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Deterministic, continuous, memory-less process

Update formula
X(t+dt) = X(t) + A(X(¢t),t)dt

e Same formula with dt — V/dt is not consistent
» Original update: X (¢ + dt) = X (t) + A(X(t),t)dt (order O(dt)).
> If dt — Vdt:
X(t+dt) = X(t) + AX(t),t)Vdt

» Two-step update:

X(t+ % + %) = X(t) + A(X(t),1) % + A(X (1), 1) %

= X(t) + A(X(t),t)-V2- Vit

> Inconsistency arises because:

V2Vt £ Vit

e X can have multiple dimensions (i.e. (x(t),v(t)) for a mechanical process)
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Review of basic probability theory

e Variance : var[X] = (X?) — (X)?
e Standard deviation: o = /var[X]

e Covariance: cov[X7, Xo] = (X1 X5) — (X1) (X9)

_w=w?

1 202

e Gaussian random variable: Y = N(u, 02) with probability density P(y) = Toraz®

Properties: a + BN(u,0?) = N(a + Bu, B20?) and

N(u1,01) + N(pz, 02) = N(p1 + p, 07 + 03)
Unit gaussian N = N(0, 1)
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Stochastic continuous Markov process!

Update formula (Langevin equation)

X(t+dt) = X(t) + A(X(8),t) dt + /D t) N (t

drlft dlffuswn

e Why it is consistent (though not differentiable):

> One-step update:
X(t+dt) = X(t) + A(X(t),t)dt + /D HN(t
» Two-step update:

X(t+‘;t) X(t)+A(X(t),t)%+ D(X(t),t)Nl(t)\/E
dt dt

dt dt dt dt dt
X(t+dt):X(t+5)+A(X(t )t+ \/D Xt+ = )t+ )Nz() 5
» Since N1, No ~ N(0,1) and independent:

Nu/%Jer,/% ~ N(t)Vdt

> Consistent as both updates give the same distribution.
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https://doi.org/10.1119/1.18210

Ornstein-Uhlenbeck Process

A(z,t) = —%Z and D(z,t) =c

Update formula
4XW) — _1X(t) + /eN(t)VdE J
Properties (to be proved in coming slides)

o Average: (X (t)) = zge~(t=100)/7 ¢ > ¢,

o Covariance: cov (X (t), X (') = Le~'=0/7 (1

e Long time limit: lim; o X (t) = N(0, c7/2)

_ e—2(t—t0)/7)' t'>t>t
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Derivations for O-U Process

1. Mean of X (¢):

dX(t) = —%X(t)dt VNV
1

(dX(2)) = —— (X(t)) dt
d<)§t(t)> _ _% <X(t)> — <X(t)> _ xoef(tfto)/-r

2. Second Moment of X (t):

dX?(t) = 2X (t)dX (t) 4+ (dX (t))?
= 2X(t) <—%X(t)dt + ﬁN(t)M) + eN2(t)dt
d(X?(t))
dt

= —% (X)) +c = (X*(t)) = % (1 _ e—Q(f—to)/T)
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Variance and Long Time Limit for O-U Process

1. Variance of X (t):

Var(X () = (X?(t)) — (X (t))”
_ %T (1 _ e—2(t—t0)/‘r) _ x(z)e—Z(t—to)/f

2. Long Time Limit:
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Example: Brownian motion

Ornstein-Uhlenbeck process for the velocity

Equation of motion
do(t) _

S =—Lo(t)+ Vel(t), T(), I(t)=N()/Vdt J

with 7 =m/y and c = 3 (%) (D is the diffusion constant)
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Example: RL-circuit®3

Ornstein-Uhlenbeck process for the current

Khirchoff's law
L0 — _RI(t) + V(2) J

@ I — current in the circuit
@ R — resistance

@ L — inductance
e V(t) = v/2kpTRI'(t) — fluctuating voltage, (I'(t)I'(t')) = o(t — t')
The corresponding Ornstein-Uhlenbeck coefficients are 7 = R/L and ¢ = 2kpTR/L?.

2Daniel T. Gillespie. “The mathematics of Brownian motion and Johnson noise”. In: American Journal of

Physics 64.3 (Mar. 1, 1996), pp. 225-240. po1: 10.1119/1.18210.
3J. Johnson and H. Nyquist. “Thermal agitation of electricity in conductors & Thermal agitation of

electricity in conductors”. In: Phys. Rev. 64 (6, 1928), pp. 97-113.
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Application: noise thermometry*

Noise voltage variance across a resistance R per Hz is given by

Nyquist's formula
(V2(v)) = 4kgpTR(v) J
¥ f
@ One-sided spectra are employed % i ]
e R(v) = Re[Z(v)] — frequency-dependent resistance : :

RESISTANCE IN KILOHMS

F16. 3. Amplified noise power output s sensing resistance
for a temperature of 203°K.

*F. Shore. "Low-Temperature Thermal Noise Thermometer”. In: Review of Scientific Instruments 30.7 (4,
1959), pp. 578-580.
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One-sided Power Spectral Density®

<X(t)X(t+T)> = Cxx(1),
Cxx(7) / S ()€ duw

Sxx(w / Cxx(r)e “Tdr = 2/ Cxx (1) cos(wT)dr
0

e X (t) — stochastic process
e Cxx (1) — auto-correlation function

@ Sxx(w) — power spectral density

*Note that, unlike in classical case, for quantum variables generally there is no one-sided PSD.

®*Daniel T. Gillespie. “The mathematics of Brownian motion and Johnson noise”. In: American Journal of
Physics 64.3 (Mar. 1, 1996), pp. 225-240. por: 10.1119/1.18210.
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Derivation of Auto-correlation Function for O-U process: C'xx(7)

@ For the O-U process:
1
dX (t) = —=X(t)dt + /eN(t)Vdt
T

@ Assume (X (t)) =0. Thus, Cxx(7) = (X)X (t+ 7)).
Derivation:

(XX (t+ 7)) = <X(t) (X(t)e—i + /0 Viee T N(t + s)d5)>

T

= <X2(t)> e

cT _ |7l
= —e T

2
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Derivation of Power Spectral Density Sx x(w)

Definition

Sxx(w) = / CX)((T)e_iWTdT

Il

Substitute Cxx(7) = Se 7

IR
Sxx(w) = %/ e Te "Wdr
—00

Split the Integral:
cT s oL
Sxx(w)=— / e re "“dr —i—/ ere “dr
2 0 —00
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Computing Sx x(w) - Continued

-
1+ iwr

Compute the integrals:
[e.e]
/ e re Wdr =
0

0
T T
ere "“dr = y
1 —wr

—00

Combine results:
Sxx (@) cT T n T
w) = —
XX 2 \1+wr 1—iwr

Simplify:
2

CT

S (@) = T e
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One-sided Power Spectral Density Sy x(w)
Definition

Sxx(w) = 2/00O Cx x(7) cos(wT)dr

cT _ﬂ_
76 Tl

Using CX)((T) =

CT

Sxx(w) = ?/ e~ 7 cos(wr)dr
0

Solve the integral:

2¢72

X () = T3 Grar)?
Interpretation:
@ Describes how different frequencies contribute to the variance of X (¢).
o Peak at low frequencies indicates long-term correlations, ~ w™2 for high-frequency: pink
noise.
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Log-Log Plot of Power Spectral Density for O-U Process

Key Parameters:

@ Noise strength ¢ = 1 Log-Log Plot of Power Spectral Density for O-U Process

@ Timescaler =1
Key Observations:

@ Low Frequency: Power is constant, indicating
long-term correlations.

@ High Frequency:

Power Spectral Density Sxx(w) (log scale)

c
Sxx(w)~ ——
2722
— Su(w)
[ Power (Area)
Decays as ;15 --- Low Frequency Power
@ Power: 100

Frequency w (log scale)

» Shaded area = total power (variance).
» Consistent with Wiener-Khinchin

theorem Figure: Log-log plot of Sx x (w).
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Inverse Relation and Wiener-Khinchin Theorem

Inverse Fourier Transform

CX)(( / SXX ) Z“”-do.)

Wiener-Khinchin Theorem

(X2(t)) = /OOO Sx x (w)dw

Interpretation:
e Total power (variance) is the area under the spectral density curve.

@ Links time-domain variance to frequency-domain description.
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An example of PSD
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Figure: Depth calibration of an optical trap by Brownian motion PSD of a trapped bead - K. Svoboda
et al. "Direct observation of kinesin stepping by optical trapping interferometery”. In: Nature 365
(1993), pp. 721-727.
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Paper for next week's presentation

PHYSICAL REVIEW D

PARTICLES AND FIELDS

THIRD SERIES, VOLUME 42, NUMBER 8 15 OCTOBER 1990

Thermal noise in mechanical experiments

Peter R. Saulson*
Joint Institute for Laboratory Astrophysics, National Insti of Standards and Technology,
and University of Colorado, Boulder, Colorado 80309-0440
(Received 8 June 1990)

The fluctuation-dissipation theorem is applied to the case of low-dissipation mechanical oscilla-
tors, whose losses are dominated by processes occurring inside the material of which the oscillators
are made. In the common case of losses described by a complex spring constant with a constant
imaginary part, the thermal noise displacement power spectrum is steeper by one power of  than is
predicted by a velocity-damping model. I construct models for the thermal noise spectra of systems
with more than one mode of vibration, and evaluate a model of a specific design of pendulum sus-
pension for the test masses in a gravitational-wave interferometer.
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Questions for paper presentation

What is the Langevin equation for a mechanical resonator?
How is the PSD of displacement fluctuation calculated?
What is admittance and how is it derived?

Explain internal and external damping mechanisms.

Explain how the equipartition theorem is restored theoretically and experimentally.

How is the model generalized to multimodes systems and continuous systems?
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