CHAPTER 8

Quantum theory of
damping — density
operator and wave
function approach

In many problems in quantum optics, damping plays an important
role. These include, for example, the decay of an atom in an excited
state to a lower state and the decay of the radiation field inside a cavity
with partially transparent mirrors. In general, damping of a system is
described by its interaction with a reservoir with a large number of
degrees of freedom. We are interested, however, in the evolution of the
variables associated with the system only. This requires us to obtain
the equations of motion for the system of interest only after tracing
over the reservoir variables. There are several different approaches to
deal with this problem.

In this chapter, we present a theory of damping based on the
density operator in which the reservoir variables are eliminated by
using the reduced density operator for the system in the Schrodinger
(or interaction) picture. We also present a ‘quantum jump’ approach
to damping. In the next chapter, the damping of the system will be
considered using the noise operator method in the Heisenberg picture.

An insight into the damping mechanism is obtained by considering
the decay of an atom in an excited state inside a cavity. The atom may
be considered as a single system coupled to the radiation field inside
the cavity. Even in the absence of photons in the cavity, there are
quantum fluctuations associated with the vacuum state. As discussed
in Chapter 1, the field may be visualized as a large number of harmonic
oscillators, one for each mode of the cavity. As the size of the cavity
increases, the mode density increases, and, in free space, we get a
continuum of modes. There is therefore a “cavity mode” which is
resonant with the atomic transition.

We can also visualize the atom as an oscillator, with the excited
atom corresponding to an oscillator in the excited state. The coupling
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of the atom to a large number of oscillators (associated with the large
number of field modes) leads to decay. That is energy initially in the
atom will distribute itself among damping oscillators, thus causing the
decay of the atom to a lower energy state.

The dissipation is accompanied by fluctuations. We shall encounter
this aspect of the damping mechanism, more formally put in the
form of the so-called fluctuation—dissipation theorem, in the systems
studied in this and the following chapters. We now start with a general
reservoir theory before considering the atom and field damping by a
reservoir of harmonic oscillator (bosonic) modes.

8.1 General reservoir theory

We consider in general a system denoted by S interacting with a
reservoir denoted by R. The combined density operator is denoted by
psr- The reduced density operator for the system ps is obtained by
taking a trace over the reservoir coordinates, i.e.,

ps = TI'R(pSR). (811)

We assume that the system—reservoir interaction energy is given by
77(t). The equation of motion for pgg is then given by

ihpsr = [77(1), psr(D)]. (8.12)

This equation can be formally integrated, and we obtain

i t

psr(D) = psr(ti) — — | [7(¢'), psr(2)]dr'. (8.1.3)

Here t; is an initial time when the interaction starts. On substituting
psr(t) back into Eq. (8.1.2), we find the equation of motion

psr=—4 0O, sl = [ 10, D€, pon(® . (81

If the interaction energy #7(t) is zero, the system and reservoir are
independent and the density operator psg would factor as a direct
product psr(t) = ps(t) ® pgr(t;) where we assume the reservoir at
equilibrium. Since ¥” is small, we look for a solution of Eq. (8.1.4) of
the form

psr(t) = ps(t) ® pr(ti) + p.(t), (8.1.5)

where p.(t) is of higher order in ¥". In order to satisfy (8.1.1), we
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require
Trrlp:(t)] = 0. (8.1.6)

If we substitute for psg(t) from Eq. (8.1.5) into the integrand of (8.1.4),
and retain terms up to order ¥, we have

ps = —%TrR (1), ps(t) ® pr(23)]
_h_lzTrR[ [¥"(0), [ ('), ps(t') ® pr(t:)]] dt’. (8.1.7)

The reduced density operator pgs(¢), which determines the statisti-
cal properties of the system, depends on its past history from ¢t = ¢;
to . This can be seen in Eq. (8.1.7) as ps(t) occurs in the inte-
grand. However, the reservoir is typically an extended open system
having many degrees of freedom. Moreover, as is shown by specific
example in the next section, the large number of reservoir degrees
of freedom (modes, photons, etc.) leads to a delta function §(t — t').
Hence, the system density matrix pg(t') can be replaced by ps(t) and
the process is said to be Markovian. This is a reasonable assumption
since damping destroys memory of the past. Equation (8.1.7) now
becomes

bs = —%TrR (), ps(ts) ® pr(8)]

—h—lzTrR/_ [¥" (@), [¥°(t), ps(t) ® pr(t)]ldr. (8.1.8)

This is a valid equation for a system represented by pg interacting
with a reservoir represented by pg. In the next sections, we consider
several examples of the system-reservoir interaction.

8.2 Atomic decay by thermal and squeezed vacuum
reservoirs

The decay of an atom in an excited state may be understood from a
simple model in which the atom is coupled to a reservoir of simple
harmonic oscillators. In a very similar manner, the decay of the
radiation field inside a cavity may be described by a model in which
the mode of the field of interest is coupled to a whole set of reservoir
modes. Such problems are of interest not only in maser and laser
physics, but also in the quantum theory of passive interferometers
such as those used in the detection of gravitational waves.

/
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We first consider the radiative decay of a two-level atom damped
by a reservoir of simple harmonic oscillators described by annihi-
lation (and creation) operators by (and blt) and density distributed
frequencies v; = ck. In the interaction picture and the rotating-wave
approximation, the Hamiltonian is simply

V(O =03 g [blo—e @ 4 gybye] 8.2.1)
k

where o = |b){a| and o4 = |a){b| in terms of the excited (]a)) and
ground (|b)) states. The system now corresponds to the two-level atom
(Ps = patom). On inserting the interaction energy ¥~ (Eq. (8.2.1)) into
the equation of motion (8.1.7) for ps = patom, We obtain

(=)t

Patom = —i ng bk 0, Patom(ti)]e”

- / dr' Z gkgk’{[o'—o'—patom(t/) - 2‘J'—.[)atom(t/)o'—
t k,k’

+ Patom(t/)o'—o'—]
x eIt @=v ) (pIL) + [6_0 patom(t) — 04 Patom(t')0—]
x g~ o=t =) <bltbk’> + [0'+0'—Patom(t/) - O'—Patom(t,)0'+]
x elo=mi=io=v) (p bt VY 4 Hee,, (8.2.2)
where the expectation values refer to the initial state of the reservoir.

At this point we choose a particular model for the state of the
reservoir,

8.2.1 Thermal reservoir

As a first example, we assume that the reservoir variables are dis-
tributed in the uncorrelated thermal equilibrium mixture of states.
The reservoir reduced density operator is the multi-mode extension of
the thermal operator, namely,

By Bvb'b
PR = H [1 — exp <_k}3—;)] exp <— I:B;, k) , (8.2.3)

k

where kg is the Boltzmann constant and T is the temperature. It can
be shown easily that

(bi) = (by) =0, (8.2.4a)
(b} = xS, (8.2.4b)
(bkbl,) = (7 + Do, (8.2.4¢)
(bibi) = (bLbL) =0, (8.2.4d)
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where the thermal average boson number

oL (8.2.5)

exp (TZ:—"T) — 1'
On substituting for the various expectation values from Egs. (8.2.4
into Eq. (8.2.2), we obtain

Patom

t
= _/ dr’ Z gi{[a—a+patom(t/) - a+patom(t/)a—]
t; X

i

ik PGl Nt—t")

+[0'+0'—Patom(t/) - O'—Patom(t/)0'+](ﬁk + l)ei(w_vk)(t_ﬂ)}'i‘H.C.
(8.2.6)

We now carry out the same procedure as was used in the Weisskopf-
Wigner theory of spontaneous emission.

The sum over k may be replaced by an integral through the standard
prescription (Eq. (6.3.9))

V 2n T o0
> =g / o / d0sin 0 / dk 12, (82.7)
. n)° Jo 0 0

where V is the quantization volume. The integrations in Eq. (8.2.6) can
be carried out in the Weisskopf~Wigner approximation as discussed
in Section 6.3. In this way, we encounter integrals of the form (6.3.12).
We thus find for the reduced density operator paiom

. _ T
Patom(t) = _nthE [0-04 patom(t) — 04 Patom(t)o-]

I
—(Aem + 1)5 [U+J—patom(t) — 0_paom(t)o4+] + Hec,

(8.2.8)
where ng, = fig, (ko = @/c) and
1 40’2,
= a 8.2.
4ney 303 (8:29)

is the atomic decay rate which is identical to the decay constant
(Eq. (6.3.14)) derived in the Weisskopf-Wigner theory of spontaneous
emission. In deriving Eq. (8.2.8) we substituted the value of gx from
Eq. (6.1.8).
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The equations of motion for the atomic density matrix elements can
now be obtained from Eq. (8.2.8):

Paa = <a|patom|a>

= —(ftn + DI paa + An ppb, (8.2.10a)

. _ 1
Pab = Ppg = — (nth + E) T'pap, (8.2.10b)
pob = —hnlppp + (At + DI paa. (8.2.10c)

It may be noted that p,, + ppp = 0. This is due to the fact that we are
considering the decay from the upper level |a) to the lower level |b)
only. The conservation of probability therefore implies pg + ppp = 1.
This situation is different from that discussed in Section 5.3, where
atomic levels |a) and |b) decayed to some other levels via nonradiating
transitions. For zero temperature (ng = 0), these equations simplify
to

paa = —TPaas (8.2.11a)
r

Pap = _Epaba (8211b)

Pob = I'paa. (8.2.11¢)

Equation (8.2.11a) is just the Weisskopf-Wigner result (6.3.15).

8.2.2 Squeezed vacuum reservoir

For our second example, we consider the situation where the atom is
coupled to a squeezed vacuum field reservoir. The reservoir reduced
density operator is given by

pr = 1E) (€]
= T Su(®)l0w) (0xlS) (), (82.12)
k

where the squeeze operator (see Eq. (2.8.9) with by = b(ck), etc.) is

Sk(¢) = exp (5 "bry+kbkg—k — ébiﬁkbio_k) , (8.2.13)

with ¢ = rexp(if)), r being the squeeze parameter and 6 being the
reference phase for the squeezed field. A multi-mode squeezed field is
not just a product of independently squeezed modes, rather there are
correlations between modes symmetrically placed about the central,
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resonant frequency v = cko of the squeezing device. Following the
method used to derive Egs. (2.7.6) and (2.7.7), we obtain

Sk ko Pk Sk—k, = bx cosh(r) — 2k l(e 9 sinh(r), (8.2.14a)
Sk_kﬂkak_k0 = bk cosh(r) — by, —xe™ 1 sinh(r). (8.2.14b)
Similar expressions exist for Sfo_kkako_k and SEO_kblSko_k. The cal-
culation of the expectation values, such as (b};bk,), may therefore be
simplified by writing
(blby) = H(OqISJbItSqSka/SqIOq} (8.2.15)
q
It follows that

(by) = (b}) = (8.2.16a)
(bb) = smhz(r)ékkr (8.2.16b)
(bb},) = cosh?(r)d, (8.2.16¢)
(bxby) = —e" sinh(r) cosh(r)dk 2,k (8.2.16d)
(bib},) = —e™ sinh(r) cosh(r)dy 2xok- (8.2.16¢)

On substituting Eqs. (8.2.16a-8.2.16¢) into Eq. (8.2.2) and proceeding
as in the derivation of Eq. (8.2.8), we obtain

. r
Patom = — & COShz(r)(0'+0'—patom —20_patom0+ + PatomG+0-)

2
r . .,
—3 Sinh*(r)(0-04 patom — 20+ Patom0— + PatomT—0+)

—T'e " sinh(r) cosh(r)o_patomo—
—T'¢ sinh(r) cosh(r)o 4 Patom0+- (8.2.17)
In deriving Eq. (8.2.17) we used 6_o_ = o104 = 0.
From Eq. (8.2.17), equations of motion for the expectation value of
the operators o= (6-+04)/2, 6,=(0-—04)/2i,and 0, = (2040_—1)
are

(o), (8.2.18a)

~(g,), (8.2.18b)
(6,) = —T'[2sinh?(r) + 1]{o,) =T = —T,{o,) — T, (8.2.18c)

where T, = I'[2sinh?(r) + 1] and we have chosen the phase 6 = 0.
It is therefore clear that a squeezed vacuum reservoir leads to a
phase sensitive decay of the atom. The in-phase and in-quadrature
components, (6x) and {g,), of the atomic dipole moment decay at
different rates depending on its initial phase relative to the phase 8 of
the squeezed vacuum.
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8.3 Field damping

We may apply the method developed in the last section to the decay
of a mode of the electromagnetic field of frequency v inside a cavity.
Instead of Eq. (8.2.1), we now use an interaction Hamiltonian of the
form

Vv =h Z grlbrae= = 4 gty e, (8.3.1)
k

where a (and a') are the destruction (and creation) operators of the
mode of interest. The operators by and b]; represent modes of the
reservoir which damp the field. For transmission losses they actually
represent the field outside the cavity.

The equation of motion for the reduced density operator for the
field can now easily be obtained, since the calculation exactly parallels
the one for the atomic system discussed in the last section. This is done
by replacing o_ and o, by the field operators a and a', respectively.

When the modes by are initially in the thermal equilibrium mixture
of states (8.2.3), the result is

%
p= —7ﬁth(aan —2a*pa + paa®)
¢ t t 1 pat
—5(nth + 1)(a'ap — 2apa’ + pa'a), 8.32)

where, as before, ¢ is the decay constant and 7y = 7y, is the mean
number of quanta (at frequency v) in the thermal reservoir. Here p
denotes the reduced density operator for the field. In particular, at
zero temperature (g, = 0),

p= —g(aTap —2apa’ + pa'a). 8.3.3)

If all the losses are transmission losses, ¥ may be related to the quality
factor Q of the cavity by ¥ =v/Q.

When the modes by are initially in a squeezed vacuum (Eq. (8.2.12)),
the resulting equation of motion for the reduced density matrix p is

%
p= _f(N + 1)(a'ap — 2apa’ + pa'a)
%
—§N(aan —2d'pa + paah)
%
+§M(aap — 2apa+ paa)
+§M*(aTan —2dpa’ + patah), (8.34)
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where N = sinh?(r) and M = cosh(r) sinh(r) exp(—if)). This equation
describes, for instance, the evolution of the field in a cavity coupled
through a partially transmitting mirror to an outside field which is
in a squeezed vacuum state. The equation of motion for the thermal
reservoir (Eq. (8.3.2)) can be recovered from Eq. (8.3.4) by the substitu-
tions N — ayg,, M — 0. The parameters N and M are however related
to each other via the equation |M| = [N(N + 1)]'/2 for a squeezed
vacuum reservoir.

8.4 Fokker—Planck equation

A particularly interesting representation into which the density op-
erator equation of motion can be transformed is the coherent state
representation or P-representation discussed in Chapter 3. In this
section, we derive an equation of motion for the P-representation
corresponding to Eq. (8.3.2) for the density operator for a harmonic
oscillator mode damped by a thermal bath full of harmonic oscilla-
tors. The resulting equation will have the form of a Fokker-Planck
equation. The solution of this equation will reveal some interesting
features about the temporal evolution of the field distribution.
We substitute the P-representation, see Eq. (3.1.16),

p= /P(a,a*,t)|a><a|d2a (8.4.1)
into Eq. (8.3.2) and the resulting equation is
[ Poa s = ~Tan [ P, i n) o
—2a|o) (o] + |} (x|aa’)dP
4 .
=St +1) [ P el o
—2ala){ala’ + |a){a|a’ a)d*a. (84.2)

It follows from

a'|oa) (o = ((% + a") lee) (o], (8.4.3a)
alo) (o] = ooy {at], (8.4.3b)
o) (oe|a’ = o) (o], (84.3¢)

o} {ex|la = (% + a) |oc) ], (8.4.3d)
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that
aa|a) (| — 2a' o) («|a + |a){a]aa’
= i-l—a* a—2 i—i—a* +o
[\ e oo oo
+ (2 +a)o |
do*
0 . 0 02
and

a'alo) (o — 2ala) (a|a’ + |o) (a]a’a

- [a(% + a*> — 2 + a"((ai* +a>] o) o

d
- (aa_aa fo aa*)|a><a|. (8:4.5)

We now substitute Egs. (8.4.4) and (8.4.5) into Eq. (8.4.2) and integrate
the result by parts. In doing so we encounter the integral

/P(a, o', 1) (a%|a)<a|> da

" / [%aP(a,a*,t)] o) (@ (8.46)

-0

= aP(a, 0", t)]oc){t]

Since the distribution vanishes at the infinite limits, Eq. (8.4.6) becomes

/P(a, o, 1) (a%|a)<a|) d2a=—/ [%aP(a, a*,t)] |oe) (| d?r.

(8.4.7)

Similarly
P(o,0’,1) - Mal )d® —/ ¢ P( *t)] Yald®
/(a,a, 6a6a*|a a) o= e oo, t) | o) {alda.
(8.4.8)

Then we have from Eq. (8.4.2)

. % o 0 &
« 2 _ & il * n
/P((X,(X ,t)|(1><(1|d a= 2 / |:<aa(1+ aa*a +2nth6a6a*>

xP(a, ", t)] |oe) (| (8.4.9)

It follows on identifying the coefficients of |«) (x| in the integrands that
the equation of motion for P(a, o, 1) is



258 Quantum theory of damping — density operator

AT 8 a2P
P—E(a 30 )P-i—%nthaa*. (8.4.10)

This is the Fokker-Planck equation for the P-representation.
Next we find a solution of the Fokker-Planck equation. We assume
that the field is initially in a coherent state |ao), ie.,

P(o,a*,0) = 6D(a — ap). (8.4.11)

In the Gaussian representation of the é-function,

oy — 2
P(x,a’,0) = lim — . - exp (M) (8.4.12)

€

We therefore seek a solution of Eq. (8.4.10) in the form
P(a, o, 1) = exp[—a(t) + b(t)x + c(t)a” — d(t)oe’], (8.4.13)

subject to the initial conditions

a(0) = M + In(ze), (8.4.14a)
b(0) = 65 (8.4.14b)
(0) = ?0 (8.4.14¢)
d(0) = % (8.4.14d)

On substituting expression (8.4.13) for P(a,a",t) into Eq. (8.4.10) and
carrying out the necessary ¢ and « differentiations, we obtain

—a+bat e —da)? =% [1 + Ag(be — d) + (%’ - ﬁthbd)a

+ (g — ﬁthcd) o —(d— ﬁthd2)|a|2] .
(8.4.15)

A comparison of the terms proportional to |«|?, «*, ¢, and unity lead
to the following set of differential equations:

d = 4(d — and®), (8.4.16a)
. c .

e=¢ ( : nthcd) , (8.4.16b)
b=% (’5’ - ﬁthbd) , (8.4.16¢)

a=—%[1 + fi(bc — d)]. (8.4.16d)
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The solution of these equations subject to the initial conditions
(8.4.14a)—(8.4.14d) is given by

1
)= , 8.4.17
4(®) (1 — e~ %) + e~ ( 2)
—%1/2
dpe
= 4.17b
(t) fim(1l — e %) + ce— %’ 8 )
* —€t/2
ape
— B £ 7
bO) = o e (8.4.17¢)
|oto |26_% = — %t —&t
a(t) = 7z TIn {7 [Ag (1—e) 4]}

Aim(1l — e=%) + e~
(8.4.17d)

A substitution of these solutions into Eq. (8.4.13) results in the Gaus-
sian form for P(a, o, 1):

_ 2
P(a,o,t) = ;I% exp [—'ﬁg‘)fg(%] , (8.4.18)
where
D(t) = An(1 —e™®) (8.4.19)

is the dispersion of the Gaussian function about its mean value
woU(t) = oge™ 61/, (8.4.20)

In Eq. (8.4.20), we have included the factor exp(—ivt) by going back
from the interaction picture to the Schrodinger picture.

The dispersion D(t) increases from the initial value zero, while
the center of the Gaussian distribution circles about on the expo-
nential spiral given by Eq. (8.4.20). This is shown in Fig. 8.1 where
the P-representation is plotted as a function of complex amplitude
«. When the time ¢ is much greater than the damping time, €.,
the field distribution comes to equilibrium with the heat bath oscil-
lators. In the steady state, the dispersion has its limiting value 7
and the Gaussian distribution is centered about the origin. Thus the
field loses its initial excitation to the heat bath oscillators but ac-
quires noise in the process of damping. This is a manifestation of
the fluctuation—dissipation theorem, ie., the dissipation via heat bath
oscillators is accompanied by fluctuations. We will discuss it in the
next chapter.

It is interesting to note that if we take the heat bath to be at zero
temperature (g, = 0), the dispersion D(t) remains zero at all times
and P(a,o",t) always remains a é-function, i.e.,
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Pla,a*,t)
Pla,a*t=0)

p Im a

without damping

with damping
exponential spiral

P, o, t) = 6P — apU(2)]. (8.4.21)

The state of the field remains at all times in a pure coherent state.
This form of dissipation is completely noise free.

8.5 The ‘quantum jump’ approach to damping

Historically, the notions of quantum jumps and instantaneous collapse
of the wave function go back to the early days in which Einstein wor-
ried about outgoing spherical waves ‘collapsing’ when a photoelectron
is detected; and the notion of Bohr concerning the emission of light
when an atom ‘jumped’ between Bohr orbits.

However, with the coming of wave mechanics the whole question
of quantum jumps took on a new perspective. Atomic transitions were
‘induced’ and one often encountered statements that ‘there were no
such a thing as quantum jumps’.

Recently, the work of Dehmelt and others clearly shows that sud-
den jumps are evident in many aspects of quantum optics, e.g., the
spectacular work involving single ions in a Paul trap.

More recently a new ‘quantum jump’ approach to dissipation has
developed, one can find names and concepts like: Monte Carlo simu-
lation, quantum trajectories, collapse or reduction of the state vector,

Fig. 8.1

The P-representation
for the complex
amplitude of a
harmonic oscillator
mode damped by a
thermal bath. The
harmonic oscillator
mode starts at t =0
in a pure coherent
sate |o) and the mean
value of the
amplitude moves on
an exponential spiral
decreasing steadily in
modulus, while its
dispersion increases.



8.5 The ‘quantum jump’ approach to damping 261

Fig. 8.2

Two-level atoms in
their ground state |b)
passing through a
resonant cavity.

no count or ‘null’ measurement, and conditional density matrices. We
will here give a short account of this interesting idea as it applies to
damping or dissipation in quantum optics.

8.5.1 Conditional density matrices and the null
measurement

In the previous sections of this chapter we have developed the theory
of damping or dissipation in quantum mechanics from a density matrix
perspective. The result is typically an expression of the form of (8.3.3)
which describes the decay of a single mode of a resonant cavity at
temperature T = 0. There we took the model of a large number of
bath oscillators, e.g., phonons coupling energy out of the cavity mode.
However the result, Eq. (8.3.3), is not specific to the model and we will
here investigate the problem again using another model which will
lead us naturally to a different point of view concerning dissipation
processes.

Consider the model of Fig. 8.2 in which we are passing ground
state atoms through a cavity which is resonant with the atoms, i.e., the
Hamiltonian in the interaction picture is

¥ = hg(a'|b){a| + |a)(bla). (8.5.1)

Consider the density matrix for the field at time ¢ + 7, p(t + 1),
resulting from a ground state atom injected at time ¢, i.e.,

p(t + 1) = Tratom [é?"iﬁ/hp(t) ® |b) <b|eiVT/h]
= <a|patom-—-ﬁeld(t + T)|a>+<b|patom-—ﬁeld(t + T)|b> (8.5.2)

It is natural to identify the two terms in (8.5.2) as ‘conditional’
density matrices, ie.,

Palt + 1)
= conditional density matrix for field, atom excited

= (ale™™*p(t) ® |b)(ble /"|a), (8.5.3a)
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pu(t +1)
= conditional density matrix for field, atom not excited
= (ble™"" " p(t) ® |b)(ble” /" |b). (8.5.3b)

We may regard p, and p; as conditional density matrices correspond-
ing to our having observed a count (excited atom) or no count (ground
state atom) in our atomic beam. That is, the atomic beam serves two
functions: it is a dissipation mechanism and it is also a kind of probe,
or photodetector, of the field.

We proceed by noting that for small times 7, we may expand the
exp(+i?¥ t/h) factors and find

pa(t +1) = g2t*ap(t)d, (8.5.4a)
1
pult + 1) = p(t) — 587 [a'ap(t) + p(t)a'a]
= g~Rala y(p)p~Ruata (8.5.4b)

where R = g27/2.

Now we make the key step. We let the time 1 — 0 and make the
ansatz that Eq. (8.5.4a) is to be associated with a ‘quantum jump’ of
photoabsorption at time z. Then if we consider a process in which
n counts are observed at times ty,ts, ..., ¢, with no counts in between
these times, we have the conditional density matrix

p(n) - [e""s(t"tn)ae"s(tn-tnAl).“ ae—Sb=t) go=5t
Xp(O)e—s“ al et 4t o=S(tn—tn-1) 4t e——S(t——t,,)]

/Tr, (8.5.5)

where S = Ra'a and the trace factor in the denominator is the
normalization factor. This may be simplified by taking account of the
fact that, e.g.,

e-—s(tz-—tl)ae—-stl — e-—RaTa(tz——tl)ae-—RaTatl

_Rat _ —Rqt t _Rat
—e Rala(ts tl)e Ra atleRa atlae Ra'at;

=g Rdlarg=Rug (8.5.6)
which may be used repeatedly to reduce Eq. (8.5.5) to the simple form

e—RaTatanp(O)aTne——RaTat
Tr [p(O)aTne-—2RaTatan] ’

where the various factors of exp(—Rt) are canceled by the normal-
ization. Equation (8.5.7) (and its generalizations) is the main result of
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this section. In particular, if we consider p(0) to be a pure case density
matrix p(0) = [p(0)){y(0)|, then Eq. (8.5.7) may be written as
e Ralatgn|yy(0)
\/<w(0)|aTne—2RaTman|w(0)>
(w(0)ateRe'a
Vp(O)lae R wary(0))

Equation (8.5.8) provides a natural introduction to the wave function
approach to dissipative processes.

Pt =

(8.5.8)

8.5.2 The wave function Monte Carlo approach to damping

Motivated by the result of the previous section, ic., Eq. (8.5.8), we
present here a short account of damping via a wave function approach.
In order to present the ideas we will continue to consider the simple
problem of a damped single-mode field, but we will have a more
general reservoir, such as that in Section 8.3, in mind. Thus, the decay
rate R is no longer governed by the time t but by the much shorter
reservoir correlation times. From Eq. (8.5.8) we are led to write the
‘conditional state vector’

e——RaTaétan|w(t)>
V{w(Dlate R gnp(r))
which represents the state of the field under the condition of n pho-
tons absorbed in time 6t starting from |y(¢)). In particular, the state
involving only zero or one such event is of special interest. That is,
the state at time ¢ 4 6t for n = 0 (a null measurement) is
i 0)

v (p(O)le R y(n))

1 — Ra'adt)

( (o), (8.5.10a)

- v 1—2R(afa)dt

where (a'a) = (p(t)|a’aly(t)); and the state corresponding to n = 1
(quantum jump) is

(e + 6t) =

(8.59)

[ +61)) =

e‘R“T“‘S’aW(t))
V{p(0)late Raladtg|y(e))

~_ 4
= = (1)) (8.5.10b)

For example, if the initial quantum state for the field mode is

lw(®)) = co(t)|0) + c1(2)I1), (8.5.11)

@t + 1)) =
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then (8.5.10a) and (8.5.10b) imply the conditional state vectors
¢0|0) + c1(1 — Ré1)|1)

v/1—2cic1Rét

C1

Vie?
However, we want to describe the evolution from |p(t)) as given by
Eq. (8.5.11) to a general state at later times which must become |0)
eventually. During the time ¢ the unnormalized ‘no count’ or ‘ null
measurement’ |§) is seen from Eq. (8.5.10a) to obey the equation of
motion

w Ot + 60)) = (8.5.12a)

and

[pM(e + 60)) = 10). (8.5.12b)

7(0) — |pO
P (t+5t;>t 197 @) _ —Ra'alpO(0)), (8.5.13a)
that is

A Oy — L mn b 0)
Z1p0(0) = = (~ihRa'a) /(o) (8.5.13b)

Thus we are motivated to describe the time evolution of the unnor-
malized state vector for the case of no absorption by a nonunitary
Schrédinger equation

d i

el () = 4150 8.5.14

S1800) = =2 1300) (8:5.14)
governed by the non-Hermitian Hamiltonian

¥} = —ihRa'a. (8.5.15)

The temporal development implied by Eq. (8.5.14) is, of course,
interrupted by quantum jumps or collapses of the wave function at
random times. When such a collapse occurs, the state is given by |0).
This happens only once, from that time on the field is in the vacuum
state. Continuing with our simple example, according to Eq. (8.5.14)
the unnormalized state vector

[P(2)) = Eo(0)I0) + &1(1)I1) (8.5.16)
obeys the simple equations of motion

¢o(t) =0, (8.5.17a)

&1(t) = —R& (), (8.5.17b)
which imply

Co(t) = To(0), (8.5.18a)

21(t) = &1 (0)e ™™, (8.5.18b)

and the corresponding normalized probability amplitudes
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_ co(0)
co(t) = O+ O (8.5.19a)
and
et) = a0e™ (8.5.19b)

VIco(0)]? + [e1(0)[Ze=2Re

Thus we have the complete coherent evolution for the conditional
state vector up to the point of collapse,

c0(0)[0) + c1(0)e~Re|1)

©O)(4)) =
o) Vieo(O)P + Jer(0)Pe2Re

(8.5.20)

Note that as t — oo the state |p©(¢)) — |0). This is as it should be
since the conditional state [p(©(t)) is that state which is conditioned on
the premise that no photons are absorbed. Hence if after a long time
we never see a ‘count’, then the conclusion is that we must have been
in the vacuum state, |0), all along. To summarize: the field develops
from ¢t = 0 up to some time ¢ according to Eq. (8.5.14), and between ¢
and t + 6t a jump occurs, that is

[¥(0)) = c0(0)I0) + c1(0)I1) (8.5.21a)
l‘no counts’ from 0 — ¢

[w(t)) = co()I0) + c1(2)I1) (8.5.21b)
lcollapse t—>t+ot

+0 =___a—_
o= Twaawoy

=10), (8.5.21c)

where co(t) and c¢i(f) in (8.5.21b) are given by Eqgs. (8.5.19a) and
(8.5.19b) and Eq. (8.5.21¢) follows from Eq. (8.5.10b). Now we recall
that the probability of a collapse or jump at time ¢ is governed by
the density matrix conditional upon a single photon absorption, i.e., a
‘count’. With that in mind, we write Eq. (8.3.3) for R =%/2 as

p=—R(a'ap + pa'a) + 2Rapa’

=\—% ("le — p"/ﬂ;) +2Rapa’

= p(no count) + p(count). " (85.22)
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Hence the probability for a collapse between ¢ and t + ¢ is given by
Tr[p(count)]dt = 2Rt Tr[p(t)a’a]
= 2Rot{y(t)la’aly(1))

_ 2ps P alp(0) (8.5.23)
(POIP(©)
Therefore, from Egs. (8.5.16)—(8.5.19b) and (8.5.23), we have the jump
probability for our present problem
|cl(0)|2e-—2Rt
|co(0)[2 + [cr(0)]7e~2Re"
Finally we turn the above into a plot of the probability of finding a
photon in the cavity after a time ¢ given that ¢¢(0) = 0 and ¢;1(0) = 1.
Then Pjump(t) = 2Rdt. This we do via a Monte Carlo procedure as
follows. First, we start the field in state |1) with c1(0) = 1 and we
choose a number between 0 and 1 using a computer random number
generator. If the number is smaller than Pjmp(0), then a jump or
collapse is taken to have occurred, and the photon number is set to
zero. Most likely, however, the number will be larger than Pjuymp and
we reevaluate |p(t)) from (8.5.20) and start again. We repeat this n
times until a random number turns up which is smaller than Pjump(t)
given by (8.5.24). At that point we make an entry in our table as
follows:

Piump(t) = 2R6t (8.5.24)

t=0 [p(0)) = co(0)I0) + c1(0)/1)
evolve
t=0ot [p(60)) = co(60)|0) + c1(1)[1)
evolve
t =26t [p(261)) = ¢o(261)|0) + c1(261)[1)
(8.5.25)
evolve

t = not p(ndr)) = co(ndt)|0) + c1(nd1)|1)

collapse

t=n+ 1ot |pln+ 1)dt]) = |0).
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Needless to say, the preceding simple example was chosen for ped-
agogical purposes. Many more involved problems can be and have
been solved by the quantum jump-Monte Carlo approach. These in-
clude spontaneous emission, resonance fluorescence, Doppler cooling,
population trapping, and the dark line resonance, to name a few.

In conclusion we note that the approach of the present section is
often referred to as the ‘quantum trajectory method’. We also point
to the interesting work of Willis Lamb in which the trajectories of
Gaussian wave packets are calculated in order to treat the quantum
theory of certain problems dealing with the measurement process.
This work also uses a computer analysis to characterize the (random)
outcomes of the experiment.

Problems

81 Derive Eqs. (8.2.14a) and (8.2.14b) and use these results to
evaluate the correlation functions (8.2.16a)-(8.2.16¢).

8.2 The equation of motion for the reduced density operator
for a single-mode cavity field coupled to a vacuum reservoir
through a partially transmitting mirror is

%
o= —E(aTap —2apd’ + pa'a).

Here € is the loss rate related to the Q-factor of the cavity
by € = v/Q. Derive the equations of motion for the relevant
quantities, and then solve them to show that the variances
(AX1)? and (AX;)? (with X; = (a+a')/2 and X, = (a—a')/2i)
increase due to dissipation (fluctuation—dissipation theorem!).
This situation can be viewed as a bosonic mode, uncorrelated
to the cavity field, entering the cavity through the partially
transmitting mirror, and hence adding the uncorrelated noise.

83 If the reservoir in the above problem is in a multi-mode
squeezed vacuum state, the resulting equation of motion for
the reduced density matrix is given by Eq. (8.3.4). As before,
calculate the variances (AX;)? and (AX;)2. Is it possible to
suppress the added noise in this situation?
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84 For a thermal reservoir
4
p ==~ + 1)(a"ap —2apa’ + pa'a)
¢ t t
—Enth(aa p—2a pa+ paa'),
where Ay, is the mean number of photons in the reservoir.
Derive the corresponding equation for the Q-representation
and solve it.
85 Derive Egs. (8.2.18a)—(8.2.18c).
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