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Transition Rate and Probability

We consider a Markov process continuous in time with discrete states n.

W (n1, n2) = lim
∆t→0

P (n1, 0 | n2,∆t)

t
=

∂

∂t
P (n1, 0 | n2,∆t)

∣∣∣∣
∆t=0

is the transition rate to jump from state.
Then we can assume transition probability with short-time expansion:

P (n1, 0 | n2, t) = W (n1, n2)t+O(t2)

Can also introduce the exit rate out of state u1:

a(n1) =
∑

n1 ̸=n2

W (n1, n2)
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Mesoscopic Master Equation

Equation of motion of P (n1|n2,∆t)

P (n1 | n2,∆t) = (1− a(n1)∆t)δn1n2 + (1− δn1n2)W (n1, n2)∆t

Stay in state n1: n1 = n2 ⇒ 1− a(n2)∆t

Jump from n1 to n2: n1 ̸= n2 ⇒ W (n1, n2)∆t

For a homogeneous Markov process, the transition probability is independent of time, and
given with the Chapman-Kolmogorov equations:

P (n1, n3; t+∆t) =
∑
n2

P (n1 | n2, t) · P (n2 | n3,∆t)

Mesoscopic Master Equation

∂

∂t
P (n, t) =

∑
n′

(
P (n′, t)W (n′|n)− P (n, t)W (n|n′)

)
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Stationary process

For a stationary process ∑
n′

P s(n′)W (n′|n)− P s(n)W (n|n′) = 0
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Example 1: birth and death process

Only transitions between adjacent states are allowed:

W (n|n+ 1) = gn and W (n|n− 1) = rn.

Birth-death process
∂
∂tP (n, t) = gn−1P (n− 1, t) + rn+1P (n+ 1, t)− (gn + rn)P (n, t)

Population evolution: d
dt⟨n⟩ = ⟨gn⟩ − ⟨rn⟩

Steady state solution: P s(n) = P s(0)
∏n

n′=1
gn′−1

rn′
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Example 2: radioactive decay

Birth-death process with gn = 0, rn = nγ.

Radioactive decay
∂
∂tP (n, t) = (n+ 1)γP (n+ 1, t)− nγP (n, t)

Population evolution: ⟨n(t)⟩ = n0e
−γt

Fluctuations of the population: ⟨(∆n)2(t)⟩ = n0(n0 − 1)e−2γt + n0e
−γt
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Example 3: Photons
Absorption and emission of photons from a two level system gn = λ(n+ 1), λ = γN2,
rn = µn, µ = γN1.
Burgess solution: P s

n = c(
λ

µ
)n

The distribution needs to satisfy Boltzmann statistics:

λ

µ
=

N2

N1
= e

−E1−E2
kBT = e

− ℏω
kBT

Boltzmann distribution

P s
n = (1− e−βℏω)e−βℏωn

Leads to:

Bose distribution

⟨ns⟩ =
1

eβℏω − 1
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Detailed Balance

Detailed balance condition:

P eq
n W (n′ | n) = P eq

n′ W (n | n′) ∀n, n′

For canonical thermal equilibrium:

P eq
n ∝ dne

−En/kBT

Hence for the simple case dn′ = dn detailed balance:

W (n → n′)

W (n′ → n)
= e−(En′−En)/kBT
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Monte-Carlo algorithm

Simulation of system fluctuations in thermal equilibrium:

(i) Choose a state (random or by prescription)

(ii) Calculate ∆E = En′ − En

(iii) If ∆E < 0 → Wn,n′ = 1
If ∆E > 0 → Wn,n′ = e−∆E/KT

Wn,n′ = min(1, X), X = e−∆E/KT

(iv) reset
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Next week’s presentation
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Questions for next week’s paper presentation

What is the Monte Carlo method and how is it implemented?

What is the advantage of the Metropolis - Hastings (MH) algorithm compared to a
classical Monte Carlo sampling?

Prove that MH algorithms converges to the desired distribution you want to sampled
from?

How would you draw a sample from a Markov chain obtained by MH algorithms?

Explain the application of the algorithm that is presented in the paper.
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