CHAPTER 9

Quantum theory of
damping —
Heisenberg—Langevin
approach

In the previous chapter, we developed the equation of motion for a
system as it evolved under the influence of an unobserved (reservoir)
system. We used the density matrix approach and worked in the
interaction picture. In this chapter, we consider the same problem of
the system-reservoir interaction using a quantum operator approach.
We again climinate the reservoir variables. The resulting equations for
the system operators include, in addition to the damping terms, the
noise operators which produce fluctuations. These equations have the
form of classical Langevin equations, which describe, for example, the
Brownian motion of a particle suspended in a liquid. The Heisenberg-
Langevin approach discussed in this chapter is particularly suitable
for the calculation of two-time correlation functions of the system
operator as 1s, for example, required for the determination of the
natural linewidth of a laser.

We first consider the damping of the harmonic oscillator by an
interaction with a reservoir consisting of many other simple harmonic
oscillators. This system describes, for example, the damping of a
single-mode field inside a cavity with lossy mirrors. The reservoir, in
this case, consists of a large number of phonon-like modes in the
mirrors. We also consider the decay of the field due to its interaction
with an atomic reservoir. An interesting application of the theory of
the system-reservoir interaction is the evolution of an atom inside a
damped cavity. It is shown that the spontaneous transition rate of the
atom can be substantially enhanced if it is placed in a resonant cavity.
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9.1 Simple treatment of damping via oscillator
reservoir: Markovian white noise

We consider a system consisting of a single-mode field of frequency
v and annihilation operator a(t) interacting with a reservoir. The
reservoir may be taken as any large collection of systems with many
degrees of freedom. We assume that the reservoir consists of many
oscillators (e.g., phonons, other photon modes, etc) with closely spaced
frequencies v, and annihilation (and creation) operators by (and b]t).
This system therefore describes the damping of a harmonic oscillator
by an interaction with a reservoir consisting of many other simple
harmonic oscillators. The ficld—reservoir system evolves in time under
the influence of the total Hamiltonian

H=Ho+ H1, (9.1.1)
Ho=hvala+ Y hveblby, 9.1.2)
k
Hr=Hh> gulbla+aby). (9.1.3)
k

As before, 7y consists of the energy of the free field and the reservoir
modes, and #; is the interaction energy. The field operators commute
with the reservoir operators at a given time. We note that in Eq. (9.1.3)
we have here made the usual rotating wave approximation.

The Heisenberg equations of motion for the operators are

= %[;f, a] = —iva(t) — ig abi(t), (9.1.4)

by = —ivibk(t) — igka(?). (9.1.5)

We are interested in a closed equation for the harmonic oscillator
operator a(t). The equation for the reservoir operator bg(t) can be
formally integrated to yield

t
bi(t) = bi(0)e™ — igy f dt a(t')e 0, (9.1.6)
0

Here the first term represents the free evolution of the reservoir modes,
whereas the second term arises from their interaction with the har-
monic oscillator. The reservoir operators bi(t) can be eliminated by
substituting the formal solution of bk(¢) into Eq. (9.1.4). We find

t
a=—iva— Z gt fo dt'a(the ™= L £ (1), (9.1.7)
k

fa(®) == gubi(0)e™™". (9.1.8)
k
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In Eq. (9.1.7), fa(t) is a noise operator because it depends upon the
reservoir operators bg(0). The evolution of the expectation values
involving the harmonic oscillator operator will therefore depend upon
the fluctuations in the reservoir. The noise operator varies rapidly due
to the presence of all the reservoir frequencies. The fast frequency
dependence of a(t) can be removed by transforming to the slowly
varying annihilation operator

a(t) = a(t)e™". (9.1.9)
We see that
[a(t),a’(t)] = 1, (9.1.10)
and Eq. (9.1.7) reduces to
i
i=-) g f At a(t e ) 4 Fr(e), (9.1.11)
k 0
Fat) = €"'fo(t) = —i > _ gxbi(0)e ™" (9.1.12)
k

The time integration in Eq. (9.1.11) is similar to that encountered
in the Weisskopf-Wigner theory discussed in Section 6.3. As in the
Weisskopf-Wigner approximation, the summation in Eq. (9.1.11) yields
a o(t — t') function and the integration can then be carried out. We
obtain

t
Zgﬁ / dt'a(t e~ e ~ %ﬁfﬁ(t), (9.1.13)
k 1]

where the damping constant
€ = 2n{g(v)]*D(v). (9.1.14)

Here, g(v) = g, is the coupling constant evaluated at k = v/c and
D(v) = Vv?/n?c® (with V being the quantization volume) is the density
of states (see Eq. (1.1.26)). We can therefore replace Eq. (9.1.11) by
the Langevin equation

5= —%fga + Fa(t), (9.1.15)

where Fj(t) is the noise operator which depends on the reservoir
variables.

It is interesting to note that the presence of the noise operator in
Eq. (9.1.15) is necessary to preserve the commutation relation (9.1.10)
at all times. In the absence of the noise term (Fz(¢) = 0), Eq. (9.1.15)
can be solved and we get
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a(t) = @(0)e~%"/2. (9.1.16)

If the operator @ satisfies the commutation relation (9.1.10) at t = 0,
then

[a(),al(t)] = e, (9.1.17)

representing a violation of the commutation relation. The noise op-
erator with appropriate correlation properties helps to maintain the
commutation relation (9.1.10) at all times. The presence of the noise
term along with the damping term in Eq. (9.1.15) is a manifestation
of the fluctuation—dissipation theorem of statistical mechanics, ie.,
dissipation is always accompanied by fluctuations.

We suppose that the reservoir is in thermal equilibrium, so that

(bu(0))r = (b{(0))r =0, (9.1.18)
(by(0)bi(0)) R = Sy, 9.1.19)
(b(0)},(0)) & = (7 + 1)y (9.1.20)
(bk(0)bi (0))r = (b (0)b},(0))& = O. (9.1.21)

Using these relations with the noise operator value (9.1.12), we can
evaluate various first- and second-order correlation functions involving
Fu(t) as follows:

(a) It follows trivially from Eq. (9.1.18) that the reservoir averages of
F(t) and its adjoint Fg (¢) vanish, ie.,

(Fa(t)r = (F}(1))r = 0. (9.122)
(b) On using Eq. (9.1.19) we obtain
(FIOFa(t)r = > gugwe (bpbw)r expli(ve —v)t—i(ve —v)t]

kK W
= Z gemw expli(ve — v)(t — t')]
k

= f wD(vk)[g(vk)]zn(vk)ef(vr”)““f’)dvk. (9.1.23)
0

In the last line, we have gone from a discrete representation to a
continuous representation in the usual way. We can now pull out the
slowly varying terms D(v;), g(v), and n(v;) at v, = v and replace the
integral by a é-function. This gives

(FI(OFat)r = €hand(t — 7), 9.1.24)
where € is given by Eq. (9.1.14) and Ay, = #Ai(vy). In analogy with the
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classical Langevin theory, we define the diffusion coefficient D5 for
a'a through the equation

(FHOFa(t))r = 2(Dara)rS(t —1). (9.1.25)

Hence, from Eq. (9.1.24), the diffusion coefficient is given by

2(Dyta)r = G- (9.1.26)
In a similar manner, we can show that
(Fa)FL(t))r = €A + 1)0(t — 1), (9.1.27)
(Fa(Fa(t)r = (FA(OF3({ )= = 0, (9.1.28)
so that
2(Dgat) g = €(Aen + 1), (9.1.29)
{Daa)r = (Dgtar)r = 0. (9.1.30)

(c)We now determine (F; (t)a(t)) r. This quantity will be needed below
in the derivation of the equation of motion for (&'a)g. It follows, on
solving Eq. (9.1.15), that

t
a(t) = a(0) exp (—%t) -|—f dt’ exp {—%(t — t')} Fa(t).(9.1.31)
0
We then obtain

(Fyoa0)e = (P sa0)exo ()

f ' € ’ t !
+ [dvexp [—E(t— t )} (FJ(OF(t))r. 9.1.32)

Here, we assumed that Fy(f) and @(0) are statistically independent.
From Eqs. (9.1.22) and (9.1.24), it follows that

€
(Fa(0(1) = = 57t = (Dara)r. (9.1.33)
Similarly, we can show that
N € _ -
(@ (OFa(D)r = < Tin. (9.1.34)

These correlation functions will be employed to derive equations of
motion for the field correlation functions in Section 9.3. We next
consider the damping of a single-mode field via an atomic reservoir and
also extend and strengthen the present oscillator reservoir treatment.
The main result of these consideration is a correlation function for the
noise operator which is not a delta function, thus corresponding to
‘colored’ noise as opposed to the white noise presented in this section.
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9.2 Extended treatment of damping via atom and
oscillator reservoirs: non-Markovian colored noise

In this section we extend our approach to the problem of damping,
this time involving finite (i.e., not delta function) correlation times. We
first assume a field damping mechanism via two-level atoms in thermal
distribution, passing through the cavity. The atoms are assumed to be
long lived and monoenergetic so that they interact with the field inside
the cavity for a fixed duration 7. We then return to the oscillator
reservoir model extending the treatment of the oscillator reservoir
problem beyond the Markovian limit.

9.2.1 An atomic reservoir approach”

We here consider the damping of a single-mode field by an ensemble
of atoms. The Hamiltonian for the present problem is given by

H = Ao+ H, ©21)
1 .

Ho=hva'a+ ihv Z,: a, (9.2.2)

H1=hg Y [f(tit,na’e’. + Hel, (9.2.3)

where o! and ¢ are the operators for the ith atom and f(t;,t,7) is a
function which represents the injection of an atom at time ¢; and its
removal at a later time ¢; + 7. In this sense, f(¢;,, 7) is a notch function
which has the value

1 fort;<t<t;+1
tit,7) = P= P 924
1 ) { 0 otherwise . ( )

For the sake of simplicity, we have assumed that the injected atoms are
resonant with the field. Using this Hamiltonian, we write the equations
for the field and atom operators in the interaction picture

a(t) = —ig Y f(t,t,1)al (1), (9.2.5)

o (t)=igf(ti,t, T)a a(t). (9.2.6)
As before, we are interested in a closed equation for the operator
a(t). Integration of the atomic operator equation (9.2.6) yields

a (t)y=0a' (t) +ig ] t dt' f(t;, ', t)a ()a(t). (9.2.7)

On substituting this expression for ¢’ (¢) into the field operator

* The reader should consult Chapter 12 and Scully, Siissmann, and Benkert [1988] for further
reading on the material of this section.
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equation, we obtain
r
a=g’ Z / dt' f(ti, t, O)f (t:, £, D)ot (F)alt)
i H
—ig ) f(tit, D)oL (ti). (928)

If the field does not change appreciably during the transit time of the
atoms, a(t’) in Eq. (9.2.8) can be replaced by a(t). In a linear analysis,
al(r') is also replaced by its value at the time of injection o!(t;). The
resulting equation is

a= —%‘ga + Fy(1), (9.2.9)

where
% = —2g* Z f t dt' f(ti,t, 0)f (t:, £, D)ot (t:), (9.2.10)
Fo(t) = —ig ¥ _ fltut, )0t (5. (9.2.11)

Here the decay constant % is positive as the inital inversion a'(t;) is
negative in thermal equilibrium.
The noise operator F,(f) may be seen to have the moments

(Fa(t)) =0, (9.2.12)
(FIOFA) = g2 fta t, 0f (4,7, ) (80l (1)))
i
= g?[1 +exp(iv/ks T ™' Y f(ts L 1)f (1 7),
| (9.2.13)

where we have used, with the atoms in a thermal equilibrium state at
temperature T, (by solving Eqs. (8.2.10a) and (8.2.10c) in the steady
state and using Eq. (8.2.5))

(' (t)al(t;)) = 6;[1 + exp(hv/kpT)] . (9.2.14)

After replacing the sum over i in Eq. (9.2.13) by an integral over the
injection time,

t
S, f dt, (9.2.15)
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where r, is the rate of injection of atoms into the cavity, we find

v \17"
(FHOF(¢) =rag® |1 +exp [ — dtif (6, 6, T)f (6 £, ).
kT o
(9.2.16)
The integration can be carried out, for example, by writing
fltt,7) = Ot — ;) — Ot — 1 — 1;), (9.2.17)

where ® is the unit step function and using

t

f - dt;0(t; — 1)B(t — ;) = O(t1 — tp) f dt;

=00 -=Q0
ty

+0O(t— 1) dt;. (9.2.18)

—o0

We then obtain
t %
/ dtif(t;, t,T)f(t;, £, 1) =[Ot —¢)— Ot — ' — 1)) / dt;
t—1
+[O(t—1)—0Ot —1{ + 1) f dt;

+[O( — 1) — O —t—1)] ft dt;

+[OF —t)— O —t + 1)] - dt;.

(9.2.19)

A careful examination shows that the right hand-side of Eq. (9.2.19)
is zero unless t > |t — ¢/| in which case it is equal to © — |t — ¢/|. The
correlation function (9.2.16) is therefore given by

ap(t—|t—t)/7° forjt—t| <1,

. (9.2.20)
0 otherwise ,

(FI(t)F,(t)) = {

where ar = r,g%7°[1 + exp(hiv/kgT)]™!. The correlation function is
triangularly shaped as depicted in Fig. 9.1. This is one of the simplest
examples of a ‘colored’ noise problem.

9.2.2 A generalized treatment of the oscillator reservoir
problem™

We now present a treatment of the multi-oscillator heat bath problem.
For an oscillator of momentum p and coordinate x coupled to a bath of

* This section follows the paper by Ford, Lewis, and O’Conneli [1988].
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Fig. 9.1

Noise correlation
function (F(£)F.(t))
as given in

Eq. (9.2.20).

(Fa (OF ()

> ¢

Tt

oscillators having momentum p; and position g;, the system-reservoir
Hamiltonian can be written as

2 2
= p— -1— 242 _li _1_ 20, 2
=g T Zj: oy T 2@ X (9221)

Note that in this form the Hamiltonian (9.2.21) does not make the
rotating-wave approximation. Including the normal commutation rules
[x,p] = ik and [gq;, pi] = ihdj, we find

o1 _ D
=[x #] =, (9.2.22a)
1
= = [0, #] = —mvx + > mwi(g; — x), (9.2.22b)
i
.1 P
R P 1 9.2.22
4= = |a#] — (9.2.22¢)
1

Differentiating Eqgs. (9.2.22a) and (9.2.22¢) and using Egs. (9.2.22b)
and (9.2.22d), we find

%(0) = —v’x() + Y %wf [4;(t) — x(0)], (9.2.23a)
J

45(t) = —3g;(0) — x(0). (9.2.23b)

As may be verified by direct substitution, the solution for g;(t) may
be written in the form
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qa,(t) — x(t) = ¢} (1) — f_ dt’ cos [wy(t — )] (1), (9.2.24)

where q?(t) is the solution to the problem in the absence of coupling
x=0
0 _ Sin wjt
q;(t) =g cosw;t + p; —— (9.2.25)
in which ¢; and p; are the usual time-independent position and mo-
mentum operators.

Substituting (9.2.24) into (9.2.23a) we find

mx(t) + f I dr' u(t — O)x(t) + mv3x(t) = F(1), (9.2.26)

where the damping function is given by

pt—1t) = Z mjcojz- cos [wj(t —t)], (9.2.27a)
J
and the noise operator takes the form

F(t) =) mjolq)t). (9.2.27b)
j

As it stands, Eq. (9.2.26) is closely related to Eq. (9.1.11). However,
the problem can be extended to include memory effects by writing the
following general expression for a damped oscillator

mx(t) + f t dt' u(t — )x(t') + mv3x = F(1), (9.2.28)
where

1

3 (F(OF(t) + F(£)F (1))

= % /0“’ doRe [,ﬁ(a) +i07)] ho coth (2Z§)T) cos [w(t — )],

(9.2.29)

with [i being the Fourier transform of u(t).

Now for the case of constant damping, which is the one of most
interest to us, Re [ji(w + i07)] =T and the correlation function takes
the form

(F(OF(t') + F({)F(1))

r [~ ko ,
= ;[) doho coth (m) cos [w(t —t )]

_ d nkgT(t —t')
—I“kBTEcothl - } )

We note that Eq. (9.2.30), while going to §(t — ¢/) in the limit, in
general goes beyond the Markovian approximation, i.e., it implies
colored noise.

o —

(9.2.30)
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9.3 Equations of motion for the field correlation
functions

We can now derive the mean motion of d(t) and of the number
operator d'd. Since (Fz(t))g = 0, it follows from Eq. (9.1.15), that

;tr(r))R _ —-1~%”(a(t)) (9.3.1)

Here, we see that the mean value of the system operator goes to
zero in time. Note that Eq. (9.3.1) is only averaged over the reservoir
coordinates It remains an operator in the field coordinates.

The mean time development of the field number operator is

T
4 @ va)e = <d" Baw) +(dwD)

—G (@ (D)a(t))r + (Fy()a(t)r + (@ (OFa(t)r
—€ (& (1)a(t)) r + €hup. (9.32)

Thus, the steady-state value of the number operator (a'(¢)a(t))r is
ny (times the field identity operator); this is nonzero in contrast to
{(at(t))r and (a(t))r, which decay to zero in time according to Eq.
(9.3.1).

In a similar manner, it can be shown that

%(a(r)a*(r»fe = —6(@(0)a" (1) g + Elap + 1). 933)

On combining Egs. (9.3.2) and (9.3.3), we see that the commutator
[@(t), a'(1)] retains its unity reservoir average in time instead of decay-
ing to zero.

Using the same arguments as given for the derivation for the equa-
tions of motion for (d@(t))r and {(a'(£)a(t))r, Eqs. (9.3.1) and (9.3.2), we
can show that for arbitrary products of the creation and annihilation
operators,

%((a”manh = —g(m + n){(a@" ") g + Emnng ((@")" a1 .
(93.4)

In terms of the operators a and a' (Eq. (9.1.9)) this equation reads

(@ @rr = |iom—m) = Zom+m)| (@)

+Fmniig (@’ )" a1 g (9.3.5)

This equation, in a general way, describes the effect of the reservoir.
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As mentioned earlier, the present Heisenberg-Langevin approach
to the quantum theory of damping is particularly suited for the cal-
culation of multi-time correlation functions. This can be appreciated
by considering the simple example of the damping of the field of fre-
quency v inside the cavity at the rate € = v/Q. Here Q is the quality
factor of the cavity.

The field operator d(t) = a(t) exp(ivt) obeys the equation

b= —Ea + Fa(t), (9.3.6)

which can be solved to yield (with 7 > 0)

at; + t) = a(t;) exp (—Et)

+/Ij+rdt’exp[ 2Q(z,+r—r)]F(:) (9.3.7)

i

It follows, on using (@'(t;)F(¢))r = (@"'(t:)) r(Fa(t'))r = 0, that

(ﬁT(tf)&(ti + )R (a (t;)a(t;))r exp ( 2Q ) , (9.3.8)

ie., the field correlation function decays exponentially with time. The
field spectrum can be obtained by taking the Fourier transform of the
correlation function

(a'(ti)a(t; + 7)) = @ (t)a(t; + ©))re

= (n) exp (—zvr - ZQT) (9.3.9)
(9.3.10)

where (n) is the mean number of photons at the initial time t;, We
then obtain (see Eq. (4.3.14))

S(w) = %Re f0w<a*(r)a(r + 7)) r€dr

(n) v/20
= @Rt /20F (9.3.11)
This i1s a Lorentzian distribution centered at w = v with half-width
v/20.
An approximate expression of the mode density of the empty cavity,
D.(w), is obtained by dividing S(w) by (n), i.c

v/20
Dw) = ( IR F (/207 (9.3.12)

The density of states inside the cavity is therefore significantly different
from its value in free space (see Eq. (1.1.26)).
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9.4 Fluctuation—dissipation theorem and the Einstein
relation

We now make a connection between the present quantum Langevin
approach and the classical approach. In Section 9.1 we derived the
second-order correlation function of the Langevin noise Fj(t)

(Fy(OFa(!))r = €Rgnd(t — 1. (9.4.1)

On integrating both sides, we obtain

[e.¢]
€ = _i f (FJ(t)Fa(?))rd. (9.4.2)
Rth J—oo

This states that the system damping % is determined from the fluc-
tuating forces of the reservoir. Thus the fluctuations induced by the
reservoir give rise to dissipation in the system. This is one formulation
of the fluctuation—dissipation theorem.

Next we make use of Egs. (9.1.15) and (9.1.26) to rewrite Eq. (9.3.2)
as follows

ot
2{Daa)e = (@ W) — { |G- = Fleo]ao)

et 198 _ g
<a (r)l - Fa(z)DR. (9.43)

This is the Einstein relation to determine the diffusion constant. We
have derived this relation for the damped harmonic oscillator problem.
It can, however, be shown that this relation is valid for many general
system-reservoir problems. It can be similarly shown that

T dt
— < [% — Fa(t)] a*(z)> . (9.4.4)

R

Al
2D = g 02’z — (a0 | G-~ Flo] )
R

The Einstein relation relates the drift terms [da/dt—F;(t)] and [da'/dt—
F; (t)] to the diffusion coefficients. In many problems of interest, this
relation provides an extremely simple way to calculate the diffusion
constant.

The Einstein relation can be employed to determine the diffusion
coefficients from the density matrix equations in a straightforward
manner. In order to indicate the procedure, we consider the simple
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example of Eq. (8.3.2) which governs the damping of the field by an
interaction with a thermal reservoir. It follows from this equation that

da , (4
<E> = Tr(ap) = —3 {a), (94.5)
da’ t,
<W> -2, (9.4.6)
%(aTa) = —%({a'a) — i), (9.4.7)

where, in deriving these equations, we used the cyclic property of the
trace (1.e, Tr(ABC) = Tr(CAB), etc) and the commutation relation
[a,a’] = 1. Now the quantities [da/dt — F,(t)] and [da'/dt — F}(t)] can
be obtained from Egs. (9.4.5) and (9.4.6), respectively, by removing the
expectation value sign on the right-hand side. We then obtain

da €
= —F ()| =—=a, 4.
{ o (t)} ok (9.4.8)
da' €
4 ptipl = 2 gt
ldt Fl{ )J 54 (9.4.9)
On substituting Eqs. (9.4.7)-(9.4.9) into Eq. (9.4.3), we get
2(Dgta) = Ghirn, (9.4.10)

in agreement with Eq. (9.1.26).

9.5 Atom in a damped cavity

A very simple application of the mathematical framework developed
in this chapter is the study of the evolution of a single two-level atom
initially prepared in the upper level |a) of the transition resonant
with the cavity mode. In particular, it is seen that the spontaneous
emission rate of the atom inside a resonant cavity is substantially
enhanced over its free-space value. The enhancement factor can be
derived rigorously from a quantum mechanical analysis where the
cavity damping is considered via interaction of the single-mode field
with a reservoir consisting of a large number of simple harmonic
oscillators. First, we present an heuristic argument to understand this
interesting phenomenon.

We recall that, in Section 6.3, we considered the spontaneous emis-
sion of an atom in free space, so that the atom interacts with a
continuum of modes of the electromagnetic field. The decay rate I', as
given by Eq. (6.3.14) can be rewritten as
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I = 2n(g(w)P*)D(w), (9.5.1)

where angle brackets represent an angular average, g(w) 1s the vac-
uum Rabi frequency, and D(w) = Vw?/n%c® is the density of states
at the atomic transition frequency w. The spontaneous decay rate
is therefore proportional to the density of states. The mode struc-
ture of the vacuum field is dramatically altered in a cavity whose
size is comparable to the wavelength. In a cavity of quality factor
Q, the mode density D.(w) can be approximated by the Lorentzian
(Eqg. (9-3.12))

! v/20 (9.5.2)

Pl = o =P+ 67207

The spontaneous decay rate of the atom inside the cavity is therefore
obtained by replacing D(w) by D.(w) in Eq. (9.5.1)

T = 2n(lg(@)P) De(w). (9.53)

For a cavity tuned near the atomic resonance frequency, we have
D(w)~2Q/nw and

_ 2n [ 0k 20\ 27r_c3
=3 Gr) () -0 () -

Thus, apart from the geometrical factor of order unity (for the
lowest cavity mode @ = nc/L, where L is the length of the side
of the cavity, this factor is equal to 2/zn?), the spontaneous decay
rate inside the cavity is enhanced by a factor Q over its free-space
value.

Another simple interpretation of the spontaneous emission en-
hancement can be given in terms of the image charges. We can
simulate the effect of the cavity mirrors on the evolution of the
atom by replacing them by the Q images of the atoms in these mir-
rors. As the cavity is resonant with the atomic transition, all the
dipoles of these images are in phase with the atomic dipole. They
therefore act as Q aligned antenna in phase. A given antenna in
this array radiates Q times faster than an isolated antenna. The
atomic energy is therefore dissipated Q times faster than in free
space.

We now turn to a rigorous derivation of the atomic decay in a
damped cavity. We consider a system of a two-level atom interacting
with a single-mode electromagnetic field inside a cavity. The cavity is
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coupled to a thermal reservoir through the walls of the cavity. The
atom—field reservoir Hamiltonian is therefore

H=Hp+H g+ H g4+ Hr+ HFr, (9.5.5)
Hp=hva'a, (9.5.6)
1

H g = 5hva, (9.5.7)

Hgp =hg(ora+a'o.), (9.5.8)

Hr=_ hvbb, (9.5.9)
k

Hrr=hY_ g(bia+a'by). (9.5.10)

k

Here #r and 54 are the free field and atom Hamiltonians, respec-
tively, # 4 represents the interaction of the single-mode cavity field
with the atom, 2 is the energy of the reservoir modes and # ¢ rep-
resents the interaction of the field with the reservoir. For transmission
losses, the reservoir modes correspond to the vacuum modes that enter
the cavity through partially transmitting mirrors. We shall assume the
reservoir modes to be in thermal equilibrium at temperature 7.

The quantities of interest in the system are the energy of the field
(ata) and the atomic inversion (o). The equation of motion for any
operator of the form (a')"a"0,4, (where 04 is an atomic operator, e.g.,
0.,0-,0,) 18 given by

d [
T [(a')"a"04] = 7 [(@Y"a" O 4, HF + H 4 + H 4F)

+ <%[(a*)man]>R 04 (9.5.11)

where (d[(a")"a"]/dt)r is given by Eq. (9.3.5). Using this equation, we
can derive the following equations of motion for {a'a) and (o):

+
d(zta) =iglo,a—a'o_) —€la’a) + Can, (9.5.12)
d<d“;> = —diglaya—a'a_). (9.5.13)

The angle brackets denote the reservoir as well as the quantum me-
chanical average. These equations involve the average of the Hermitian
operator (a,a— o_a') whose equation of motion in turn involves the
quantity (a'g,a) and so on. In general, we get an infinite set of equa-
tions which may not be analytically solvable. However, the situation
is considerably simpler if initially the atom is in the excited state |a),
the field inside the cavity is in the vacuum state |0), and the cavity is
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at zero temperature (A, = 0). There can be at most one photon in
the field and the state of the field inside the cavity at any time ¢ will
be a linear superposition of the vacuum state |0) and the one-photon
state |1). The expectation value of the operators involving quadratic
or higher powers in the field operators a and af, e.g., {(a")*c.a%),
are therefore zero at all times. Under these conditions, we obtain the
following closed set of equations

d{a*a)

o = gAi— %(a'a), (9.5.14)
d{o,)
= —2gA 9.5.15
dt g 1s ( )
dA %
_dTl =g{o:) + 284+ g — 541, (9.5.16)
dr _ o4, — g4, (9.5.17)
dt
where
A =iloya—do), (9.5.18)
Ay = (a'o,a). (9.5.19)

It may be noted that, in Eq. (9.5.17), we neglected the term propor-
tional to (o,afa’> — (a")?ac_} in light of the above argument. The
four equations (9.5.14)—(9.5.17) can be solved using, for example, the
Laplace transform method. The resulting solutions for (a'a), and
{6.);, subject to the initial conditions {(a'a}y = A4,(0) = 4,(0) = 0 and
{6,)0 = 1 are

8g2e —€t/2
(a'a), = __%g? {1 cosh [(#* — 16g2)1/2r/2]} (9.5.20)
4e-(€t/2 5
(0:)e =—1+ m{ —4g
%> 2 241/2 2-16g2)12¢/2
+[7_2 +—(fg 16g)/lxe((g"g)t/
%2 2 2 231/2 “1—16g2)%t/2
+{4 —2g ——((5 16g)/]><e_( ‘lg)t/}.

(9.5.21)

In Fig. 9.2, the probability of the atom being in the upper level
P, = (1+{0.))/2 is plotted for different values of €/4g. Here we see a
transition from damped Rabi oscillations to an overdamped situation.
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This different behavior can be seen easily by considering two limit-
ing cases of Eq. (9.5.21). When ¢ < 4g, the atomic inversion {o,(t))
and the probability P, take the simple forms

(6,(t)) = —1 4+ e~¥/2[1 + cos(2gt)], (9.5.22)
—%t /2
Py(t) = ——[1 +cos(2g1)}. (9.5.23)

These damped Rabi oscillations are at the frequency 2g. In the oppo-
site limit € > 4g, we obtain

(6,(1)) = —1 + 2~ 8°H/®), (9.5.24)
and
P(t) = e 41/, (9.5.25)

1€, the atom decays exponentially with a damping constant

4g° 1 4y3p? vy [ 6nc?
r,=-"6 - ab (—) ). 9.5.26
‘% (47‘660 3hc? ) € (Vv3) ( )
Apart from a trivial factor of 3, this expression is identical to Eq.
(9.5.4), which was obtained using a heuristic argument based on the

density of states. The factor of 3 disappears if, in Eq. (9.5.26), we
replace g? by its average value over different orientations.

Fig. 9.2

A plot of P, versus
dimensionless time gr
for (a) €/4g = 0.1
and (b) ¢/4¢ = 10.
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Problems

9.1

9.2

9.3

9.4

9.5

A single mode of frequency v interacts with a thermal reser-
voir. The evolution of the field—reservoir system is described
by the Langevin equation

. 1

where @(t) = a(t)e™; a is the destruction operator for the field
mode. Calculate the variance (AX,)* (with X, = (d + &')/2)
at a time ¢ in terms of the variance at the initial time ¢t = 0.

Find the correlation function (F!(t)F,(¢)) in Eq. (9.2.13) for

—T(t—t;) ) ,
f(ti,t,‘c)={e fort,§t<t1+t,
0 otherwise.

Calculate the second-order correlation functions

(FA(OFa(t)r.  (Fa)Fj(*))r ,
(Fa(t)Fa(t'))r, and (FJ(1)F}(f))x

of the Langevin operator for a multi-mode squeezed vacuum
reservoir,

Derive the equation of motion for arbitrary products of cre-
ation and destruction operators {(a')"a") for (a) a thermal
reservoir and (b) a squeezed reservoir.

Consider the reservoir in a squeezed vacuum state. Use the
equation of motion for the density matrix for the field mode
and the Einstein relation to calculate the diffusion coefficient
Dyz. Verify your results from Langevin theory.
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