

Stat. Phys. IV: Lecture 2

Spring 2025

Deterministic, continuous, memory-less process

Update formula

$$X(t + dt) = X(t) + A(X(t), t)dt$$

- Same formula with $dt \rightarrow \sqrt{dt}$ is not consistent

- ▶ Original update: $X(t + dt) = X(t) + A(X(t), t)dt$ (order $O(dt)$).
 - ▶ If $dt \rightarrow \sqrt{dt}$:

$$X(t + dt) = X(t) + A(X(t), t)\sqrt{dt}$$

- ▶ Two-step update:

$$\begin{aligned} X\left(t + \frac{dt}{2} + \frac{dt}{2}\right) &= X(t) + A(X(t), t)\sqrt{\frac{dt}{2}} + A(X(t), t)\sqrt{\frac{dt}{2}} \\ &= X(t) + A(X(t), t) \cdot \sqrt{2} \cdot \sqrt{dt} \end{aligned}$$

- ▶ Inconsistency arises because:

$$\sqrt{2} \cdot \sqrt{dt} \neq \sqrt{dt}$$

- X can have multiple dimensions (i.e. $(x(t), v(t))$ for a mechanical process)

Review of basic probability theory

- Variance : $\text{var}[X] = \langle X^2 \rangle - \langle X \rangle^2$
- Standard deviation: $\sigma = \sqrt{\text{var}[X]}$
- Covariance: $\text{cov}[X_1, X_2] = \langle X_1 X_2 \rangle - \langle X_1 \rangle \langle X_2 \rangle$
- Gaussian random variable: $Y = \mathbf{N}(\mu, \sigma^2)$ with probability density $P(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$

Properties: $\alpha + \beta \mathbf{N}(\mu, \sigma^2) = \mathbf{N}(\alpha + \beta\mu, \beta^2\sigma^2)$ and

$$\mathbf{N}(\mu_1, \sigma_1) + \mathbf{N}(\mu_2, \sigma_2) = \mathbf{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Unit gaussian $\mathbf{N} \equiv \mathbf{N}(0, 1)$

Stochastic continuous Markov process¹

Update formula (Langevin equation)

$$X(t+dt) = X(t) + \underbrace{A(X(t), t) dt}_{\text{drift}} + \underbrace{\sqrt{D(X(t), t)} N(t) \sqrt{dt}}_{\text{diffusion}}$$

- **Why it is consistent (though not differentiable):**

- ▶ One-step update:

$$X(t+dt) = X(t) + A(X(t), t)dt + \sqrt{D(X(t), t)}N(t)\sqrt{dt}$$

- ▶ Two-step update:

$$X(t + \frac{dt}{2}) = X(t) + A(X(t), t) \frac{dt}{2} + \sqrt{D(X(t), t)} N_1(t) \sqrt{\frac{dt}{2}}$$

$$X(t+dt) = X(t + \frac{dt}{2}) + A(X(t + \frac{dt}{2}), t + \frac{dt}{2}) \frac{dt}{2} + \sqrt{D(X(t + \frac{dt}{2}), t + \frac{dt}{2})} N_2(t) \sqrt{\frac{dt}{2}}$$

- ▶ Since $N_1, N_2 \sim \mathcal{N}(0, 1)$ and independent:

$$N_1 \sqrt{\frac{dt}{2}} + N_2 \sqrt{\frac{dt}{2}} \sim N(t) \sqrt{dt}$$

- ▶ Consistent as both updates give the same distribution.

Ornstein-Uhlenbeck Process

$$A(x, t) = -\frac{x}{\tau} \text{ and } D(x, t) = c$$

Update formula

$$\frac{dX(t)}{dt} = -\frac{1}{\tau}X(t) + \sqrt{c}N(t)\sqrt{dt}$$

Properties (to be proved in coming slides)

- Average: $\langle X(t) \rangle = x_0 e^{-(t-t_0)/\tau}$, $t \geq t_0$
- Covariance: $\text{cov}(X(t), X(t')) = \frac{c\tau}{2} e^{-(t'-t)/\tau} (1 - e^{-2(t-t_0)/\tau})$, $t' \geq t \geq t_0$
- Long time limit: $\lim_{t \rightarrow \infty} X(t) = \mathbf{N}(0, c\tau/2)$

Derivations for O-U Process

1. Mean of $X(t)$:

$$\begin{aligned} dX(t) &= -\frac{1}{\tau} X(t) dt + \sqrt{c} N(t) \sqrt{dt} \\ \langle dX(t) \rangle &= -\frac{1}{\tau} \langle X(t) \rangle dt \\ \frac{d \langle X(t) \rangle}{dt} &= -\frac{1}{\tau} \langle X(t) \rangle \implies \langle X(t) \rangle = x_0 e^{-(t-t_0)/\tau} \end{aligned}$$

2. Second Moment of $X(t)$:

$$\begin{aligned} dX^2(t) &= 2X(t)dX(t) + (dX(t))^2 \\ &= 2X(t) \left(-\frac{1}{\tau} X(t) dt + \sqrt{c} N(t) \sqrt{dt} \right) + cN^2(t) dt \\ \frac{d \langle X^2(t) \rangle}{dt} &= -\frac{2}{\tau} \langle X^2(t) \rangle + c \implies \langle X^2(t) \rangle = \frac{c\tau}{2} \left(1 - e^{-2(t-t_0)/\tau} \right) \end{aligned}$$

Variance and Long Time Limit for O-U Process

1. Variance of $X(t)$:

$$\begin{aligned}\text{Var}(X(t)) &= \langle X^2(t) \rangle - \langle X(t) \rangle^2 \\ &= \frac{c\tau}{2} \left(1 - e^{-2(t-t_0)/\tau} \right) - x_0^2 e^{-2(t-t_0)/\tau}\end{aligned}$$

2. Long Time Limit:

$$\begin{aligned}\lim_{t \rightarrow \infty} \langle X(t) \rangle &= 0, \quad \lim_{t \rightarrow \infty} \text{Var}(X(t)) = \frac{c\tau}{2} \\ \Rightarrow X(t) &\sim \mathcal{N} \left(0, \frac{c\tau}{2} \right)\end{aligned}$$

Example: Brownian motion

Ornstein-Uhlenbeck process for the velocity

Equation of motion

$$\frac{dv(t)}{dt} = -\frac{1}{\tau}v(t) + \sqrt{c}\Gamma(t), \quad \Gamma(t), \quad \Gamma(t) = N(t)/\sqrt{dt}$$

with $\tau = m/\gamma$ and $c = \frac{2}{D} \left(\frac{kT}{m}\right)^2$ (D is the diffusion constant)

Example: RL-circuit^{2,3}

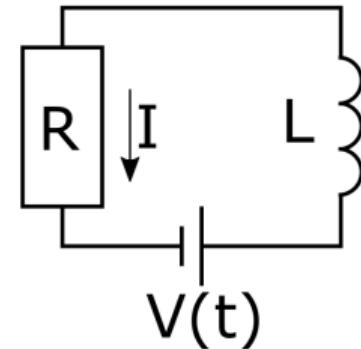
Ornstein-Uhlenbeck process for the current

Kirchoff's law

$$L \frac{dI(t)}{dt} = -RI(t) + V(t)$$

- I — current in the circuit
- R — resistance
- L — inductance
- $V(t) = \sqrt{2k_B T R} \Gamma(t)$ — fluctuating voltage, $\langle \Gamma(t) \Gamma(t') \rangle = \delta(t - t')$

The corresponding Ornstein-Uhlenbeck coefficients are $\tau = R/L$ and $c = 2k_B T R / L^2$.



²Daniel T. Gillespie. "The mathematics of Brownian motion and Johnson noise". In: *American Journal of Physics* 64.3 (Mar. 1, 1996), pp. 225–240. DOI: 10.1119/1.18210.

³J. Johnson and H. Nyquist. "Thermal agitation of electricity in conductors & Thermal agitation of electricity in conductors". In: *Phys. Rev.* 64 (6, 1928), pp. 97–113.

Application: noise thermometry⁴

Noise voltage variance across a resistance R per Hz is given by

Nyquist's formula

$$\langle V^2(\nu) \rangle = 4k_B T R(\nu)$$

- One-sided spectra are employed
- $R(\nu) = \text{Re}[Z(\nu)]$ — frequency-dependent resistance

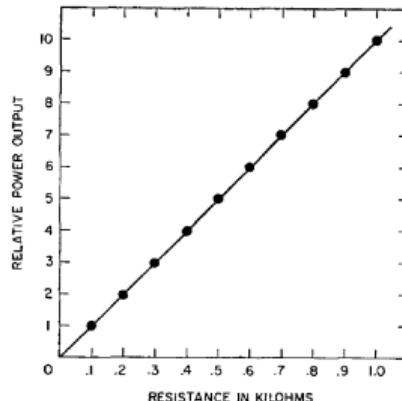


FIG. 3. Amplified noise power output vs sensing resistance for a temperature of 293°K.

⁴F. Shore. "Low-Temperature Thermal Noise Thermometer". In: *Review of Scientific Instruments* 30.7 (4, 1959), pp. 578–580.

One-sided Power Spectral Density⁵

$$\langle X(t)X(t+\tau) \rangle = C_{XX}(\tau),$$

$$C_{XX}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) e^{i\omega\tau} d\omega$$

$$S_{XX}(\omega) = \int_{-\infty}^{\infty} C_{XX}(\tau) e^{-i\omega\tau} d\tau = 2 \int_0^{\infty} C_{XX}(\tau) \cos(\omega\tau) d\tau$$

- $X(t)$ — stochastic process
- $C_{XX}(\tau)$ — auto-correlation function
- $S_{XX}(\omega)$ — power spectral density

*Note that, unlike in classical case, for quantum variables generally there is no one-sided PSD.

⁵Daniel T. Gillespie. “The mathematics of Brownian motion and Johnson noise”. In: *American Journal of Physics* 64.3 (Mar. 1, 1996), pp. 225–240. DOI: [10.1119/1.18210](https://doi.org/10.1119/1.18210).

Derivation of Auto-correlation Function for O-U process: $C_{XX}(\tau)$

- For the O-U process:

$$dX(t) = -\frac{1}{\tau}X(t)dt + \sqrt{c}N(t)\sqrt{dt}$$

- Assume $\langle X(t) \rangle = 0$. Thus, $C_{XX}(\tau) = \langle X(t)X(t + \tau) \rangle$.

Derivation:

$$\begin{aligned}\langle X(t)X(t + \tau) \rangle &= \left\langle X(t) \left(X(t)e^{-\frac{\tau}{\tau}} + \int_0^{\tau} \sqrt{c}e^{-\frac{s}{\tau}} N(t+s)ds \right) \right\rangle \\ &= \langle X^2(t) \rangle e^{-\frac{\tau}{\tau}} \\ &= \frac{c\tau}{2} e^{-\frac{|\tau|}{\tau}}\end{aligned}$$

Derivation of Power Spectral Density $S_{XX}(\omega)$

Definition

$$S_{XX}(\omega) = \int_{-\infty}^{\infty} C_{XX}(\tau) e^{-i\omega\tau} d\tau$$

Substitute $C_{XX}(\tau) = \frac{c\tau}{2} e^{-\frac{|\tau|}{\tau}}$:

$$S_{XX}(\omega) = \frac{c\tau}{2} \int_{-\infty}^{\infty} e^{-\frac{|\tau|}{\tau}} e^{-i\omega\tau} d\tau$$

Split the Integral:

$$S_{XX}(\omega) = \frac{c\tau}{2} \left(\int_0^{\infty} e^{-\frac{\tau}{\tau}} e^{-i\omega\tau} d\tau + \int_{-\infty}^0 e^{\frac{\tau}{\tau}} e^{-i\omega\tau} d\tau \right)$$

Computing $S_{XX}(\omega)$ - Continued

Compute the integrals:

$$\int_0^{\infty} e^{-\frac{\tau}{\tau}} e^{-i\omega\tau} d\tau = \frac{\tau}{1 + i\omega\tau}$$

$$\int_{-\infty}^0 e^{\frac{\tau}{\tau}} e^{-i\omega\tau} d\tau = \frac{\tau}{1 - i\omega\tau}$$

Combine results:

$$S_{XX}(\omega) = \frac{c\tau}{2} \left(\frac{\tau}{1 + i\omega\tau} + \frac{\tau}{1 - i\omega\tau} \right)$$

Simplify:

$$S_{XX}(\omega) = \frac{c\tau^2}{1 + (2\pi\omega\tau)^2}$$

One-sided Power Spectral Density $S_{XX}(\omega)$

Definition

$$S_{XX}(\omega) = 2 \int_0^{\infty} C_{XX}(\tau) \cos(\omega\tau) d\tau$$

Using $C_{XX}(\tau) = \frac{c\tau}{2} e^{-\frac{|\tau|}{\tau}}$:

$$S_{XX}(\omega) = \frac{c\tau}{2} \int_0^{\infty} e^{-\frac{\tau}{\tau}} \cos(\omega\tau) d\tau$$

Solve the integral:

$$S_{XX}(\omega) = \frac{2c\tau^2}{1 + (2\pi\omega\tau)^2}$$

Interpretation:

- Describes how different frequencies contribute to the variance of $X(t)$.
- Peak at low frequencies indicates long-term correlations, $\sim \omega^{-2}$ for high-frequency: pink noise.

Log-Log Plot of Power Spectral Density for O-U Process

Key Parameters:

- Noise strength $c = 1$
- Time scale $\tau = 1$

Key Observations:

- **Low Frequency:** Power is constant, indicating long-term correlations.
- **High Frequency:**

$$S_{XX}(\omega) \approx \frac{c}{2\pi^2\omega^2}$$

Decays as $\frac{1}{\omega^2}$.

• Power:

- ▶ Shaded area = total power (variance).
- ▶ Consistent with Wiener-Khinchin theorem.

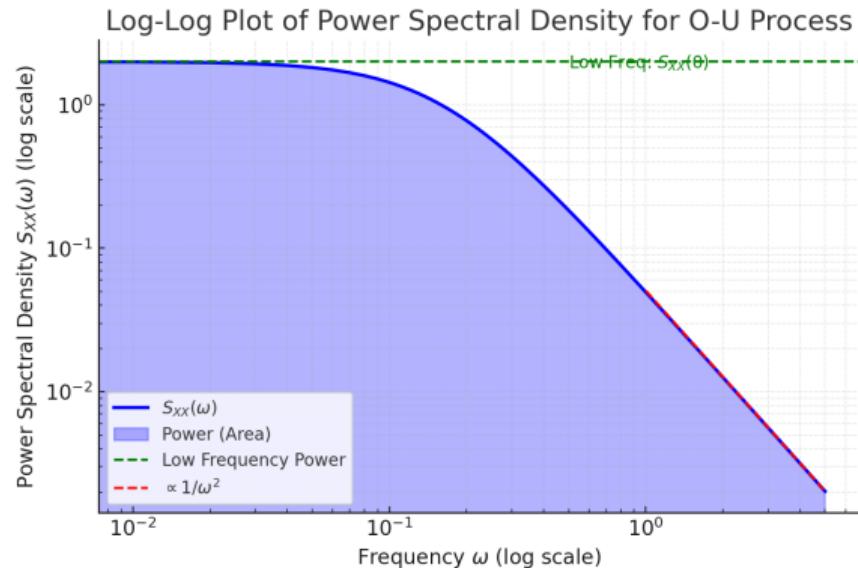


Figure: Log-log plot of $S_{XX}(\omega)$.

Inverse Relation and Wiener-Khinchin Theorem

Inverse Fourier Transform

$$C_{XX}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) e^{i\omega\tau} d\omega$$

Wiener-Khinchin Theorem

$$\langle X^2(t) \rangle = \int_0^{\infty} S_{XX}(\omega) d\omega$$

Interpretation:

- Total power (variance) is the area under the spectral density curve.
- Links time-domain variance to frequency-domain description.

An example of PSD

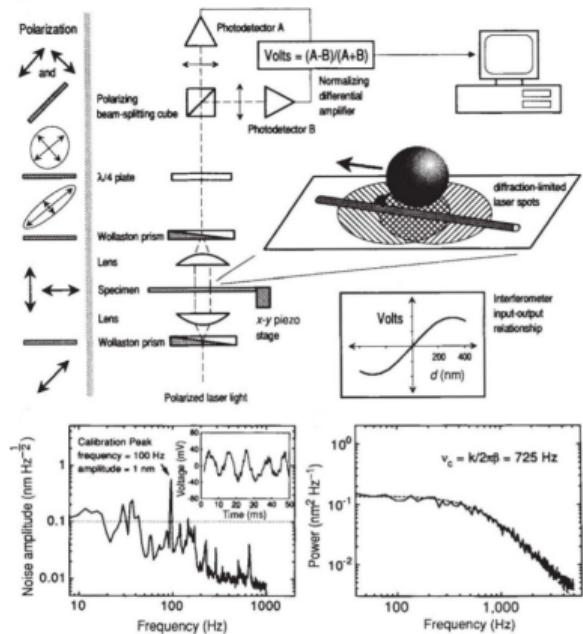


Figure: Depth calibration of an optical trap by Brownian motion PSD of a trapped bead - K. Svoboda et al. "Direct observation of kinesin stepping by optical trapping interferometry". In: *Nature* 365 (1993), pp. 721–727.

PHYSICAL REVIEW D

PARTICLES AND FIELDS

THIRD SERIES, VOLUME 42, NUMBER 8

15 OCTOBER 1990

Thermal noise in mechanical experiments

Peter R. Saulson*

*Joint Institute for Laboratory Astrophysics, National Institute of Standards and Technology,
and University of Colorado, Boulder, Colorado 80309-0440*

(Received 8 June 1990)

The fluctuation-dissipation theorem is applied to the case of low-dissipation mechanical oscillators, whose losses are dominated by processes occurring inside the material of which the oscillators are made. In the common case of losses described by a complex spring constant with a constant imaginary part, the thermal noise displacement power spectrum is steeper by one power of ω than is predicted by a velocity-damping model. I construct models for the thermal noise spectra of systems with more than one mode of vibration, and evaluate a model of a specific design of pendulum suspension for the test masses in a gravitational-wave interferometer.

Questions for paper presentation

- What is the Langevin equation for a mechanical resonator?
- How is the PSD of displacement fluctuation calculated?
- What is admittance and how is it derived?
- Explain internal and external damping mechanisms.
- Explain how the equipartition theorem is restored theoretically and experimentally.
- How is the model generalized to multimodes systems and continuous systems?

