

Stat. Phys. IV: lecture 7

Spring 2025

Transition Rate and Probability

We consider a Markov process continuous in time with discrete states n .

$$W(n_1, n_2) = \lim_{\Delta t \rightarrow 0} \frac{P(n_1, 0 \mid n_2, \Delta t)}{\Delta t} = \frac{\partial}{\partial t} P(n_1, 0 \mid n_2, \Delta t) \Big|_{\Delta t=0}$$

is the transition rate to jump from state.

Then we can assume transition probability with short-time expansion:

$$P(n_1, 0 \mid n_2, t) = W(n_1, n_2)t + \mathcal{O}(t^2)$$

Can also introduce the exit rate out of state n_1 :

$$a(n_1) = \sum_{n_1 \neq n_2} W(n_1, n_2)$$

Mesoscopic Master Equation

Equation of motion of $P(n_1|n_2, \Delta t)$

$$P(n_1 | n_2, \Delta t) = (1 - a(n_1)\Delta t)\delta_{n_1 n_2} + (1 - \delta_{n_1 n_2})W(n_1, n_2)\Delta t$$

- Stay in state n_1 : $n_1 = n_2 \Rightarrow 1 - a(n_2)\Delta t$
- Jump from n_1 to n_2 : $n_1 \neq n_2 \Rightarrow W(n_1, n_2)\Delta t$

For a homogeneous Markov process, the transition probability is independent of time, and given with the Chapman-Kolmogorov equations:

$$P(n_1, n_3; t + \Delta t) = \sum_{n_2} P(n_1 | n_2, t) \cdot P(n_2 | n_3, \Delta t)$$

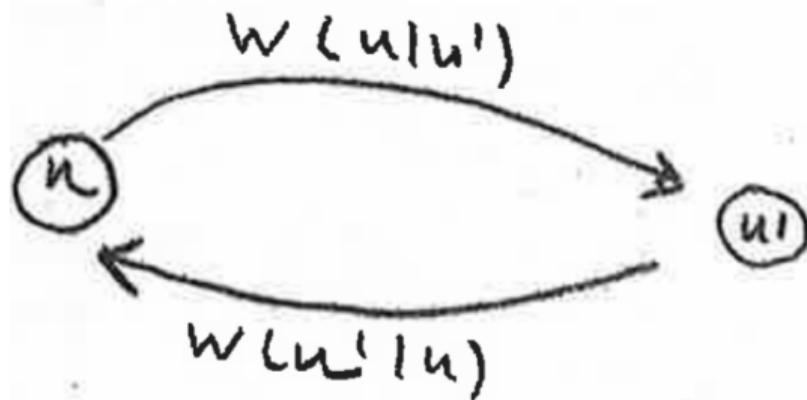
Mesoscopic Master Equation

$$\frac{\partial}{\partial t} P(n, t) = \sum_{n'} (P(n', t)W(n'|n) - P(n, t)W(n|n'))$$

Stationary process

For a stationary process

$$\sum_{n'} P^s(n') W(n'|n) - P^s(n) W(n|n') = 0$$



Example 1: birth and death process

Only transitions between adjacent states are allowed:

$$W(n|n+1) = g_n \quad \text{and} \quad W(n|n-1) = r_n.$$

Birth-death process

$$\frac{\partial}{\partial t} P(n, t) = g_{n-1} P(n-1, t) + r_{n+1} P(n+1, t) - (g_n + r_n) P(n, t)$$

- Population evolution: $\frac{d}{dt} \langle n \rangle = \langle g_n \rangle - \langle r_n \rangle$
- Steady state solution: $P^s(n) = P^s(0) \prod_{n'=1}^n \frac{g_{n'-1}}{r_{n'}}$

Example 2: radioactive decay

Birth-death process with $g_n = 0$, $r_n = n\gamma$.

Radioactive decay

$$\frac{\partial}{\partial t}P(n,t) = (n+1)\gamma P(n+1,t) - n\gamma P(n,t)$$

- Population evolution: $\langle n(t) \rangle = n_0 e^{-\gamma t}$
- Fluctuations of the population: $\langle (\Delta n)^2(t) \rangle = n_0(n_0 - 1)e^{-2\gamma t} + n_0 e^{-\gamma t}$

Example 3: Photons

Absorption and emission of photons from a two level system $g_n = \lambda(n + 1)$, $\lambda = \gamma N_2$, $r_n = \mu n$, $\mu = \gamma N_1$.

Burgess solution:

$$P_n^s = c \left(\frac{\lambda}{\mu} \right)^n$$

- The distribution needs to satisfy Boltzmann statistics:

$$\frac{\lambda}{\mu} = \frac{N_2}{N_1} = e^{-\frac{E_1 - E_2}{k_B T}} = e^{-\frac{\hbar\omega}{k_B T}}$$

Boltzmann distribution

$$P_n^s = (1 - e^{-\beta \hbar\omega}) e^{-\beta \hbar\omega n}$$

Leads to:

Bose distribution

$$\langle n_s \rangle = \frac{1}{e^{\beta \hbar\omega} - 1}$$

Detailed Balance

Detailed balance condition:

$$P_n^{\text{eq}} W(n' | n) = P_{n'}^{\text{eq}} W(n | n') \quad \forall n, n'$$

For canonical thermal equilibrium:

$$P_n^{\text{eq}} \propto d_n e^{-E_n/k_B T}$$

Hence for the simple case $dn' = dn$ detailed balance:

$$\frac{W(n \rightarrow n')}{W(n' \rightarrow n)} = e^{-(E_{n'} - E_n)/k_B T}$$

Monte-Carlo algorithm

Simulation of system fluctuations in thermal equilibrium:

- (i) Choose a state (random or by prescription)
- (ii) Calculate $\Delta E = E_{n'} - E_n$
- (iii) If $\Delta E < 0 \rightarrow W_{n,n'} = 1$
If $\Delta E > 0 \rightarrow W_{n,n'} = e^{-\Delta E/KT}$

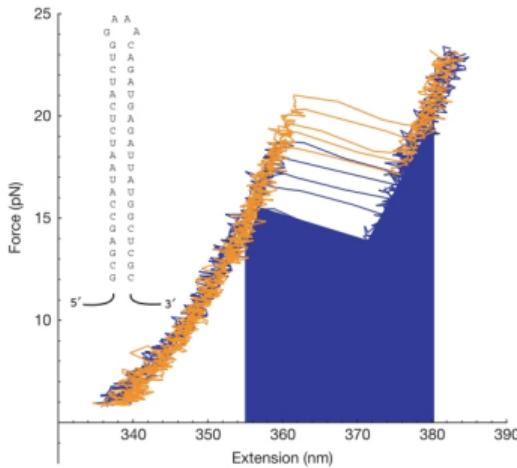
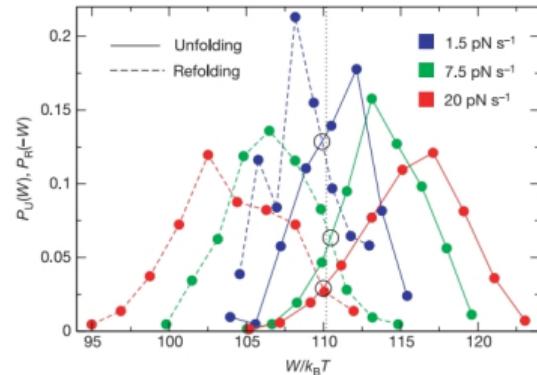
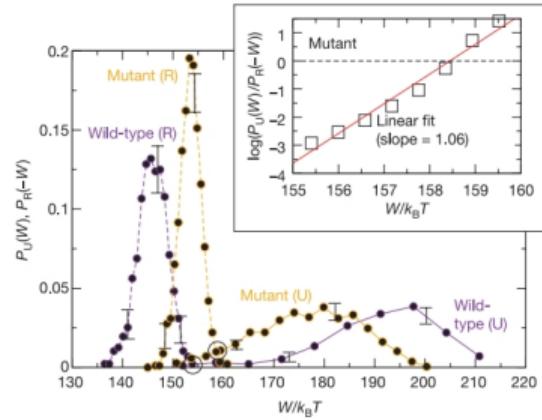
$$W_{n,n'} = \min(1, X), \quad X = e^{-\Delta E/KT}$$

- (iv) reset

Next week's presentation

Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies

D. Collin^{1*}, F. Ritort^{2*}, C. Jarzynski³, S. B. Smith⁴, I. Tinoco Jr⁵ & C. Bustamante^{4,6}



Questions for next week's paper presentation

- What is the Monte Carlo method and how is it implemented?
- What is the advantage of the Metropolis - Hastings (MH) algorithm compared to a classical Monte Carlo sampling?
- Prove that MH algorithms converges to the desired distribution you want to sample from?
- How would you draw a sample from a Markov chain obtained by MH algorithms?
- Explain the application of the algorithm that is presented in the paper.

