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Reminder about the Quantum Langevin Equation
We derived the
quantum Langevin equation:

∂tâ = −κ

2
â + iω0â + f̂ (t)

We found the force correlations to be:〈
f̂ (t)f̂ †(t′)

〉
= κ(n̄(ω) + 1)δ(t − t′) ,〈

f̂ †(t)f̂ (t′)
〉

= κ(n̄(ω))δ(t − t′) ,

where κ = 2πD(ω0)
∣∣g(ω0)

∣∣2 and n̄(ω) =
〈

b̂†
k(0)b̂k(0)

〉
. Note that the

second of the above equations yields a manifestation of the fluctuation
dissipation theorem:

κ =
1

n̄(ω)

∫ 〈
f̂ †(t)f̂ (t′)

〉
dt′
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Motivation for Input-Output formalism - LIGO
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Input and Output Theory 1

Total Hamiltonian of an open quantum system:

Ĥ = Ĥsys + Ĥbath + Ĥint

Ĥsys = h̄ω0â†â
Ĥbath = h̄

∫ ∞
−∞ dω ω

Ĥint = ih̄
∫ ∞
−∞ dω κ(ω) ·

[
b̂†(ω)ĉ − ĉ†b̂(ω)

]
Use the Heisenberg EOM to find:

∂tb̂(ω) = −iωb̂(ω) + κ(ω)ĉ(t) .

Integrate to find the bath modes:

b̂(ω) = b̂0(ω)e−iω(t−t0) + κ(ω)
∫ t

t0
e−iω(t−t′)ĉ(t′)dt′ . (1)

Which yields the forward quantum langevin equation.

Forward Quantum Langevin Equation

∂tâ = −iω0â − γ
2 â −√

γb̂in(t) , b̂in(t) =
∫

dω e−iω(t−t0)b̂0(ω)

1See Gardiner and Collett, Phys. Rev. A 31 3761 (1985).
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Alternative form of the QLE

Use (1) to find:

∫
b̂(ω)dω =

∫
dω b̂0(ω)eiω(t−t0)︸ ︷︷ ︸

b̂in(t)

+ κ(ω)
∫ t∫

t0

eiω(t−t′)ĉ(t′)dt dω

︸ ︷︷ ︸
ĉ(t)

2
√

γ

.

Thus ∫
b̂(ω)dω = b̂in(t) +

ĉ(t)
2

√
γ . (2)
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Time reversed Langevin equations
We integrate the bath modes from t to t1 (note: b̂0(ω) = b̂(ω)t=t0 and
b̂1(ω) = b̂(ω)t=t1):

b̂(ω) = e−iω(t−t1)b̂1(ω)− κ(ω)
∫ t1

t e−iω(t−t′)ĉ(t′)dt′ .

Solving for the case where ĉ = â (energy relaxation) yields the backward
quantum langevin equation (b̂out(t) =

∫
dω e−iω(t−t1)b̂1(ω)):

∂tâ(t) = −iω0â +
γ

2
â −√

γb̂out(t) ,

To quickly go from the backward QLE to the forward QLE we substitute
b̂in(t) → b̂out(t) ,

√
γ → √

γ , γ
2 â → −γ

2 â. Hence:∫
b̂(ω)dω = b̂out(t) +

ĉ(t)
2
√

γ .

Substracting (2) from the equation above we obtain:

Input-Output Relation

b̂out(t)− b̂in(t) =
√

γâ
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Quantum Langevin Equations for a two level system (1)
Pauli matrices:

σ̂z =

(
1 0
0 −1

)
, σ̂+ =

(
0 1
0 0

)
, σ̂− =

(
0 0
1 0

)
Let’s assume our two level system is coupled to an electromagnetic field
with infinitely many modes:

Ĥsys =
1
2

h̄Ωσ̂z , Ĥbath = ∑
k

h̄ωkb̂†
k b̂k ,

Ĥint = ∑
k

h̄gk

(
σ̂−b̂†

k + σ̂+b̂k

)
Using the same procedure as previously (c.f. homework) we obtain:

∂tσ̂− = −iΩσ̂− − κ

2
σ̂− +

√
κσ̂zb̂in(t)

∂tσ̂+ = iΩσ̂+ − κ

2
σ̂+ +

√
κσ̂zb̂in(t)

∂tσ̂z = −κ(1 + σ̂z)− 2
√

κ
(

σ̂+b̂in(t) + b̂†
in(t)σ̂−

)
Stat. Phys. IV: Lecture 10 Spring 2025 7 / 13



Quantum Langevin Equations for a two level system (2)
The above equations are not closed and simplify significantly if we assume
that the atom is initially in the excited state |2⟩ and that the field is in the

vacuum state
〈

b̂†
k(0)b̂k(0)

〉
= 0 at time t = t0. Then

⟨∂tσ̂−⟩ =

(
−iΩ − κ

2

)
⟨σ̂−⟩ ,

⟨∂tσ̂+⟩ =

(
iΩ − κ

2

)
⟨σ̂+⟩ ,

⟨∂tσ̂z⟩ = −κ (1 + ⟨σ̂z⟩) ,

where we have assumed
〈

σ̂zb̂in(t)
〉
= ⟨σ̂z⟩

〈
b̂in(t)

〉
(i.e. the system is in a

separable state). Hence the atom decays as:〈
σ̂z(t)

〉
= σ̂z(0)e−κt, κ = 2π

∣∣gk
∣∣2D(ω) .

Here D(ω) = ω2

c3π2 is the density of states of the electromagnetic field. We

obtain a rigorous expression for the atomic decay κ = ω3e2⟨1|⃗r|2⟩
3πϵ0c3 .

Stat. Phys. IV: Lecture 10 Spring 2025 8 / 13



Nobel Prize 2012 - Serge Haroche

Figure: R.J. Schoelkopf, S.M.
Girvin, Nature 451, 664-669
(2008)

Ĥcav = h̄ωcâ†â

Ĥatom =
1
2

h̄Ωσ̂z

Ĥbath = h̄ ∑
k

ωkb̂†
k b̂k

Ĥatom
int = h̄g(σ+â + σ−â†)

Ĥcav
int = h̄ ∑

k
gc

k(âb̂†
k + â†b̂k)

We can consider a simple case where h̄ω ≫ kBT (i.e. n̄th ≃ 0). Then,
under the weak coupling condition g ≪ κ:〈

σ̂z(t)
〉
= −1 + 2e−4g2t/κ .

The atomic decay rate is thus Γc =
4g2

κ . This enhancement of the
spontaneous emission rate (i.e. it is faster than in free space) is called the
Purcell Effect (Phys. Rev. 69, 37 (1946)).
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Quantum regression theorem2

Useful to compute correlations of operators
〈

Â(t)B̂(t + τ)
〉

For a complete basis of operators
{

Âµ

}
, in the sense that

d
dt

〈
Âµ(t)

〉
= ∑ν Mµν

〈
Âν(t)

〉
, we have

Quantum regression theorem

d
dτ

〈
Ô(t)Âµ(t + τ)

〉
= ∑

ν

Mµν

〈
Ô(t)Âν(t + τ)

〉
for any system operator Ô.

Example: (1st order correlation function), with O = â†, Â = â〈
â†(t)â(t + τ)

〉
=
〈
n̂(t)

〉
e−

γ
2 τ−iω0τ

2H. J. Carmichael, “Statistical Methods in Quantum Optics”, section 1.5
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Quantum regression theorem

Can be extended to 3 operators:

d
dτ

〈
Ô1(t)Âµ(t + τ)Ô2(t)

〉
= ∑

ν

Mµν

〈
Ô1(t)Âν(t + τ)Ô2(t)

〉
Example: (2nd order correlation function)

Hanbury-Brown-Twiss Effect〈
â†(t)â†(t + τ)â(t + τ)â(t)

〉
= n̄2

e

(
1 + e−γt

)
It is an example of photon bunching.
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