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Statistical Physics I'V: Non-equilibrium statistical physics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Solutions to Exercise No.4

Solution: The Generalized Fluctuation Dissipation Theorem

1. Start from the equation of motion for a harmonic oscillator with mass m, damping < and
resonance frequency wy in time and frequency domain
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Here the adopted Fourier transform notationis f(t) = [ f(w)e “!dw. Mechanical impedance
and resistance:
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2. Spectrum of position fluctuations:
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3. Generic equation of motion for an oscillator in frequency domain:
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where ¢(w) is the loss angle.
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Solution: Stationary solutions of the Fokker Planck Equation

The 1 dimensional Fokker Planck equation with constant drift (Smoluchowski equation) is given
by: 2P(x,t) = —%%(F(X)P(x, t))+ D - %P(x, t), where D is a the diffusion constant, F(x) the
conservative force and 7y is the dissipation constant. This equation can also be written in the form

of a a continuity equation:

O p(x,t) =~ J(x,1)

ot ox
Where the probability current is J(x, t) = [%F(x) —-D- %} P(x,t).
1. Having | =0,
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Above N is a normalization constant.
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. Integrating the continuity equation we get o xf:l’:* P(x,t)dx = J(Xpin) — J(Xmax) = 0 so
[ P(x, t)dx = const.

x??’l”l

. Look for steady state solution, so J(Xpin) = J(Xmax) = ] implies J(x) = J. We then have an
equation

1 d
= SF(x)P(x) = D- £-P(x)
which can be solved as
V<x> dC V(x)
P(x) =C(x)e” D— =—Jen
P(x) = P(0 ) / Nx'.

Solution: Fokker Planck Equation to derive the limit of atomic laser cooling

1. For the random walk, we can write down the update formula

P(p,t+At) —P(p,t) =P(p+ Ap,t)e_(p+ Ap)At + P(p — Ap, t)e (p — Ap) At—
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where Ap = hik. We can expand the first two terms on the RHS up to second order as

P(p = Ap,t)ex(p £+ Ap) = P(p,t)ex(p) £ Apaap [P(p, t)ex(p)] +
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so the equation becomes

P(p,t+ AAt)t —P(p,t) ~ A”aap [P(p,t)(e—(p) —e+(p))]+
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Taking the limit and using the definitions for €1 we obtain
0P (p,t) = 9y[BoP(p, t)] + 3}, [D(p, ) P(p, )] (12)
This is a Fokker-Planck eq. with A(p,t) = —B£ = —pvand B = sk?h/(v/2), D = sk**.
. We are looking at the steady state
0=3,[BEP(p,1)] 4+ [D-P(p,1)] (13)

After one integration we get
WpP(p.t) _ PBp
P(p,t) Dm

(14)
. In a general case the solution of Equation 13 is found as

_C PB(PP

where C is a normalization constant.
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Given the substitution g
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where p. = mv..



