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Transition Rate and Probability

We consider a Markov process continuous in time with discrete states n.

P(n1,0 | ng,At) 3
W(n1,n2) = lim (m1,0m2,8) _ 0 b | o, A)

is the transition rate to jump from state.
Then we can assume transition probability with short-time expansion:

P(nlao ’ na, ) W(nlanz)t + O(tQ)

Can also introduce the exit rate out of state uy:

Z W(nl, ng)

n1#£ns
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Mesoscopic Master Equation

Equation of motion of P(n|ny, At)

P(ny | no, At) = (1 — a(n1)At)dn,ny + (1 — dnyng )W (n1, no) At

e Stay in state ni: ny =ng = 1 — a(ng)At
e Jump from nj to ng: ny # ng = Wny, ng)At

For a homogeneous Markov process, the transition probability is independent of time, and
given with the Chapman-Kolmogorov equations:

P(ny,ng;t+ At) =Y P(ny | ng,t) - P(ny | ng, At)
n2

Mesoscopic Master Equation

%P(n, t)=>_ (P, )W (n/|n) — P(n,t)W(n|n’))

TLI
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Stationary process

For a stationary process

Zps — P(n)W(n|n') =0

Wiluw! lu)
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Example 1: birth and death process

Only transitions between adjacent states are allowed:

W(nln+1) =g, and W(nln—1)=r,.

Birth-death process
%P(n,t) =gn1P(n—1,t) + rpnp1P(n+1,t) — (gn + rn)P(n,t) J

o Population evolution: &(n) = (g,) — (ry)
e Steady state solution: P*(n) = P*(0) []"_, &=

r—
n’/=1 Tt
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Example 2: radioactive decay

Birth-death process with g, = 0, r, = n~.
Radioactive decay

2 P(n,t) = (n+ 1)yP(n+1,t) — nyP(n,t)

e Population evolution: (n(t)) = nge "

e Fluctuations of the population: ((An)%(t)) = ng(ng — 1)e™2"* + nge ™
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Example 3: Photons

Absorption and emission of photons from a two level system g, = A(n+ 1), A =yNy,

rn = un, =yNj. . A,
Burgess solution: P, = C(;)
@ The distribution needs to satisfy Boltzmann statistics:
é — & = eiE’iquE—'Z e eikzin
o N

Boltzmann distribution

P’ =(1- e_ﬁh‘”)e_ﬁh“’”

Leads to:
Bose distribution

1
(ns) = o1
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Detailed Balance

Detailed balance condition:
PYW(n' | n) = POW(n|n') Vn,n/
For canonical thermal equilibrium:
P9 dne_E"/kBT
Hence for the simple case dn’ = dn detailed balance:

M — e_(En’_En)/kBT
W(n' — n)
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Monte-Carlo algorithm

Simulation of system fluctuations in thermal equilibrium:
@ (i) Choose a state (random or by prescription)
o (ii) Calculate AE =E, — E,

o (i) IfAE <0 — Wy =1
If AE >0 — W, = e AB/KT

Won =min(l,X), X = g BT

o (iv) reset
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Next week's presentation

Verification of the Crooks fluctuation theorem and
recovery of RNA folding free energies

D. Collin'*, F. Ritort™, C. Jarzynski®, S. B. Smith®, I. Tinoco Jr* & C. Bustamante™®
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Questions for next week's paper presentation

What is the Monte Carlo method and how is it implemented?

What is the advantage of the Metropolis - Hastings (MH) algorithm compared to a
classical Monte Carlo sampling?

Prove that MH algorithms converges to the desired distribution you want to sampled
from?

How would you draw a sample from a Markov chain obtained by MH algorithms?

Explain the application of the algorithm that is presented in the paper.
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