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Quantum master equation for a harmonic oscillator
We can treat the problem of a harmonic oscillator interacting with a heat bath by using the density
matrix formalism 1.

System, bath and interaction Hamiltonians:

ĤS = ℏω0â
†â, ĤB =

∑
k

ℏωk b̂
†b̂, ĤSB =

∑
k

ℏ gkâb̂†k + h.c.

ρSB is the density matrix of the interacting system. In the interaction picture

ρ̃SB = ei
(ĤS+ĤB)t

ℏ ρSBe
−i

(ĤS+ĤB)t

ℏ ,

iℏ
d

dt
ρ̃SB =

[
ˆ̃HSB(t), ρ̃SB

]
,

where ˆ̃HSB is the interaction Hamiltonian in the interaction picture.
Integrating this equation formally and substituting back into the previous equation

d

dt
ρ̃SB =

1

iℏ

[
ˆ̃HSB(t), ρ̃SB(0)

]
+

1

(iℏ)2

t∫
0

dt′

[
ˆ̃HSB(t),

[
ˆ̃HSB(t

′), ρ̃SB(t
′)

]]
.

1Charmicheal, “Stochastic Methods in Quantum Optics”
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Quantum master equation for a harmonic oscillator (2)

The system density matrix is trB {ρSB}, and we assume that trB

{[
ˆ̃HSB(t), ρS(0)

]}
= 0. So

d

dt
ρ̃S(t) = − 1

ℏ2

t∫
0

dt′ trB


[
ˆ̃HSB(t),

[
ˆ̃HSB(t

′), ρ̃SB(t
′)

]]
Because the bath is large, its state is not, to the first order, affected by the system so
ρ̃SB = ρ̃S ⊗ ρB(0) +O(ĤSB). In the Born approximation we neglect the terms O(ĤSB) and we use the
Markov approximation (ρ̃S(t

′) → ρ̃S(t)) to obtain

Master equation in the Born-Markov approximation

d

dt
ρ̃S = − 1

ℏ2

t∫
0

dt′ trB


[
ˆ̃HSB(t),

[
ˆ̃HSB(t

′), ρ̃S(t)⊗ ρB(0)

]]
The system becomes memoryless: it does not depend on the time t′ < t.
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Example of interaction Hamiltonian
Consider ĤSB = ℏ

∑
k gkâb̂

†
k + h.c.. We know:

eiω0â†âtâe−iω0â†ât = âe−iω0t

ei
∑

k ωk b̂
†
k b̂t

(∑
k ℏgk b̂k

)
e−i

∑
k ωk b̂

†
k b̂t =

∑
k ℏgk b̂ke−iωkt

Thus
ˆ̃HSB(t) =

∑
k

ℏgk
(
â†b̂ke

i(w−wk)t + âb̂†ke
−i(w−wk)t

)
.

Introducing the bath noise operator Γ̃ =
∑

k gk b̂ke
−i(w−wk)t we can rewrite the Hamiltonian as

ˆ̃HSB = ℏ
(
âΓ̃† + â†Γ̃

)
. In the most general case

ˆ̃HSB = ℏ
∑
i

s̃i(t)Γ̃i(t) ,

where s̃i and Γ̃i are generalised system and bath operators respectively.
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Master equation derivation

With the generalised operators the master equation becomes:

d
dt ρ̃S = −

∑
i,j

t∫
0

dt′ trB

{[
s̃iΓ̃i,

[
s̃jΓ̃j , ρ̃S(t)⊗ ρB(0)

]]}

= −
∑
i,j

t∫
0

dt′
{[

s̃i(t)s̃j(t
′)ρ̃S(t

′)− s̃j(t
′)ρ̃S(t

′)s̃i(t)
] 〈

Γ̃i(t)Γ̃j(t
′)
〉
B

+
[
ρ̃S(t

′)s̃j(t
′)s̃i(t)− s̃i(t)ρ̃S(t

′)s̃j(t
′)
] 〈

Γ̃j(t
′)Γ̃i(t)

〉
B

}
where

〈
Γ̃i(t)Γ̃j(t

′)
〉
B
= trB

{
ρBΓ̃i(t)Γ̃j(t

′)
}
. To simplify some of the 16 terms above we

must assume that
〈
Γ̃i(t)Γ̃j(t

′)
〉
B;i ̸=j

∝ δ(t− t′).
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Environment correlation functions

By assuming the bath to be in a thermal state and take the limit of continuous density of
states one can compute the correlation function for the bath operator〈

Γ̂(t)Γ̂†(t′)
〉
B

=
∑
k,l

gkgle
i(ωlt

′−ωkt) trB

{
ρB b̂k b̂

†
k′

}
=

∑
k

|gk|2e−iωk(t−t′)(n̄(ωk, T ) + 1)

≈ 2π
∣∣g(ωs)

∣∣2(n̄+ 1)D(ω)δ(t− t′)

= γ(n̄+ 1)δ(t− t′)

Where we assumed gk to be approximately frequency independent.
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Quantum Master Equation

Simplifying all the 16 terms and transforming back to the Schrödinger picture we obtain

Lindblad form of the Quantum Master Equation

ρ̇ = −iω
[
â†â, ρ

]
+

γ

2
(n̄+ 1)(2âρâ† − â†âρ− ρâ†â) +

γ

2
n̄(2â†ρâ− ââ†ρ− ρââ†)

Or ordering the terms differently

Quantum Master Equation

ρ̇ = −iω
[
â†â, ρ

]
+

γ

2
(
[
â, ρâ†

]
+
[
âρ, â†

]
) +

γ

2
n̄(
[
âρ, â†

]
+
[
â†, ρâ

]
)

It should be noted that in the Lindblad form, the operators â can be replaced by operators ĉ
which are any generalised system operators entering the system-bath coupling.
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Other forms of the QME

We can write the QME using the Lindblad operators

QME - Lindblad operators

˙̂ρ = − i

ℏ

[
Ĥ0, ρ̂

]
+
∑
k

(
L̂kρ̂L̂

†
k −

1

2

{
L̂†
kL̂k, ρ̂

})
For the example above L̂1,− =

√
γ(n̄+ 1)â and L̂1,+ =

√
γn̄â†.

At T = 0, n̄ = 0 and the QME takes the form

Zero Temperature form of the Quantum Master Equation

ρ̇ = −iω
[
â†â, ρ

]
+

γ

2
(2âρâ† − â†âρ− ρâ†â)
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Physical interpretation of the QME

The physical interpretation of the QME follows from the rate equations satisfied by the
populations pn = ⟨n| ρ |n⟩, where |n⟩ is the n-th energy eigenstate of the harmonic oscillator.

ṗn = γ(n̄+ 1)(n+ 1)pn+1 − γn̄npn + γn̄npn−1 − γn̄(n+ 1)pn

That is a birth-death process equation (similar to classical cases). Thus

gain: g =
γ

2
(n̄+ 1)n

loss: r =
γ

2
n̄(n+ 1)
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QME and P-representation2

Glauber–Sudarshan P representation:

ρ̂ =

∫
d2αP (α, α∗) |α⟩ ⟨α|

This representation can be used to convert the quantum optical master equation to a
Fokker-Planck equation.

QME in P-representation

∂

∂t
P (α, α∗, t) =

γ

2
[
∂

∂α
α+

∂

∂α∗α
∗]P (α, α∗, t) + γn̄[

∂2P (α, α∗, t)

∂α∂α∗ ]

2Scully Quantum optics chapter 8
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Applying the Quantum Master Equation3

Dephasing:

Energy relaxtion: ĉ = â and ĉ† = â†. We can consider a dephasing interaction (ĉ = â†â):

Ĥint =
∑
k

ℏgk(â†âb̂†k + b̂kâ
†â) .

Defining 1
TΦ

= 2πD(ω)
∣∣g(ω)∣∣2 as the dephasing rate the QME becomes:

˙̂ρ = −iω
[
â†â, ρ̂

]
+

1

2

1

TΦ
(2n̄m + 1)

{
2â†âρ̂â†â− (â†â)2ρ̂− ρ̂(â†â)2

}
.

Thus a phase damped oscillator in the Fock basis obeys

ρ̇nm = iω(n−m)− 1

2

1

TΦ
(2n̄m + 1)(n−m)2ρnm

3”Quantum Noise”, P. Zoller, Chapter 6
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QME for a Two Level System

HS =
∑
k

ℏgk(σ̂+b̂k + σ̂−b̂
†
k)

˙̂ρ = −i
ωs

2
[σ̂z, ρ̂] +

γ

2
(n̄m + 1)(2σ̂−ρ̂σ̂+ − σ̂+σ̂−ρ̂− ρ̂σ̂+σ̂−)

+
γ

2
n̄m(2σ̂+ρ̂σ̂− − σ̂−σ̂+ρ̂− ρ̂σ̂−σ̂+)

This leads to the equations of motion
d
dt ⟨σ̂+⟩ = −1

2
γ(2n̄+ 1) ⟨σ̂+⟩+ iΩ ⟨σ̂z⟩︸ ︷︷ ︸

Drive

d
dt ⟨σ̂−⟩ = −1

2
γ(2n̄+ 1) ⟨σ̂−⟩ − iΩ∗ ⟨σ̂z⟩︸ ︷︷ ︸

Drive

d
dt ⟨σ̂z⟩ = −γ(2n̄+ 1) ⟨σ̂z⟩ − γ +

i

2
(Ω∗ ⟨σ̂+⟩ − Ω∗ ⟨σ̂−⟩)︸ ︷︷ ︸

Drive
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Comments on the results for the two level system

Stationary solutions are ⟨σ̂+⟩ = ⟨σ̂−⟩ = 0 and ⟨σ̂z⟩ = − 1
2n̄+1 , n̄ = (exp

(
ℏω/kBT

)
− 1)−1.

d
dt ⟨σ̂z⟩ = −γ(2n̄+ 1) ⟨σ̂z⟩, so relaxation is temperature dependent. This is different
to the harmonic oscillator.

A zero temperature bath corresponds a decay at the atomic spontaneous emission rate
γ = |gk|2D(ω)2π

We can include a drive field to excite the atom HDrive =
1
2(ℏΩ

∗â+ ℏΩâ†)
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Qutip: Open quantum systems simulator

Figure: Sample simulation code on Qutip
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Qutip: Open quantum systems simulator

Figure: a and [a, a†] matrix representations
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Supplementary to lecture 12



Observation of quantum jumps4

Figure: Level structure of Ba+. The shelf level is the

52D5/2 state.

Figure: Histogram showing distribution of dwell times

Figure: A typical trace of the 493-nm
fluorescence from the 62P1/2 level
showing the quantum jumps after the
hollow cathode lamp is turned on.

4
Nagourney et. al., Shelved optical electron amplifier: Observation of quantum jumps, Phys. Rev. Lett. 56, 2797
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Birth and death of a photon in a cavity 5

Figure: Experimental set-up
Decay of the one-photon state. a, Measured value of
P1 = |1⟩ ⟨1| as a function of time, in a single experimental
realization; b–d, averages of 5, 15 and 904 similar quantum
trajectories, showing the gradual transition from quantum
randomness into a smooth ensemble average.

5
Gleyzes et. al. Quantum jumps of light recording the birth and death of a photon in a cavity, Nature volume 446, pages 297–300
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