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Statistical Physics I'V: Non-equilibrium statistical physics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Solutions to Exercise No.10

Solution: Standard quantum limit for gravitational waves detection

The problem follows loosely the second problem of the K-lab homework Quantum limited Dis-
placement Measurements (see detailed attached solution).

1. Generic Hamiltonian of the system:

. O\ At p2 %2 R
= (w0 + V2g08) %8400 (B4 )~ FewO8 4 Aapnan, (1)

where 4 is the light field operator, (), is the oscillator frequency and ﬁsys_bmh describes
coupling of the mechanical and optical fields to the thermal bath modes.

2. Linearization around large coherent amplitudes

a=uwu+dd,
£ =x+0%,
p=90p,

up to the quadratic terms in 44, %

H = h(we — wy + V2g0%) (a* + a(0a + 6a") + sa%6a) + hv/2goa(0a + 64T )02+
opr  ox2 _  ®? R o
+1Om 5 + 5 +X0% + 5 )~ Fow(t)0% — Fow ()% + Hsys—patn- (2)

Note that the cavity energy term vanishes in the frame, rotating for the optical field at the
shifted cavity frequency wo + v/2g0%. We can find # by neglecting fluctuations

oH

oz
X = \ﬁgo a2,
Q"

3. The quantum Langevin equations (in the high-Q approximation k¥ < wg, I'm < Qy,):

4

—gfsa — ig(6b + 6b%) + v/x Sty 3)
a s Imp o i

0b = —iQydb : ob—ig(da+oa") + ﬁks(t), 4)
where ¢ = goa is the multi-photon optomechanical cooperativity and Fow (t) = fiks(t). In
terms of the quadratures:

5Y = —g(s? — 2¢0% + /K 6Vin, )
5R = —g(sfc + VKK, ©6)
5% = Omdp — %“‘5;2, (7)
op = —Omdx — %“6;3 — 290X +ks(t). (8)
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4. Modulation of the intracavity field phase by mechanical motion:

1

Y[w = —
oY ] —iw+x/2

(—2g 6%[w] + VK Yin[w]), )

5. Backaction- and signal- driven motion of the mechanical oscillator

Om
(iw —Tm/2)2 + Q2

0 [w] =

(—Zgéf( + \ﬁks[w]) =

_ Om 28VE oo
e o e <—_iw+K/25Xm+ks[w]>. (10)

Here the oscillator susceptibility to force, xm[w] = Qm/(Q2 — w? — iTuQ) ~ Qn/((iw —
T'm/2)? + O2)), looks unusual due to the adopted high-Q approximation.

6. Total output signal on phase quadrature

. . A iw+x/2 « 204K .
5Y0ut[OJ] = 5Ym[w] — ﬁéY[(ﬂ] = m5Y1n[w] + —m;g—\f—/;/Zéx =
i+ K/2.6 L 4%k o 2¢\/x B
= w20 T i e+ g mlelisle] =

= A[w]6Yin[w] + B[w]éXin + Clw]s[w]. (11)

7. Correlators of the quadratures of the field:

(6Rin(H6Rin(#)) = (6Tim(£)0Tin (') = %m _ ), (12)
(6Rin(1)0%in(t')) = %5(t _, (13)
((0%inleo]) " 6Sinfec] ) = { (¥inlew]) " 6¥infee]) = % (14)

~ t oo
((0%in[w])" o¥imnle]) = 3, (15)
Spectrum of the output signal, introducing the cooperativity parameter C = 4¢?/«I'p,:

2172
R
4CTI'y

T s pga el PR (sl sl]) - 16

8. —

9. In the Eq. 16 the 3-rd term is signal nad the remaining are noises. Minimization over « is
equivalent to minimization over C, so we obtain (if w < x/2)

Con 1
S AT [xm[w]|”

1 [ «x
SSQin m/ (18)

(Signal /Noise)sqr = k2 <<s[w])*s[w]> x [xmlew]], (19)

1
Snoise,SQL [CU ] = W (20)

(17)
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Solution: Quantum regression theorem and photon bunching!

We use the quantum regression theorem

(O1(H) A, (t + 1) Oy (t >_2Mw<ol Ay (t+T1)0a(1)),

with operators A1 = ata, Ay = 1. We have

() = (7 W) (83) @

With O;(t) = a'(t) and O, (t) = a(t), we get
ddT (@' (a" (t+T)a(t +1)a(t)) = —y (@' (t)a' (¢t + T)a(t + T)a(t)) + o7 (a' (Ha(t))  (22)
We can solve it as

(@' (t)a' (t + Da(t +)a(t)) = (m) e "™ + 7 (n) (1 —e7") (23)
with (m) = (a* (t)at (H)a(t)a(t)).

We still need to derive the evolution of (a'(t)a’(t)a(t)a(t)) using the master equation.

(1) =Tr[imp]
12 2 4 ’Y(

= —iwoTr[aa’a’ap — a™a’pata] + 5 220"

2a"%a%0a" — a™a”atap — a™a’pata) (24)

+q7i(a*?a’apat + a™aa pa — aa’a’ap — a™a’paa’®)

Using [a,a'] = 1 and Tr[ABC| = Tr[CAB] = Tr[BCA], we find the first term is 0, second term
equals to —2v (a™24?) and the third term is 477 ().
So we gets

(ir) = =27 (m) + 4y (n(t)) (25)

Now the shortcut to the answer is to assume that in the long time ¢ limit, the solution is sta-
tionary, so (ri1) = 0. This means (n) = 7 and (m) = 27>

Finally, putting everything together and neglecting the terms in e~ in the long time ¢ limit,

one obtains
(a" (B (t+D)alt+T)a(t) ) = i (1+e777).

Solution: Asymmetry of the spectral density of the quantum harmonic oscillator

1. We use the ladder operators for the harmonic oscillator:

20 =1/5 TZ o (8(1) + " (1)) and (1) = a(0)e " (26)

Rewriting the exponential function as a combination of cosine and sine functions we obtain
the required expression for the autocorrelation function.

2.
(2(0)p(0)) = tr[p2(0)p(0)] 27)
ih1 _BhOm o
= 52;6 B (| (a4 a")(a — a') |n) (28)
- 2 9)

The second equality follows from the commutation relation.

LCarmichael, “Statistical Methods in Quantum Optics 17, section 1.5.
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3. Using the same technique as in the last point (trace of the density matrix)
(3(0)20)) = (14 ) @0
— mQ 27"
Using trigonometric to exponential identities we obtain the desired result.
4. The spectral density is defined as
Syxle] = / dr et (2(1)£(0)) . (31)
Calculating this integral leads to
th ,_ _
Sxx|w] = m(rz&(w—i—ﬂ)—l—(m—l—l)é(w—ﬁ)) , (32)
kT

which is obviously not symmetric in frequency. In the high temperature limit 7 — £ > 1
so that 7 +1 — 7 and the spectral density becomes symmetric.



