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Reminder about the Quantum Langevin Equation
We derived the

quantum Langevin equation:

~~ X
K A
01 = —Eﬁ—i—zwoa +f(t) dk’/

We found the force correlations to be:

FOFFE) = @) +1)s(t—1),
(Frofe)) = xm@)o—t),

where k = 271D(w0)‘g(w0)‘2 and i(w) = <I§,’:(O)l§k(0) . Note that the

second of the above equations yields a manifestation of the fluctuation
dissipation theorem:
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Motivation for Input-Output formalism - LIGO

Ein (t)

_——

Bout (1)
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Input and Output Theory !
Total Hamiltonian of an open quantum system:
H = Hsys+Hbath + Hint
Hys = hwod'a
Hpah = 1 [ dww
A = i [, dox(w) - [b(w)e - eh(w)]

Use the Heisenberg EOM to find:

dib(w) = —iwb(w) + x(w)e(t) .
Integrate to find the bath modes:

b(w) = bo(w)e @71 4 k(w) [, e @Ee(¢) At

Which yields the forward quantum langevin equation.
Forward Quantum Langevin Equation

atﬁ = —Z'a)ofl = %fl = ﬁgin(t) , Bin(t) = fda) Efiw(tfto)l;()(w)

!See Gardiner and Collett, Phys. Rev. A 31 3761 (1985).

Stat. Phys. IV: Lecture 10 Spring 2025

4/13



Alternative form of the QLE

Use (1) to find:
¢
/B(w)dw = /dw@o(w)ei“’(t—t(’) +K(w)//ei‘*’(t‘tl)é(t/)dtdw .
vz to

N

Bin (1) —~~

Thus .
/B(w) dew = bin(F) + C(zt) NeD 2)
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Time reversed Langevin equations
We integrate the bath modes from t to ; (note: by(w) = b(w)s=, and

bi(w) = b(w)i=):
b(w) = e @y (w) — x(w) [T e @=Ne(t) dt

Solving for the case where ¢ = 4 (energy relaxation) yields the backward
quantum langevin equation (bo:(t) = [ dwe @ 1p(w)):

atﬁ(t) = —iwpd + *a - \/>bout( ) ’

To qU|ck|y go from the backward QLE to the forward QLE we substitute
Bin(t) = bout(t) VY = VT ¥ — —1a. Hence:

[ b(w) dw = boue(t) + L /7 .
Substracting (2) from the equation above we obtain:
Input-Output Relation
I;out(t) - Bin(t) = ﬁﬁ
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Quantum Langevin Equations for a two level system (1)
Pauli matrices:

s (10 s (01} 5 _ (00
27 \lo =1} """ \o o)/ """ {10

Let's assume our two level system is coupled to an electromagnetic field
with infinitely many modes:

A,

1, . N A
Hyys = 51Q0: , Hyath = Y heorbiby
K

Hine =) 1gi (‘AT—EZ + (A7+Bk)
Using the same procedure as p]r(eviously (c.f. homework) we obtain:
Q- = —iQo — g&_ + V/xbin (1)
o0y = Q0 — g‘ﬁ + VKO bin (1)
2o = —x(1+06) —2Vx (a+13in(t) + Bi*n(t)fr_)
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Quantum Langevin Equations for a two level system (2)
The above equations are not closed and simplify significantly if we assume
that the atom is initially in the excited state |2) and that the field is in the

vacuum state <B,t(0)f9k(0)> =0 at time f = f5. Then
(@) = <—iQ—§> ay
@) = (i0-5) @,
(0107) = —x(14(0z)) ,

where we have assumed <&ZB;n(t)> = (0z) Bin(t)> (i.e. the system isin a
separable state). Hence the atom decays as:

(62(8)) = 6(0)e ™, x = 27t|g¢ |’ D(w)

Here D(w) = % is the density of states of the electromagnetic field. We

. . . . w3e?(1[7]2)
obtain a rigorous expression for the atomic decay x = el
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Nobel Prize 2012 - Serge Haroche

Aoy = hwia'a
. 1 R
Hatom = EHQUZ

Hoath = 1Y widiby
k
™ = nhg(ota+oah)

HZ = nY_gi@abj +a'h)
k

Figure: R.J. Schoelkopf, S.M.

Girvin, Nature 451, 664-669
(2008)

We can consider a simple case where fiw > kgT (i.e. fizn >~ 0). Then,

under the weak coupling condition ¢ < «:

(02(t)) = —1 +2e~4H/x

4g?

The atomic decay rate is thus I'c = =-.

This enhancement of the

spontaneous emission rate (i.e. it is faster than in free space) is called the

Purcell Effect (Phys. Rev. 69, 37 (1946)).
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Quantum regression theorem?

Useful to compute correlations of operators <A(t)1§’(t + T)>

For a complete basis of operators {AH}' in the sense that
& <Ay(t)> =Y, My <Av(t)>, we have

Quantum regression theorem

;—T<O() t+r)> ; <© A(t—l—r)>

for any system operator O.

Example: (1st order correlation function), with O = at, A=a

(a0t +0)) = (ae)) i

2H. J. Carmichael, “Statistical Methods in Quantum Optics”, section 1.5
Sorig 2055 e



Quantum regression theorem

Can be extended to 3 operators:

%<©1(t)zx (t+1)Os t)> EMVV<01( )Av(t+f)©z(t)>

Example: (2nd order correlation function)

Hanbury-Brown-Twiss Effect
<a+(t)a+(t +T)a(t+ T)ﬁ(t)> . (1 + e‘"’t) J

It is an example of photon bunching.
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ABSTRACT

We present a new method for the detection and measurement of a periodic signal in a data set when we
have no prior knowledge of the existence of such a signal or of its characteristics. It is applicable to data
consisting of the locations or times of discrete events. We use Bayes’s theorem to address both the signal
detection problem and the estimation problem of measuring the characteristics of a detected signal. To
address the detection problem, we use Bayes’s theorem to compare a constant rate model for the signal to
models with periodic structure. The periodic models describe the signal plus background rate as a stepwise
distribution in m bins per period, for various values of m. The Baycsxan postenor probablllty for a periodic
model contains a term which quantifies Ockham’s razor, 1 vely more comp d periodic
models for their greater complexity even though they are assigned equal prior probabilities. The calculation
thus balances model simplicity with goodness of fit, allowing us to determine both whether there is evidence
for a periodic signal, and the optimum number of bins for describing the structure in the data. Unlike the
results of traditional “frequentist” calculations, the outcome of the Bayesian calculation does not depend on
the number of periods examined, but only on the range examined. Once a signal is detected, we again use
Bayes’s theorem to estimate various parameters of the signal, such as its frequency or the shape of the light
curve. The probability density for the frequency is inversely proportional to the multiplicity of the binned
events, which is simply related both to the combinatorial entropy of the binned distribution and to the y2
measure of its misfit to a uniform distribution used in the “epoch folding” method for period detection. The
probability density for the light-curve shape produces light-curve estimates that are superpositions of stepwise
distributions with various phases and number of bins, and which are thus smoother than a simple histogram.
Error bars for the light-curve shape are also easily calculated. The method also handles gaps in the data due
to intermittent observing or dead time. We apply the method to simulated data generated with both stepwise
and sinusoidal light curves and demonstrate that it can sensitively detect such signals and accurately estimate
both the signal frequency and its shape, even when the light curve does not have a stepwise shape. We
also describe a test for nonperiodic source variability that is a simple modification of our period detection
procedure.

Subject headings: methods: analytical — methods: numerical
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