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Statistical Physics IV: Non-equilibrium statistical physics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Solutions to Exercise No.4

Solution: The Generalized Fluctuation Dissipation Theorem

1. Start from the equation of motion for a harmonic oscillator with mass m, damping γ and
resonance frequency ω0 in time and frequency domain

m
d2

dt2 x + γ
d
dt

x + ω2
0x = FL(t), (1)

x(ω) =
FL(ω)

m(ω2
0 − ω2)− iγω

. (2)

Here the adopted Fourier transform notation is f (t) =
∫

f (ω)e−iωtdω. Mechanical impedance
and resistance:

Z(ω) =
FL(ω)

v(ω)
=

FL(ω)

−iωx(ω)
= γ + im

ω2
0 − ω2

ω
, (3)

R(ω) = Re Z(ω) = γ. (4)

2. Spectrum of position fluctuations:

Sxx(ω) =
1

m2(ω2
0 − ω2)2 + (γω)2

SFL FL(ω) =
4kTγ

m2(ω2
0 − ω2)2 + (γω)2

. (5)

3. Generic equation of motion for an oscillator in frequency domain:

x(ω) =
FL(ω)

(k − mω2)− ikϕ(ω)
, (6)

where ϕ(ω) is the loss angle.

R(ω) = kϕ(ω)/ω, (7)

Sxx(ω) =
4kTkϕ(ω)

ω((k − mω2)2 + (kϕ(ω))2)
, (8)

Svv(ω) = ω2Sxx(ω). (9)

Solution: Stationary solutions of the Fokker Planck Equation

The 1 dimensional Fokker Planck equation with constant drift (Smoluchowski equation) is given
by: ∂

∂t P(x, t) = − 1
γ

∂
∂x (F(x)P(x, t)) + D · ∂2

∂x2 P(x, t), where D is a the diffusion constant, F(x) the
conservative force and γ is the dissipation constant. This equation can also be written in the form
of a a continuity equation:

∂

∂t
P(x, t) = − ∂

∂x
J(x, t)

Where the probability current is J(x, t) =
[

1
γ F(x)− D · ∂

∂x

]
P(x, t) .

1. Having J = 0,

D · d
dx

ln(P(x)) =
1
γ

F(x),

P(x) = Ne−Φ(x), Φ(x) =
1

Dγ

∫ x

0
F(x′)dx′ = −V(x)

Dγ
= −V(x)

kBT
Above N is a normalization constant.
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2. Integrating the continuity equation we get ∂
∂t

∫ xmax
xmin

P(x, t)dx = J(xmin) − J(xmax) = 0 so∫ xmax
xmin

P(x, t)dx = const.

3. Look for steady state solution, so J(xmin) = J(xmax) = J implies J(x) = J. We then have an
equation

J =
1
γ

F(x)P(x)− D · d
dx

P(x),

which can be solved as
P(x) = C(x)e−

V(x)
γD , D

dC
dx

= −Je
V(x)
γD ,

P(x) = P(0)e−Φ(x) − J
D

∫ x

0
e−(Φ(x)−Φ(x′))dx′.

Solution: Fokker Planck Equation to derive the limit of atomic laser cooling

1. For the random walk, we can write down the update formula

P(p, t + ∆t)− P(p, t) = P(p + ∆p, t)ϵ−(p + ∆p)∆t + P(p − ∆p, t)ϵ+(p − ∆p)∆t−
− P(p, t)[ϵ−(p) + ϵ+(p]∆t

where ∆p = h̄k. We can expand the first two terms on the RHS up to second order as

P(p ± ∆p, t)ϵ∓(p ± ∆p) ≈ P(p, t)ϵ∓(p)± ∆p
∂

∂p
[P(p, t)ϵ∓(p)] +

+
∆p2

2
∂2

∂p2 [P(p, t)ϵ∓(p)] (10)

so the equation becomes

P(p, t + ∆t)− P(p, t)
∆t

≈ ∆p
∂

∂p
[P(p, t)(ϵ−(p)− ϵ+(p))] +

+
∆p2

2
∂2

∂p2 [P(p, t)(ϵ+(p) + ϵ−(p))] (11)

Taking the limit and using the definitions for ϵ±we obtain

∂tP(p, t) = ∂p[βvP(p, t)] + ∂2
p [D(p, t)P(p, t)] (12)

This is a Fokker-Planck eq. with A(p, t) = −β
p
m = −βv and β = sk2h̄/(γ/2), D = sk2h̄2.

2. We are looking at the steady state

0 = ∂p[β
p
m

P(p, t)] + ∂2
p [D · P(p, t)] (13)

After one integration we get
∂pP(p, t)

P(p, t)
= − βp

Dm
(14)

3. In a general case the solution of Equation 13 is found as

P(p) =
C

D(p)
exp

(
−

∫ p

0

β(p′)p′

mD(p′)
dp′

)
, (15)

where C is a normalization constant.
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Given the substitution
β → β

1 + (v/vc)
4 , (16)

D → D
1 + (v/vc)

2

1 + (v/vc)
4 , (17)

we find

P(p) =
C
D

1 + (p/pc)4

1 + (p/pc)2 (1 + (p/pc)
2)−

βp2
c

2mD , (18)

where pc = mvc.
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