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Quantum master equation for a harmonic oscillator

We can treat the problem of a harmonic oscillator interacting with a heat bath by using the density
matrix formalism 1.

System, bath and interaction Hamiltonians:

Hs = hwod'a, Hp = hwpb'h, Hep = hgrabl, + h.c.
k k

Psp is the density matrix of the interacting system. In the interaction picture
- ;(As+Hp)t
Psp = € g PsB€
ihiﬁSB = |:I:{53(t) ﬁ :l
dt Yy MSB |
where fISB is the interaction Hamiltonian in the interaction picture.
Integrating this equation formally and substituting back into the previous equation

(Hg+Hp)t
i -

9

Chon = [ﬁSB(t),ﬁss(O)} + /t dt lﬁfw(tx [ﬁSB(t’),,aSB(t’)H -
0

!Charmicheal, “Stochastic Methods in Quantum Optics”

Spring 2025 2/19



Quantum master equation for a harmonic oscillator (2)

The system density matrix is trg {psz }, and we assume that trp { [ﬁSB(t)7ps(0):| } =0. So

%psu): hl dt' trp [ﬁw@), [ﬁw(t’),ﬁw(t')H

Because the bath is large, its state is not, to the first order, affected by the system so

Pss = ps @ ps(0) + O(fISB). In the Born approximation we neglect the terms O(ﬁSB) and we use the
Markov approximation (ps(t') — ps(t)) to obtain

Master equation in the Born-Markov approximation

Cpe= [ dt'tr [ﬁw(w, [ﬁfssa'),ﬁs(t)@pB(mH
0

The system becomes memoryless: it does not depend on the time ¢t/ < t.
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Example of interaction Hamiltonian
Consider Hgj = Ry g gk&BL + h.c.. We know:

iwnaltat ~ —iwnala ~
ezwoa atae woa'at = ae

. 2t ~ . 7t 3 ~ .
ezzk wrby bt (Zk hgkbk> e—zzk wib bt _ Zk hgkbke—zwkt

—iwot

Thus X o A |
Hsp(t) =) hig (dTbkel(w_wk)t + dbLe_’(w_wk)t) .
!

Introducing the bath noise operator = ok gkéke_i(w_wk)t we can rewrite the Hamiltonian as
I:ISB =h (&fT + &Tf‘). In the most general case

Hyp = hZ OO

where §; and I'; are generalised system and bath operators respectively.
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Master equation derivation
With the generalised operators the master equation becomes:

45 - _Z/tdt’trB{{%fi, [éjfj,ﬁs(t)®pB(O)H}

i?j 0

# (500500 = 505,00 (BOR ) |
where <fi(t)fj(t’)>B =trp {pri(t)fj(t’)}. To simplify some of the 16 terms above we

must assume that <fi(t)fj (t’)> x o(t —t').
Bii#j
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Environment correlation functions

By assuming the bath to be in a thermal state and take the limit of continuous density of
states one can compute the correlation function for the bath operator

<f(t)fT(t’)> - ngglei(wlt/_wkt)tm {PBBki’L’}

B
= Zl9k| —ek ) (7w, T) + 1)

~ 27r|g ws ‘ ) (7 4+ 1)D(w)d(t —t)
= y(m+1)5(t—t)

Where we assumed g to be approximately frequency independent.
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Quantum Master Equation

Simplifying all the 16 terms and transforming back to the Schrddinger picture we obtain

Lindblad form of the Quantum Master Equation

p= —iw [aTd, p] + %(ﬁ +1)(2apat — atap — pata) + %ﬁ(?dTpd —aatp — paah)

Or ordering the terms differently

Quantum Master Equation

5 — —fu [a*a, p} n %( [a, paq + [ap, a*}) + %n( [ap, eﬁ] + [a* , p&])

It should be noted that in the Lindblad form, the operators @ can be replaced by operators ¢
which are any generalised system operators entering the system-bath coupling.
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Other forms of the QME

We can write the QME using the Lindblad operators
QME - Lindblad operators

For the example above I:l,_ =+/v(n+1)a and I:L+ = /ynal.
At T =0, n =0 and the QME takes the form

Zero Temperature form of the Quantum Master Equation

b= —iw [a*a, p} + %(2&,)@* _atap — pata) J
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Physical interpretation of the QME

The physical interpretation of the QME follows from the rate equations satisfied by the
populations p, = (n| p|n), where |n) is the n-th energy eigenstate of the harmonic oscillator.

Pn =+ 1)(n + 1)pns1 — ynpp + yanpp—1 — y(n + 1)pn
That is a birth-death process equation (similar to classical cases). Thus
gain: g = =(n+1)n

loss: r =

N[22

n(n+1)
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QME and P-representation?

Glauber-Sudarshan P representation:

b= / PaP(a,0)|a) (o

This representation can be used to convert the quantum optical master equation to a
Fokker-Planck equation.

QME in P-representation

0 * _ Y 0 0 * * = 82P(a7a*7t)
EP(a,a 1) = §[a_aa+ 8a*a [P(a, o, 8) + 1] dada* ]

2Scully Quantum optics chapter 8
Stat. Phys. IV: Lecture 11 Spring 2025 10/19



Applying the Quantum Master Equation?
Dephasing:

~

Energy relaxtion: ¢ = @ and ¢t = af. We can consider a dephasing interaction (¢ = afa):
Hipt = Z hgk(&TdISL + Bde&) .
k
Defining Ty = =27D(w |g ‘ as the dephasing rate the QME becomes:
i — _iwlata sl 411 atasata — (67a)26 — s(ata)?
p= —zw[ a'a p} +—T—(2nm+1){2a apa'a — (a'a)*p — p(a'a) } .
@

Thus a phase damped oscillator in the Fock basis obeys

. . 11,
Pnm = tw(n —m) — iT—q)(an +1)(n —m)?pum

3" Quantum Noise”, P. Zoller, Chapter 6
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QME for a Two Level System

Hs = hgy(64by + 6_b})

k
A Wspo . Y, _ PPN PN PO
p=—i (620 + S(m +1)(26-p64 —G646-p — po16-)
+ STn(20po =G Gap— o)
This leads to the equations of motion
. I . PRI
$(61) = —A+1)(6y) +19(5.)
Drive
. | . . .
&0y = —592a+1)(6-) —iQ ()
Drive
. _ . i . .
$(62) = @A) () =+ (2 (51) - ()
D:K/e
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Comments on the results for the two level system

o Stationary solutions are (6,) = (6_) =0 and (6.) = —5=15, . = (exp(hw/kpT) — 1)~ L.

o $(6.) = —y(2r+1)(c.), so relaxation is temperature dependent. This is different
to the harmonic oscillator.

@ A zero temperature bath corresponds a decay at the atomic spontaneous emission rate
2
v = |gr|"D(w)2m
@ We can include a drive field to excite the atom Hpyive = %(hﬂ*& + hQat)
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Qutip: Open quantum systems simulator

Damping of a quantized harmonic oscillator
Consider a quantized free harmoniic oscillator, described by the hamiltonian, H = hQ,a’ a. This hamiltonian can be constructed in Qutip as follows:

1 (11+ (Wil Rmporttreqtead)paciares
£rom qutip

£rom scipy ape

£rom matplotlib. py]a.h import *

# show all plots "inline”
tmatplotlib inline

dim=30; # dimension of hilbert space
a=destroy(dim); # annihilation operator in this Hilbert space
=basis(dim,0); # ground state of the oscilla

omegam = 2*pi*le6; # oscillator frequency
H = omegam*a.dag()*a; # hamiltonian

' In to times of variables,

However, any
this system-environment interaction is described by a Lindblad master equation for the system density matrix:

dp i P
= -;m‘m)‘:mq - 3 {LiLep)

where H is the hamiltonian, and { L }¢=...» are jump operators that describe the action of the environment on a pure state of the syste.

Here we consider an environment constituted by a large collection of harmonic oscillators which are in thermal equilibrium at a temperature T, and which
couple to the system at arate I, . The relevant jump operators in this case are,

Ly = y/Tny a, corresponding to emission of a quanta by the system
= (i ¥ 1) ', correponding to addition of thermal quanta into the system

In (2]t 1 # define rates and jump operators
2 nth = 10;

3 gammam = 2+pi*1;

Figure: Sample simulation code on Qutip
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Qutip: Open quantum systems simulator

In [13]:

Out[13]: Quantum object: dims = [[30], [30]}, shape = (30, 30), type = oper, isherm = False
00 1.0 00 00 00 -- 00 00 0.0 0. X

In [14]:

Out[14]: Quantum object: dims = 30, [30]}, shape = (30, 30), type = oper, isherm = True
.0 0. 00 00 00 - 00 00 00 00

1

a # Matrix representation of a

1 0 0.0
00 00 1414 00 00 00 0.0 0.0 0.0 0.0
00 00 00 1732 00 00 0.0 0.0 0.0 0.0
00 00 00 00 20 00 0.0 0.0 0.0 0.0
00 00 00 00 00 00 0.0 0.0 0.0 0.0
00 00 00 00 00 00 509 0.0 0.0 0.0
00 00 00 00 00 00 00 5196 0.0 0.0
00 00 00 00 00 00 0.0 00 5292 00
00 00 00 00 00 00 0.0 0.0 0.0 5385
00 00 00 00 00 00 0.0 0.0 0.0 0.0

1

commutator(a, a.dag())

# commutator of a and a dagger

1.0 00 0.0
00 10 00 00 00 00 00 00 00 0.0
0.0 00 1.000 0.0 0.0 00 00 00 0.0 0.0
00 00 00 1.0 00 00 00 00 0.0 0.0
00 00 00 00 10 00 00 00 0.0 0.0
00 00 00 00 0.0 1000 0.0 0.0 00 0.0
00 00 00 00 00 00 10 00 00 0.0
00 00 00 00 00 00 00 1.0 00 0.0
00 00 00 00 00 00 00 00 1.000 0.0
00 00 00 00 0.0 00 00 00 00 -29.000

Figure: a and [a, a'] matrix representations
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Supplementary to lecture 12



Observation of quantum jumps*
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Figure: A typical trace of the 493-nm
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Birth and death of a photon in a cavity °
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Figure: Experimental set-up ,
Decay of the one-photon state. a, Measured value of d T
P; = |1) (1] as a function of time, in a single experimental 19 1
realization; b—d, averages of 5, 15 and 904 similar quantum s
trajectories, showing the gradual transition from quantum o
randomness into a smooth ensemble average.
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5Gleyzes et. al. Quantum jumps of light recording the birth and death of a photon in a cavity, Nature volume 446, pages 297-300
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