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Deterministic, continuous, memory-less process

Update formula

X(t+ dt) = X(t) +A(X(t), t)dt

Same formula with dt →
√
dt is not consistent

▶ Original update: X(t+ dt) = X(t) +A(X(t), t)dt (order O(dt)).
▶ If dt →

√
dt:

X(t+ dt) = X(t) +A(X(t), t)
√
dt

▶ Two-step update:

X(t+
dt

2
+

dt

2
) = X(t) +A(X(t), t)

√
dt

2
+A(X(t), t)

√
dt

2

= X(t) +A(X(t), t) ·
√
2 ·

√
dt

▶ Inconsistency arises because: √
2 ·

√
dt ̸=

√
dt

X can have multiple dimensions (i.e. (x(t), v(t)) for a mechanical process)
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Review of basic probability theory

Variance : var[X] =
〈
X2

〉
− ⟨X⟩2

Standard deviation: σ =
√
var[X]

Covariance: cov[X1, X2] = ⟨X1X2⟩ − ⟨X1⟩ ⟨X2⟩

Gaussian random variable: Y = N(µ, σ2) with probability density P (y) = 1√
2πσ2

e−
(y−µ)2

2σ2

Properties: α+ βN(µ, σ2) = N(α+ βµ, β2σ2) and
N(µ1, σ1) +N(µ2, σ2) = N(µ1 + µ2, σ

2
1 + σ2

2)
Unit gaussian N ≡ N(0, 1)
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Stochastic continuous Markov process1

Update formula (Langevin equation)

X(t+ dt) = X(t) +A(X(t), t)︸ ︷︷ ︸
drift

dt+
√

D(X(t), t)︸ ︷︷ ︸
diffusion

N(t)
√
dt

Why it is consistent (though not differentiable):
▶ One-step update:

X(t+ dt) = X(t) +A(X(t), t)dt+
√

D(X(t), t)N(t)
√
dt

▶ Two-step update:

X(t+
dt

2
) = X(t) +A(X(t), t)

dt

2
+

√
D(X(t), t)N1(t)

√
dt

2

X(t+ dt) = X(t+
dt

2
) +A(X(t+

dt

2
), t+

dt

2
)
dt

2
+

√
D(X(t+

dt

2
), t+

dt

2
)N2(t)

√
dt

2
▶ Since N1, N2 ∼ N (0, 1) and independent:

N1

√
dt

2
+N2

√
dt

2
∼ N(t)

√
dt

▶ Consistent as both updates give the same distribution.

Continuous but not differentiable
1Daniel T. Gillespie. “The mathematics of Brownian motion and Johnson noise”. In: American Journal of

Physics 64.3 (Mar. 1, 1996), pp. 225–240. doi: 10.1119/1.18210.
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Ornstein-Uhlenbeck Process

A(x, t) = −x
τ and D(x, t) = c

Update formula
dX(t)
dt = − 1

τX(t) +
√
cN(t)

√
dt

Properties (to be proved in coming slides)

Average: ⟨X(t)⟩ = x0e
−(t−t0)/τ , t ≥ t0

Covariance: cov (X(t), X(t′)) = cτ
2 e

−(t′−t)/τ
(
1− e−2(t−t0)/τ

)
, t′ ≥ t ≥ t0

Long time limit: limt→∞X(t) = N(0, cτ/2)
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Derivations for O-U Process

1. Mean of X(t):

dX(t) = − 1

τ
X(t)dt+

√
cN(t)

√
dt

⟨dX(t)⟩ = − 1

τ
⟨X(t)⟩ dt

d ⟨X(t)⟩
dt

= − 1

τ
⟨X(t)⟩ =⇒ ⟨X(t)⟩ = x0e

−(t−t0)/τ

2. Second Moment of X(t):

dX2(t) = 2X(t)dX(t) + (dX(t))2

= 2X(t)

(
− 1

τ
X(t)dt+

√
cN(t)

√
dt

)
+ cN2(t)dt

d
〈
X2(t)

〉
dt

= − 2

τ

〈
X2(t)

〉
+ c =⇒

〈
X2(t)

〉
=

cτ

2

(
1− e−2(t−t0)/τ

)
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Variance and Long Time Limit for O-U Process

1. Variance of X(t):

Var(X(t)) =
〈
X2(t)

〉
− ⟨X(t)⟩2

=
cτ

2

(
1− e−2(t−t0)/τ

)
− x2

0e
−2(t−t0)/τ

2. Long Time Limit:

lim
t→∞

⟨X(t)⟩ = 0, lim
t→∞

Var(X(t)) =
cτ

2

⇒ X(t) ∼ N
(
0,

cτ

2

)
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Example: Brownian motion

Ornstein-Uhlenbeck process for the velocity

Equation of motion
dv(t)
dt = − 1

τ v(t) +
√
cΓ(t), Γ(t), Γ(t) = N(t)/

√
dt

with τ = m/γ and c = 2
D

(
kT
m

)2
(D is the diffusion constant)
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Example: RL-circuit2,3

Ornstein-Uhlenbeck process for the current

Khirchoff’s law

LdI(t)
dt = −RI(t) + V (t)

I — current in the circuit

R — resistance

L — inductance

V (t) =
√
2kBTRΓ(t) — fluctuating voltage, ⟨Γ(t)Γ(t′)⟩ = δ(t− t′)

The corresponding Ornstein-Uhlenbeck coefficients are τ = R/L and c = 2kBTR/L2.

2Daniel T. Gillespie. “The mathematics of Brownian motion and Johnson noise”. In: American Journal of
Physics 64.3 (Mar. 1, 1996), pp. 225–240. doi: 10.1119/1.18210.

3J. Johnson and H. Nyquist. “Thermal agitation of electricity in conductors & Thermal agitation of
electricity in conductors”. In: Phys. Rev. 64 (6, 1928), pp. 97–113.
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Application: noise thermometry4

Noise voltage variance across a resistance R per Hz is given by

Nyquist’s formula

⟨V 2(ν)⟩ = 4kBTR(ν)

One-sided spectra are employed

R(ν) = Re[Z(ν)] — frequency-dependent resistance

4F. Shore. “Low-Temperature Thermal Noise Thermometer”. In: Review of Scientific Instruments 30.7 (4,
1959), pp. 578–580.
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One-sided Power Spectral Density5

⟨X(t)X(t+ τ)⟩ = CXX(τ),

CXX(τ) =
1

2π

∫ ∞

−∞
SXX(ω)eiωτdω

SXX(ω) =

∫ ∞

−∞
CXX(τ)e−iωτdτ = 2

∫ ∞

0
CXX(τ) cos(ωτ)dτ

X(t) — stochastic process

CXX(τ) — auto-correlation function

SXX(ω) — power spectral density
*Note that, unlike in classical case, for quantum variables generally there is no one-sided PSD.

5Daniel T. Gillespie. “The mathematics of Brownian motion and Johnson noise”. In: American Journal of
Physics 64.3 (Mar. 1, 1996), pp. 225–240. doi: 10.1119/1.18210.
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Derivation of Auto-correlation Function for O-U process: CXX(τ)

For the O-U process:

dX(t) = −1

τ
X(t)dt+

√
cN(t)

√
dt

Assume ⟨X(t)⟩ = 0. Thus, CXX(τ) = ⟨X(t)X(t+ τ)⟩.
Derivation:

⟨X(t)X(t+ τ)⟩ =
〈
X(t)

(
X(t)e−

τ
τ +

∫ τ

0

√
ce−

s
τ N(t+ s)ds

)〉
=

〈
X2(t)

〉
e−

τ
τ

=
cτ

2
e−

|τ |
τ
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Derivation of Power Spectral Density SXX(ω)

Definition

SXX(ω) =

∫ ∞

−∞
CXX(τ)e−iωτdτ

Substitute CXX(τ) = cτ
2 e

− |τ |
τ :

SXX(ω) =
cτ

2

∫ ∞

−∞
e−

|τ |
τ e−iωτdτ

Split the Integral:

SXX(ω) =
cτ

2

(∫ ∞

0
e−

τ
τ e−iωτdτ +

∫ 0

−∞
e

τ
τ e−iωτdτ

)
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Computing SXX(ω) - Continued

Compute the integrals: ∫ ∞

0
e−

τ
τ e−iωτdτ =

τ

1 + iωτ∫ 0

−∞
e

τ
τ e−iωτdτ =

τ

1− iωτ

Combine results:

SXX(ω) =
cτ

2

(
τ

1 + iωτ
+

τ

1− iωτ

)
Simplify:

SXX(ω) =
cτ2

1 + (2πωτ)2
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One-sided Power Spectral Density SXX(ω)

Definition

SXX(ω) = 2

∫ ∞

0
CXX(τ) cos(ωτ)dτ

Using CXX(τ) = cτ
2 e

− |τ |
τ :

SXX(ω) =
cτ

2

∫ ∞

0
e−

τ
τ cos(ωτ)dτ

Solve the integral:

SXX(ω) =
2cτ2

1 + (2πωτ)2

Interpretation:

Describes how different frequencies contribute to the variance of X(t).

Peak at low frequencies indicates long-term correlations, ∼ ω−2 for high-frequency: pink
noise.
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Log-Log Plot of Power Spectral Density for O-U Process

Key Parameters:

Noise strength c = 1

Time scale τ = 1

Key Observations:

Low Frequency: Power is constant, indicating
long-term correlations.

High Frequency:

SXX(ω) ≈
c

2π2ω2

Decays as 1
ω2 .

Power:

▶ Shaded area = total power (variance).
▶ Consistent with Wiener-Khinchin

theorem.
Figure: Log-log plot of SXX(ω).
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Inverse Relation and Wiener-Khinchin Theorem

Inverse Fourier Transform

CXX(τ) =
1

2π

∫ ∞

−∞
SXX(ω)eiωτdω

Wiener-Khinchin Theorem 〈
X2(t)

〉
=

∫ ∞

0
SXX(ω)dω

Interpretation:

Total power (variance) is the area under the spectral density curve.

Links time-domain variance to frequency-domain description.

Stat. Phys. IV: Lecture 2 Spring 2025 17 / 21



An example of PSD

Figure: Depth calibration of an optical trap by Brownian motion PSD of a trapped bead - K. Svoboda
et al. “Direct observation of kinesin stepping by optical trapping interferometery”. In: Nature 365
(1993), pp. 721–727.
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Paper for next week’s presentation
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Questions for paper presentation

What is the Langevin equation for a mechanical resonator?

How is the PSD of displacement fluctuation calculated?

What is admittance and how is it derived?

Explain internal and external damping mechanisms.

Explain how the equipartition theorem is restored theoretically and experimentally.

How is the model generalized to multimodes systems and continuous systems?
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