

Stat. Phys. IV: Lecture 11

Spring 2025

Quantum master equation for a harmonic oscillator

We can treat the problem of a harmonic oscillator interacting with a heat bath by using the density matrix formalism¹.

System, bath and interaction Hamiltonians:

$$\hat{H}_S = \hbar\omega_0 \hat{a}^\dagger \hat{a}, \quad \hat{H}_B = \sum_k \hbar\omega_k \hat{b}^\dagger \hat{b}, \quad \hat{H}_{SB} = \sum_k \hbar g_k \hat{a} \hat{b}_k^\dagger + h.c.$$

ρ_{SB} is the density matrix of the interacting system. In the interaction picture

$$\tilde{\rho}_{SB} = e^{i\frac{(\hat{H}_S + \hat{H}_B)t}{\hbar}} \rho_{SB} e^{-i\frac{(\hat{H}_S + \hat{H}_B)t}{\hbar}},$$

$$i\hbar \frac{d}{dt} \tilde{\rho}_{SB} = \left[\hat{\tilde{H}}_{SB}(t), \tilde{\rho}_{SB} \right],$$

where $\hat{\tilde{H}}_{SB}$ is the interaction Hamiltonian in the interaction picture.

Integrating this equation formally and substituting back into the previous equation

$$\frac{d}{dt} \tilde{\rho}_{SB} = \frac{1}{i\hbar} \left[\hat{\tilde{H}}_{SB}(t), \tilde{\rho}_{SB}(0) \right] + \frac{1}{(i\hbar)^2} \int_0^t dt' \left[\hat{\tilde{H}}_{SB}(t), \left[\hat{\tilde{H}}_{SB}(t'), \tilde{\rho}_{SB}(t') \right] \right].$$

¹Charmicheal, "Stochastic Methods in Quantum Optics"

Quantum master equation for a harmonic oscillator (2)

The system density matrix is $\text{tr}_B \{ \rho_{SB} \}$, and we assume that $\text{tr}_B \left\{ \left[\hat{\tilde{H}}_{SB}(t), \rho_S(0) \right] \right\} = 0$. So

$$\frac{d}{dt} \tilde{\rho}_S(t) = -\frac{1}{\hbar^2} \int_0^t dt' \text{tr}_B \left\{ \left[\hat{\tilde{H}}_{SB}(t), \left[\hat{\tilde{H}}_{SB}(t'), \tilde{\rho}_{SB}(t') \right] \right] \right\}$$

Because the bath is large, its state is not, to the first order, affected by the system so $\tilde{\rho}_{SB} = \tilde{\rho}_S \otimes \rho_B(0) + O(\hat{H}_{SB})$. In the Born approximation we neglect the terms $O(\hat{H}_{SB})$ and we use the Markov approximation ($\tilde{\rho}_S(t') \rightarrow \tilde{\rho}_S(t)$) to obtain

Master equation in the Born-Markov approximation

$$\frac{d}{dt} \tilde{\rho}_S = -\frac{1}{\hbar^2} \int_0^t dt' \text{tr}_B \left\{ \left[\hat{\tilde{H}}_{SB}(t), \left[\hat{\tilde{H}}_{SB}(t'), \tilde{\rho}_S(t) \otimes \rho_B(0) \right] \right] \right\}$$

The system becomes memoryless: it does not depend on the time $t' < t$.

Example of interaction Hamiltonian

Consider $\hat{H}_{SB} = \hbar \sum_k g_k \hat{a} \hat{b}_k^\dagger + h.c.$. We know:

$$\begin{aligned} e^{i\omega_0 \hat{a}^\dagger \hat{a} t} \hat{a} e^{-i\omega_0 \hat{a}^\dagger \hat{a} t} &= \hat{a} e^{-i\omega_0 t} \\ e^{i \sum_k \omega_k \hat{b}_k^\dagger \hat{b}_k t} \left(\sum_k \hbar g_k \hat{b}_k \right) e^{-i \sum_k \omega_k \hat{b}_k^\dagger \hat{b}_k t} &= \sum_k \hbar g_k \hat{b}_k e^{-i\omega_k t} \end{aligned}$$

Thus

$$\hat{H}_{SB}(t) = \sum_k \hbar g_k \left(\hat{a}^\dagger \hat{b}_k e^{i(w-w_k)t} + \hat{a} \hat{b}_k^\dagger e^{-i(w-w_k)t} \right) .$$

Introducing the bath noise operator $\tilde{\Gamma} = \sum_k g_k \hat{b}_k e^{-i(w-w_k)t}$ we can rewrite the Hamiltonian as $\hat{H}_{SB} = \hbar \left(\hat{a} \tilde{\Gamma}^\dagger + \hat{a}^\dagger \tilde{\Gamma} \right)$. In the most general case

$$\hat{H}_{SB} = \hbar \sum_i \tilde{s}_i(t) \tilde{\Gamma}_i(t) ,$$

where \tilde{s}_i and $\tilde{\Gamma}_i$ are generalised system and bath operators respectively.

Master equation derivation

With the generalised operators the master equation becomes:

$$\begin{aligned}\frac{d}{dt}\tilde{\rho}_S &= -\sum_{i,j}\int_0^t dt' \text{tr}_B \left\{ \left[\tilde{s}_i \tilde{\Gamma}_i, \left[\tilde{s}_j \tilde{\Gamma}_j, \tilde{\rho}_S(t) \otimes \rho_B(0) \right] \right] \right\} \\ &= -\sum_{i,j} \int_0^t dt' \left\{ \left[\tilde{s}_i(t) \tilde{s}_j(t') \tilde{\rho}_S(t') - \tilde{s}_j(t') \tilde{\rho}_S(t') \tilde{s}_i(t) \right] \left\langle \tilde{\Gamma}_i(t) \tilde{\Gamma}_j(t') \right\rangle_B \right. \\ &\quad \left. + \left[\tilde{\rho}_S(t') \tilde{s}_j(t') \tilde{s}_i(t) - \tilde{s}_i(t) \tilde{\rho}_S(t') \tilde{s}_j(t') \right] \left\langle \tilde{\Gamma}_j(t') \tilde{\Gamma}_i(t) \right\rangle_B \right\}\end{aligned}$$

where $\left\langle \tilde{\Gamma}_i(t) \tilde{\Gamma}_j(t') \right\rangle_B = \text{tr}_B \left\{ \rho_B \tilde{\Gamma}_i(t) \tilde{\Gamma}_j(t') \right\}$. To simplify some of the 16 terms above we must assume that $\left\langle \tilde{\Gamma}_i(t) \tilde{\Gamma}_j(t') \right\rangle_{B;i \neq j} \propto \delta(t - t')$.

Environment correlation functions

By assuming the bath to be in a thermal state and take the limit of continuous density of states one can compute the correlation function for the bath operator

$$\begin{aligned}\left\langle \hat{\Gamma}(t)\hat{\Gamma}^\dagger(t') \right\rangle_B &= \sum_{k,l} g_k g_l e^{i(\omega_l t' - \omega_k t)} \text{tr}_B \left\{ \rho_B \hat{b}_k \hat{b}_{k'}^\dagger \right\} \\ &= \sum_k |g_k|^2 e^{-i\omega_k(t-t')} (\bar{n}(\omega_k, T) + 1) \\ &\approx 2\pi |g(\omega_s)|^2 (\bar{n} + 1) D(\omega) \delta(t - t') \\ &= \gamma (\bar{n} + 1) \delta(t - t')\end{aligned}$$

Where we assumed g_k to be approximately frequency independent.

Quantum Master Equation

Simplifying all the 16 terms and transforming back to the Schrödinger picture we obtain

Lindblad form of the Quantum Master Equation

$$\dot{\rho} = -i\omega [\hat{a}^\dagger \hat{a}, \rho] + \frac{\gamma}{2}(\bar{n} + 1)(2\hat{a}\rho\hat{a}^\dagger - \hat{a}^\dagger\hat{a}\rho - \rho\hat{a}^\dagger\hat{a}) + \frac{\gamma}{2}\bar{n}(2\hat{a}^\dagger\rho\hat{a} - \hat{a}\hat{a}^\dagger\rho - \rho\hat{a}\hat{a}^\dagger)$$

Or ordering the terms differently

Quantum Master Equation

$$\dot{\rho} = -i\omega [\hat{a}^\dagger \hat{a}, \rho] + \frac{\gamma}{2}([\hat{a}, \rho\hat{a}^\dagger] + [\hat{a}\rho, \hat{a}^\dagger]) + \frac{\gamma}{2}\bar{n}([\hat{a}\rho, \hat{a}^\dagger] + [\hat{a}^\dagger, \rho\hat{a}])$$

It should be noted that in the Lindblad form, the operators \hat{a} can be replaced by operators \hat{c} which are any generalised system operators entering the system-bath coupling.

Other forms of the QME

We can write the QME using the Lindblad operators

QME - Lindblad operators

$$\dot{\hat{\rho}} = -\frac{i}{\hbar} [\hat{H}_0, \hat{\rho}] + \sum_k \left(\hat{L}_k \hat{\rho} \hat{L}_k^\dagger - \frac{1}{2} \{ \hat{L}_k^\dagger \hat{L}_k, \hat{\rho} \} \right)$$

For the example above $\hat{L}_{1,-} = \sqrt{\gamma(\bar{n} + 1)} \hat{a}$ and $\hat{L}_{1,+} = \sqrt{\gamma\bar{n}} \hat{a}^\dagger$.

At $T = 0$, $\bar{n} = 0$ and the QME takes the form

Zero Temperature form of the Quantum Master Equation

$$\dot{\rho} = -i\omega [\hat{a}^\dagger \hat{a}, \rho] + \frac{\gamma}{2} (2\hat{a}\rho\hat{a}^\dagger - \hat{a}^\dagger \hat{a}\rho - \rho\hat{a}^\dagger \hat{a})$$

Physical interpretation of the QME

The physical interpretation of the QME follows from the rate equations satisfied by the populations $p_n = \langle n | \rho | n \rangle$, where $|n\rangle$ is the n-th energy eigenstate of the harmonic oscillator.

$$\dot{p}_n = \gamma(\bar{n} + 1)(n + 1)p_{n+1} - \gamma\bar{n}np_n + \gamma\bar{n}np_{n-1} - \gamma\bar{n}(n + 1)p_n$$

That is a birth-death process equation (similar to classical cases). Thus

$$gain: g = \frac{\gamma}{2}(\bar{n} + 1)n$$

$$loss: r = \frac{\gamma}{2}\bar{n}(n + 1)$$

QME and P-representation²

Glauber–Sudarshan P representation:

$$\hat{\rho} = \int d^2\alpha P(\alpha, \alpha^*) |\alpha\rangle \langle \alpha|$$

This representation can be used to convert the quantum optical master equation to a Fokker-Planck equation.

QME in P-representation

$$\frac{\partial}{\partial t} P(\alpha, \alpha^*, t) = \frac{\gamma}{2} \left[\frac{\partial}{\partial \alpha} \alpha + \frac{\partial}{\partial \alpha^*} \alpha^* \right] P(\alpha, \alpha^*, t) + \gamma \bar{n} \left[\frac{\partial^2 P(\alpha, \alpha^*, t)}{\partial \alpha \partial \alpha^*} \right]$$

²Scully Quantum optics chapter 8

Applying the Quantum Master Equation³

Dephasing:

Energy relaxtion: $\hat{c} = \hat{a}$ and $\hat{c}^\dagger = \hat{a}^\dagger$. We can consider a dephasing interaction ($\hat{c} = \hat{a}^\dagger \hat{a}$):

$$\hat{H}_{\text{int}} = \sum_k \hbar g_k (\hat{a}^\dagger \hat{a} \hat{b}_k^\dagger + \hat{b}_k \hat{a}^\dagger \hat{a}) .$$

Defining $\frac{1}{T_\Phi} = 2\pi D(\omega) |g(\omega)|^2$ as the dephasing rate the QME becomes:

$$\dot{\hat{\rho}} = -i\omega [\hat{a}^\dagger \hat{a}, \hat{\rho}] + \frac{1}{2} \frac{1}{T_\Phi} (2\bar{n}_m + 1) \left\{ 2\hat{a}^\dagger \hat{a} \hat{\rho} \hat{a}^\dagger \hat{a} - (\hat{a}^\dagger \hat{a})^2 \hat{\rho} - \hat{\rho} (\hat{a}^\dagger \hat{a})^2 \right\} .$$

Thus a phase damped oscillator in the Fock basis obeys

$$\dot{\rho}_{nm} = i\omega(n - m) - \frac{1}{2} \frac{1}{T_\Phi} (2\bar{n}_m + 1) (n - m)^2 \rho_{nm}$$

³"Quantum Noise", P. Zoller, Chapter 6

QME for a Two Level System

$$H_S = \sum_k \hbar g_k (\hat{\sigma}_+ \hat{b}_k + \hat{\sigma}_- \hat{b}_k^\dagger)$$

$$\begin{aligned}\dot{\hat{\rho}} = -i \frac{\omega_s}{2} [\hat{\sigma}_z, \hat{\rho}] &+ \frac{\gamma}{2} (\bar{n}_m + 1) (2\hat{\sigma}_- \hat{\rho} \hat{\sigma}_+ - \hat{\sigma}_+ \hat{\sigma}_- \hat{\rho} - \hat{\rho} \hat{\sigma}_+ \hat{\sigma}_-) \\ &+ \frac{\gamma}{2} \bar{n}_m (2\hat{\sigma}_+ \hat{\rho} \hat{\sigma}_- - \hat{\sigma}_- \hat{\sigma}_+ \hat{\rho} - \hat{\rho} \hat{\sigma}_- \hat{\sigma}_+)\end{aligned}$$

This leads to the equations of motion

$$\frac{d}{dt} \langle \hat{\sigma}_+ \rangle = -\frac{1}{2} \gamma (2\bar{n} + 1) \langle \hat{\sigma}_+ \rangle + \underbrace{i\Omega \langle \hat{\sigma}_z \rangle}_{\text{Drive}}$$

$$\frac{d}{dt} \langle \hat{\sigma}_- \rangle = -\frac{1}{2} \gamma (2\bar{n} + 1) \langle \hat{\sigma}_- \rangle - \underbrace{i\Omega^* \langle \hat{\sigma}_z \rangle}_{\text{Drive}}$$

$$\frac{d}{dt} \langle \hat{\sigma}_z \rangle = -\gamma (2\bar{n} + 1) \langle \hat{\sigma}_z \rangle - \gamma + \underbrace{\frac{i}{2} (\Omega^* \langle \hat{\sigma}_+ \rangle - \Omega^* \langle \hat{\sigma}_- \rangle)}_{\text{Drive}}$$

Comments on the results for the two level system

- Stationary solutions are $\langle \hat{\sigma}_+ \rangle = \langle \hat{\sigma}_- \rangle = 0$ and $\langle \hat{\sigma}_z \rangle = -\frac{1}{2\bar{n}+1}$, $\bar{n} = (\exp(\hbar\omega/k_B T) - 1)^{-1}$.
- $\frac{d}{dt} \langle \hat{\sigma}_z \rangle = -\gamma(2\bar{n} + 1) \langle \hat{\sigma}_z \rangle$, so **relaxation is temperature dependent**. This is different to the harmonic oscillator.
- A zero temperature bath corresponds a decay at the atomic spontaneous emission rate $\gamma = |g_k|^2 D(\omega) 2\pi$
- We can include a drive field to excite the atom $H_{\text{Drive}} = \frac{1}{2}(\hbar\Omega^* \hat{a} + \hbar\Omega \hat{a}^\dagger)$

Qutip: Open quantum systems simulator

Damping of a quantized harmonic oscillator

Consider a quantized free harmonic oscillator, described by the hamiltonian, $H = \hbar\Omega_m a^\dagger a$. This hamiltonian can be constructed in Qutip as follows:

```
In [1]: 1 # import required packages
2 from qutip import *
3 from scipy import *
4 from matplotlib.pylab import *
5
6 # show all plots "inline"
7 %matplotlib inline
8
9 dim=30; # dimension of hilbert space
10 a=destroy(dim); # annihilation operator in this Hilbert space
11 psi0=basis(dim,0); # ground state of the oscillator
12
13 omegam = 2*pi*1e6; # oscillator frequency
14 H = omegam*a.dag()*a; # hamiltonian
```

However, any observable oscillator couples to an environment. In timescales which are long compared to the correlation times of the environment variables, this system-environment interaction is described by a Lindblad master equation for the system density matrix:

$$\frac{d\rho}{dt} = -\frac{i}{\hbar} [H, \rho] + \sum_k L_k \rho L_k^\dagger - \frac{1}{2} \{L_k^\dagger L_k, \rho\}$$

where H is the hamiltonian, and $\{L_k\}_{k=1,\dots,n}$ are jump operators that describe the action of the environment on a pure state of the system.

Here we consider an environment constituted by a large collection of harmonic oscillators which are in thermal equilibrium at a temperature T , and which couple to the system at a rate Γ_m . The relevant jump operators in this case are,

$L_1 = \sqrt{\Gamma_m n_{th}} a$, corresponding to emission of a quanta by the system

$L_2 = \sqrt{\Gamma_m (n_{th} + 1)} a^\dagger$, corresponding to addition of thermal quanta into the system

```
In [2]: 1 # define rates and jump operators
2 nth = 10;
3 gammam = 2*pi*1;
```

Figure: Sample simulation code on Qutip

Qutip: Open quantum systems simulator

```
In [13]: 1 a # Matrix representation of a
Out[13]: Quantum object: dims = [[30], [30]], shape = (30, 30), type = oper, isherm = False
          (0.0  1.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0
           0.0  0.0  1.414 0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0
           0.0  0.0  0.0  1.732 0.0  ...  0.0  0.0  0.0  0.0  0.0
           0.0  0.0  0.0  0.0  2.0  ...  0.0  0.0  0.0  0.0  0.0
           0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0
           :
           :
           :
           :
           0.0  0.0  0.0  0.0  0.0  ...  0.0  5.099 0.0  0.0  0.0
           0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  5.196 0.0  0.0
           0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  5.292 0.0
           0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  5.385
           0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0)
```



```
In [14]: 1 commutator(a, a.dag()) # commutator of a and a dagger
Out[14]: Quantum object: dims = [[30], [30]], shape = (30, 30), type = oper, isherm = True
          (1.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0
           0.0  1.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0
           0.0  0.0  1.000 0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0
           0.0  0.0  0.0  1.0  0.0  ...  0.0  0.0  0.0  0.0  0.0
           0.0  0.0  0.0  0.0  1.0  ...  0.0  0.0  0.0  0.0  0.0
           :
           :
           :
           :
           0.0  0.0  0.0  0.0  0.0  ...  1.000 0.0  0.0  0.0  0.0
           0.0  0.0  0.0  0.0  0.0  ...  0.0  1.0  0.0  0.0  0.0
           0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  1.0  0.0  0.0
           0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  1.000 0.0
           0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  -29.000)
```

Figure: a and $[a, a^\dagger]$ matrix representations

Supplementary to lecture 12

Observation of quantum jumps⁴

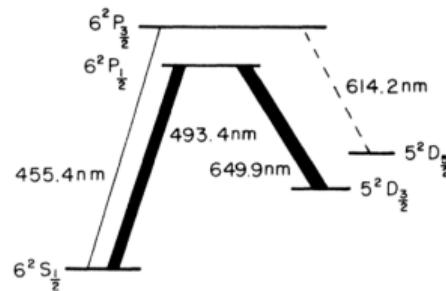


Figure: Level structure of Ba^+ . The shelf level is the $5^2D_{5/2}$ state.

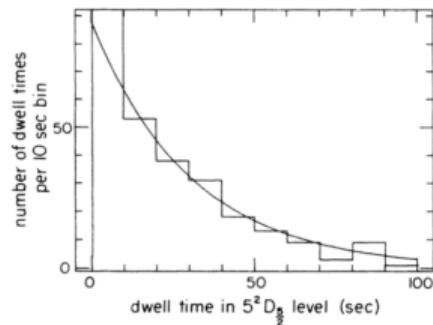


Figure: Histogram showing distribution of dwell times

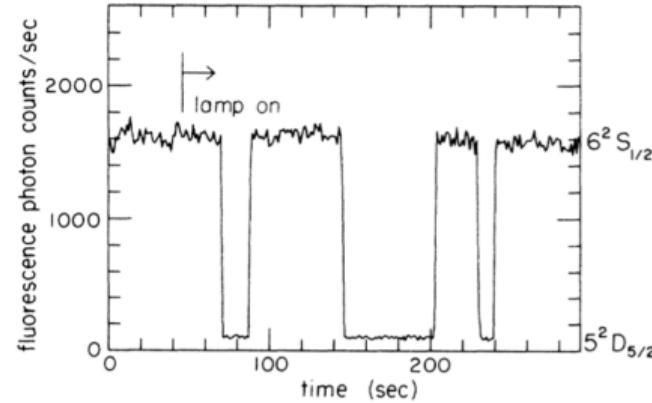


Figure: A typical trace of the 493-nm fluorescence from the $6^2P_{1/2}$ level showing the quantum jumps after the hollow cathode lamp is turned on.

Birth and death of a photon in a cavity ⁵

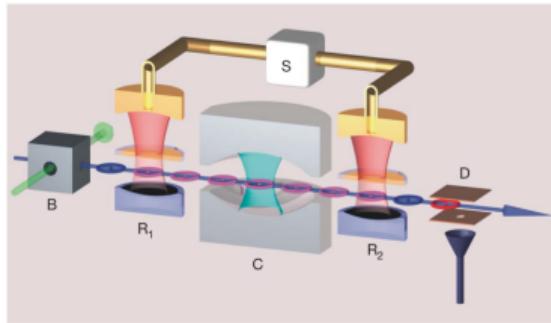
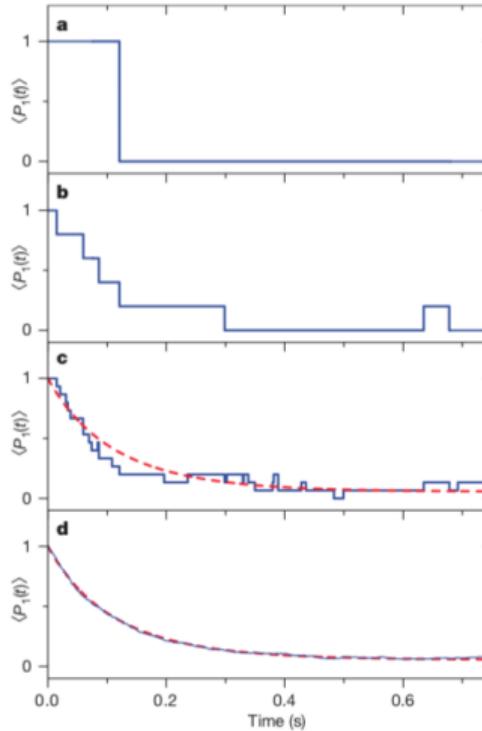


Figure: Experimental set-up

Decay of the one-photon state. a, Measured value of $P_1 = |1\rangle \langle 1|$ as a function of time, in a single experimental realization; b-d, averages of 5, 15 and 904 similar quantum trajectories, showing the gradual transition from quantum randomness into a smooth ensemble average.



⁵ Gleyzes et. al. Quantum jumps of light recording the birth and death of a photon in a cavity, Nature volume 446, pages 297–300

