[ω] is the imaginary part of Hooke’s law responsible for internal damping
in materials:

FHooke = −Mω2
M (1− iϕ[ω])δx

6M. Pinard et al. “Full mechanical characterization of a cold damped mirror”. In: Physical Review A 63.1
(Dec. 2000). arXiv: quant-ph/0008004. issn: 1050-2947, 1094-1622.

7Peter R. Saulson. “Thermal noise in mechanical experiments”. In: Physical Review D 42.8 (Oct. 1990),
pp. 2437–2445.
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Structural damping in solid state resonators8

Phenomenologically, in solid state resonators (from macro- to micro- scale) the loss angle
ϕ[ω] is weakly frequency dependent

This is in contrast to an oscillator with viscous damping, where ϕ[ω] = γω/ω2
M , i.e.

increases linearly with frequency
8Peter R. Saulson. “Thermal noise in mechanical experiments”. In: Physical Review D 42.8 (Oct. 1990),

pp. 2437–2445.
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Simulation of stochastic process using Python
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Questions for paper presentation

Explain briefly how LIGO is used to detect gravitational wave.

What are the possible noise sources in an interferometer?

What is the normal mode analysis and when does it fail? How does the normal mode
analysis allow one to compute the noise?

Explain various dissipation mechanisms in mechanical resonators, and how they are
modeled?

Explain the difference between the scaling of the bulk damping and the surface damping.
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