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Note on the Fourier transform and spectral densities

The definition of the Fourier transform alters in different references, here we consider (Risken's
definition):

Fourier transform

X(w) = [ X(t)e ™tdt
X(t) =45 [T, X (w)e™tdw

1/27 factor can also be moved to the other side as done in Gardiner and Zoller.
210 (w —w') = [T e~ ilw—wt gy
For a real valued signal: X (w) = X*(—w)

Real signals from measurements are limited in time (T). For these signals gated Fourier
transform is defined by:

Gated Fourier transform

Xr(w) = [ X(t)e “tdt
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Stochastic processes

Autocorrelation (For Ergodic processes)
Cxx(1) = (X(H)X(t + 7)) ]

(X (w) / / X(t 4 7))e Wt gidr =
— 2m8(w — o) / Cx (r)e T dr
Wiener-Khinchin theorem

276 (w — w')Sxx(w) = <X(W)X*(W,)>

SXX / CXX ZWTdT
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Power spectral density with gated Fourier transform

We can define the power of a stochastic process X (t) as:

T +o00 % w)|2
P= lim % /O (X)) dt = / lim M do

T—00 — 0 T—00
Sxx (@)
Power spectral density with gated Fourier transform
% 2
Sxx(w) = limp_ 00 —<|XT:§~W)| ) J

Another approach is to define gated Fourier transform as: X'7(w) = —= fTX(t)e_i‘*’tdt.
In this case we can define power spectral density as:

Sxx(w) = lim (| X"p(w)[?)

T—o00
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Two-force hypothesis (molecular impingement model)?

Langevin equation

m%m = —yo(t) + fT(t) with f = v29kpT (from equipartition)

@ ~: drag coefficient; I'(¢): Gaussian white noise.

@ This equation can be derived by considering velocity of a particle as a Markov jump
process (also called a continuous-time random walk) in 1D

e for P(v,t) (probability of the particle having velocity v at time ¢) we can derive (by
invoking Boltzmann distribution):

Fokker-Planck equation

O P(v,t) = —(‘3 [vP(v,t)] + kaT

0y P(v,)

@ it can be shown using the Kramers-Moyal expansion that this is equivalent to the
Langevin-equation

ID. T. Gillespie. “Fluctuation and dissipation in Brownian motion”. In: Am. J. Phys. 51.1077 (1993).
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A molecular impingement model of Brownian motion

Jumping probabilities:

Wi(v) = B(1—-v/A) and W_(v) = B(1+v/A)
Leading to the Fokker-Planck equation:

Fokker-Planck equation

ot

0 0 0
—P(v,t) = 01% [vP(v,t)] + ngP(v,t)

2B
where C; = lim N and Cy = lim

N—o0

2

2B -

Wil

N W_(v) = B(1 + v/A)

W, ) = Bl - vlA)

I I T Y W |

v_N=-

TR T B B
= L

A vp=0 p) oy=A

Fig. 2. Graphs of the stepping functions W _(v) in Egs. (31).

A
Note: asN—>oo,aIsoA%ooinawaythatA:N—H)

2See “Fluctuaction and dissipation in Brownian motion” by Gillespie
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Wiener increment, [to's lemma

@ given a stochastic process X (¢) which obeys

dX = A(X(t),t)dt + /D(X (1), t)dW

o dW =T (t)dt = lim [N (0, 1)/\/%} dt: Wiener increment
dt—o0
@ What does the increment look like for f(X (t))?

[to’s lemma

df = (A(X(t),t)f’ + %D(X(t),t)f”) dt + /D(X(t),t)f dW
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Summary of Fluctuation dissipation theorems
Langevin approach to Brownian motion — Einstein relation:

o kT
D:/ vt +t))dt' = ==
[ o+ ar =22
Case of Johnson noise in an electric circuit:
1 oo
Rl1=— IOIt+t))dt
T ), G0IEE)

Generally the damping can be frequency dependent3. For the equation of motion:
t
. F(t
o(t) = — /fy(t — s)v(s)ds + # , (1)
0
we can prove the Generalised Fluctuation Dissipation Theorem (GFDT).
Generalised Fluctuation Dissipation Theorem
1 o0
kT Jo
*Herbert B. Callen and Theodore A. Welton. “Irreversibility and Generalized Noise”. In: Physical Review
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Proof of GFDT*

We start with equation (1) and define the susceptibility as x[w] = m so that
v[w] = x[w]F|w]. We then have to prove: Lemma I
(0()v(0)) = kpTx(t) ,
Lemma Il -
/ (F(t)F(0)) e “'dt = 2ksT Re{x " w]} -
oo

With these two steps we can prove the GFDT

Generalised Fluctuation Dissipation Theorem

-~ kBLT /O P (to) Flto + 1)) e—“tdt

*R. Kubo. “The fluctuation-dissipation theorem”. en. In: Reports on Progress in Physics 29.1 (1966),
p. 255. 1ssN: 0034-4885.
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GFDT in the quantum limit®

I 1 _ w
<V>—ﬂ_ ; R(w) 2hw+eﬁw/kBT_1 dw

reducing in the classical limit to

(V) ~ szT/ R(w)dw
m 0

e V: fluctuating force
@ R(w): real part of impedance Z(w)
@ Z(w): impedance defined as V' = Z(w)Q with response Q

®Herbert B. Callen and Theodore A. Welton. “Irreversibility and Generalized Noise”. In: Physical Review
83.1 (July 1951), pp. 34-40.
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Alternative formulations of the GFDT®’

We take the example of a damped harmonic oscillator so that the displacement dx[w] is
related to the Langevin force by:

1
M(w]?w —w? — iwjzwqﬁ[w]) (2)

dzfw] = x[w]Friw] with x[w] =

In this formulation we can write the fluctuation dissipation theorem as (Sp, is the spectrum of

the langevin force):
2kgT 1
Spplw] = — B Im{ }
w x[w]
In this formulation ¢|w] is the imaginary part of Hooke's law responsible for internal damping
in materials:

2 .
Frooke = _MWM(l - Kb[w])(sx
®M. Pinard et al. “Full mechanical characterization of a cold damped mirror”. In: Physical Review A 63.1
(Dec. 2000). arXiv: quant-ph/0008004. 1ssN: 1050-2947, 1094-1622.

"Peter R. Saulson. “Thermal noise in mechanical experiments”. In: Physical Review D 42.8 (Oct. 1990),
pp. 2437-2445.
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Structural damping in solid state resonators®

10" =
[}

3

<= Nylon 6 fiber

3,

Power spectral density (rad*2/Hz)

B

o,

3,

freq(Hz) L Driving plates: V=\[+ V,

@ Phenomenologically, in solid state resonators (from macro- to micro- scale) the loss angle
¢[w] is weakly frequency dependent
e This is in contrast to an oscillator with viscous damping, where ¢[w] = yw/w?,, i.e.

increases linearly with frequency
8Peter R. Saulson. “Thermal noise in mechanical experiments’. In: Physical Review D 42.8 (Oct. 1990),

pp. 24372445,
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Simulation of stochastic process using Python

Simulation

for the velocity.

We simulate the Ornstein-Uhlenbeck process using the formula
VIk+ 1] = VIK] + yVIkIAt + \/eN+/AT,

[ [15]: |V = np.zeros([N, N_step])
V[:,0] = ve

J u pyte r Normal = np.random.normal(@,1,[N,N_step])

for i in range(N):
for j in range(N_step-1):

V[i,5+1] = V[1,3] - gamma * V[1,3] * dt + np.sart(c) * Normal[i,j] * np.sqrt(dt)

| + ¥

D [ » m C Code v Python 3

Brownian Motion Simulation
March 2019

Dynamics of a continuous Markov process V(?) (e.g. velocity of a particle
moving in a fluid) is given by an update formula with the form

V(e +di) = V(1) + A(V(1r). 0ydt + \/DIVQ@). D N(1)/dr. (1)

where A(V(2), 1) and D(V(f). 1) are two smooth functions and N(r) is a
temporally uncorrelated unit normal random variable

N(t) ~ N (O, 1).
This dynamics can be also expressed as a stochastic differential equation

v
‘17 = AV(@t). 1) + /DIVD. DT (1), @

Variance of V(t)
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Questions for paper presentation

Explain briefly how LIGO is used to detect gravitational wave.

What are the possible noise sources in an interferometer?

What is the normal mode analysis and when does it fail? How does the normal mode
analysis allow one to compute the noise?

Explain various dissipation mechanisms in mechanical resonators, and how they are
modeled?

@ Explain the difference between the scaling of the bulk damping and the surface damping.
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