
Prof. T.J. Kippenberg
Spring Term 2025

Statistical Physics IV: Non-equilibrium statistical physics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Solutions to Exercise No.10

Solution: Standard quantum limit for gravitational waves detection

The problem follows loosely the second problem of the K-lab homework Quantum limited Dis-
placement Measurements (see detailed attached solution).

1. Generic Hamiltonian of the system:

Ĥ = h̄
(

ω0 +
√

2g0 x̂
)

â† â + h̄Ωm

(
p̂2

2
+

x̂2

2

)
− FGW(t)x̂ + Ĥsys−bath, (1)

where â is the light field operator, Ωm is the oscillator frequency and Ĥsys−bath describes
coupling of the mechanical and optical fields to the thermal bath modes.

2. Linearization around large coherent amplitudes

â = α + δâ,
x̂ = x̄ + δx̂,
p̂ = δ p̂,

up to the quadratic terms in δâ, δx̂

Ĥ = h̄(ωc − ωL +
√

2g0 x̄)(α2 + α(δâ + δâ†) + δâ†δâ) + h̄
√

2g0α(δâ + δâ†)δx̂+

+ h̄Ωm

(
δ p̂2

2
+

δx̂2

2
+ x̄δx̂ +

x̄2

2

)
− FGW(t)δx̂ − FGW(t)x̄ + Ĥsys−bath. (2)

Note that the cavity energy term vanishes in the frame, rotating for the optical field at the
shifted cavity frequency ω0 +

√
2g0 x̄. We can find x̄ by neglecting fluctuations

∂H
∂x̄

= 0,

x̄ =

√
2g0

Ωm
α2.

3. The quantum Langevin equations (in the high-Q approximation κ ≪ ω0, Γm ≪ Ωm):

δ̇â = −κ

2
δâ − ig(δb̂ + δb̂†) +

√
κ δâin (3)

δ̇b̂ = −iΩmδb̂ − Γm

2
δb̂ − ig(δâ + δâ†) +

i√
2

ks(t), (4)

where g = g0α is the multi-photon optomechanical cooperativity and FGW(t) = h̄ks(t). In
terms of the quadratures:

˙δŶ = −κ

2
δŶ − 2gδx̂ +

√
κ δŶin, (5)

˙δX̂ = −κ

2
δX̂ +

√
κ δX̂in, (6)

˙δx̂ = Ωmδ p̂ − Γm

2
δx̂, (7)

˙δ p̂ = −Ωmδx̂ − Γm

2
δ p̂ − 2gδX̂ + ks(t). (8)
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4. Modulation of the intracavity field phase by mechanical motion:

δŶ[ω] =
1

−iω + κ/2
(−2g δx̂[ω] +

√
κδŶin[ω]), (9)

5. Backaction- and signal- driven motion of the mechanical oscillator

δx̂[ω] =
Ωm

(iω − Γm/2)2 + Ω2
m

(
−2gδX̂ +

√
2ks[ω]

)
=

=
Ωm

(iω − Γm/2)2 + Ω2
m

(
− 2g

√
κ

−iω + κ/2
δX̂in + ks[ω]

)
. (10)

Here the oscillator susceptibility to force, χm[ω] = Ωm/(Ω2
m − ω2 − iΓmΩ) ≈ Ωm/((iω −

Γm/2)2 + Ω2
m), looks unusual due to the adopted high-Q approximation.

6. Total output signal on phase quadrature

δŶout[ω] = δŶin[ω]−
√

κδŶ[ω] =
iω + κ/2
iω − κ/2

δŶin[ω] +
2g

√
κ

−iω + κ/2
δx̂ =

=
iω + κ/2
iω − κ/2

δŶin[ω]− 4g2κ

(−iω + κ/2)2 χm[ω]δX̂in +
2g

√
κ

−iω + κ/2
χm[ω]ks[ω] =

= A[ω]δŶin[ω] + B[ω]δX̂in + C[ω]s[ω]. (11)

7. Correlators of the quadratures of the field:

〈
δX̂in(t)δX̂in(t′)

〉
=

〈
δŶin(t)δŶin(t′)

〉
=

1
2

δ(t − t′), (12)〈
δX̂in(t)δX̂in(t′)

〉
=

i
2

δ(t − t′), (13)〈(
δX̂in[ω]

)†
δX̂in[ω]

〉
=

〈(
δŶin[ω]

)†
δŶin[ω]

〉
=

1
2

, (14)〈(
δX̂in[ω]

)†
δŶin[ω]

〉
=

i
2

, (15)

Spectrum of the output signal, introducing the cooperativity parameter C = 4g2/κΓm:

〈(
δŶin[ω]

)†
δŶin[ω]

〉
s
=

1
2
+

8C2Γ2
m

(1 + (2ω/κ)2)2 |χm[ω]|2+

+
4CΓm

1 + (2ω/κ)2 |χm[ω]|2k2
〈
(s[ω])† s[ω]

〉
(16)

8. —

9. In the Eq. 16 the 3-rd term is signal nad the remaining are noises. Minimization over α is
equivalent to minimization over C, so we obtain (if ω ≪ κ/2)

CSQL =
1

4Γm|χm[ω]| , (17)

gSQL =
1
4

√
κ

|χm[ω]| , (18)

(Signal/Noise)SQL = k2
〈
(s[ω])† s[ω]

〉
× |χm[ω]|, (19)

Snoise,SQL[ω] =
1

k2|χm[ω]| . (20)
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Solution: Quantum regression theorem and photon bunching1

We use the quantum regression theorem〈
Ô1(t)Âµ(t + τ)Ô2(t)

〉
= ∑

ν

Mµν

〈
Ô1(t)Âν(t + τ)Ô2(t)

〉
,

with operators A1 = a†a, A2 = 1. We have(
⟨Ȧ1⟩
⟨Ȧ2⟩

)
=

(
−γ γn̄
0 0

)(
⟨A1⟩
⟨A2⟩

)
(21)

With O1(t) = a†(t) and O2(t) = a(t), we get

d
dτ

⟨a†(t)a†(t + τ)a(t + τ)a(t)⟩ = −γ ⟨a†(t)a†(t + τ)a(t + τ)a(t)⟩+ γn̄ ⟨a†(t)a(t)⟩ (22)

We can solve it as

⟨a†(t)a†(t + τ)a(t + τ)a(t)⟩ = ⟨m⟩ e−γτ + n̄ ⟨n⟩ (1 − e−γτ) (23)

with ⟨m⟩ = ⟨a†(t)a†(t)a(t)a(t)⟩.
We still need to derive the evolution of ⟨a†(t)a†(t)a(t)a(t)⟩ using the master equation.

˙⟨m⟩ = ˙Tr[mρ]

=− iω0Tr[a†2a2a†aρ − a†2a2ρa†a] +
γ

2
(2a†2a3ρa† − a†2a2a†aρ − a†2a2ρa†a)

+γn̄(a†2a2aρa† + a†2a2a†ρa − a†2a2a†aρ − a†2a2ρaa†)

(24)

Using [a, a†] = 1 and Tr[ABC] = Tr[CAB] = Tr[BCA], we find the first term is 0, second term
equals to −2γ ⟨a†2a2⟩ and the third term is 4γn̄ ⟨n⟩.

So we gets
⟨ṁ⟩ = −2γ ⟨m⟩+ 4γn̄ ⟨n(t)⟩ (25)

Now the shortcut to the answer is to assume that in the long time t limit, the solution is sta-
tionary, so ⟨ṁ⟩ = 0. This means ⟨n⟩ = n̄ and ⟨m⟩ = 2n̄2.

Finally, putting everything together and neglecting the terms in e−γt in the long time t limit,
one obtains 〈

â†(t)â†(t + τ)â(t + τ)â(t)
〉
= n̄2 (1 + e−γτ

)
.

Solution: Asymmetry of the spectral density of the quantum harmonic oscillator

1. We use the ladder operators for the harmonic oscillator:

x̂(t) =

√
h̄

2mΩ
(â(t) + â†(t)) and â(t) = â(0)e−iΩt . (26)

Rewriting the exponential function as a combination of cosine and sine functions we obtain
the required expression for the autocorrelation function.

2.

⟨x̂(0) p̂(0)⟩ = tr [ρ̂x̂(0) p̂(0)] (27)

=
ih̄
2

1
Z ∑

n
e−βh̄Ωn ⟨n| (â + â†)(â − â†) |n⟩ (28)

=
ih̄
2

(29)

The second equality follows from the commutation relation.
1Carmichael, “Statistical Methods in Quantum Optics 1”, section 1.5.
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3. Using the same technique as in the last point (trace of the density matrix)

⟨x̂(0)x̂(0)⟩ = h̄
mΩ

(n̄ +
1
2
) . (30)

Using trigonometric to exponential identities we obtain the desired result.

4. The spectral density is defined as

Sxx[ω] =

∞∫
−∞

dt eiωt ⟨x̂(t)x̂(0)⟩ . (31)

Calculating this integral leads to

Sxx[ω] =
πh̄
mΩ

(n̄δ(ω + Ω) + (n̄ + 1)δ(ω − Ω)) , (32)

which is obviously not symmetric in frequency. In the high temperature limit n̄ → kBT
h̄ω ≫ 1

so that n̄ + 1 → n̄ and the spectral density becomes symmetric.
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