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Statistical Physics IV: Non-equilibrium statistical physics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Written exam

Part A (3pt/problem) - short questions
Please answer the following questions in brief and explain the concepts.

1. Write down Ito’s lemma for a function f (x) where x(t) is a drift-diffusion stochastic process.
Write down the definition of Wiener increment dW(t) in the drift-diffusion process and its
Ito’s calculus rules (average of dW and average of dW2).

2. Write down the 1D Langevin equation for Brownian motion, assuming the drag force expe-
rienced by the particle is given by

F = −γmv, (1)

where v and m are the particle velocity and mass. Write down the Langevin force thermal
spectrum at temperature T.

3. If {xi}i=1,..,N is a set of random variables with the same average 〈xi〉 = a and variance 〈(xi −
〈xi〉)2〉 = b2, and N is a large number, find the probability distribution P(X) of the arithmetic
mean X = 1

N ∑N
i=1 xi.

4. Provide an example of probability distributions to which the central limit theorem is not
applicable. Write down the probability density function for this distribution.

5. Derive Jarzynski equality from the Crooks theorem. Crooks theorem can be expressed in the
following form:

PF(W)

PB(−W)
= exp

(
W − ∆F

kBT

)
, (2)

where PF(W) is the probability to perform work W over forward process, PB(W) is the prob-
ability to perform work W for backward process, ∆F is the free energy change between the
initial and final states, T is the temperature and kB is Boltzmann constant.

6. Find correlation functions 〈â†(t)â(t + τ)〉 and 〈â(t)â†(t + τ)〉 of an oscillator with frequency
ω0 and damping rate γ coupled to a bath at temperature T using quantum regression theo-
rem,

d
dt
〈Âµ(t)〉 = ∑

ν

Mµν〈Âν(t)〉, (3)

d
dτ
〈Ô(t)Âµ(t + τ)〉 = ∑

ν

Mµν〈Ô(t)Âν(t + τ)〉. (4)

Here â is the annihilation operator of the oscillator mode, and the mode occupation is given
as 〈n̂(t)〉.

7. Show that the classical spectral density of a (stable) stochastic process Sxx[ω] =
∫ ∞
−∞〈x(t +

τ)x(t)〉eiωτdτ is always symmetric with respect to frequency (Sxx[ω] = Sxx[−ω]). Why its
quantum counterpart Sxx[ω] =

∫ ∞
−∞〈x̂(t + τ)x̂(t)〉eiωτdτ may not be symmetric?

8. Write down the quantum master equation in the Lindblad form. What is the Lindblad oper-
ator for the dephasing of a harmonic oscillator?
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Part B (6pt/problem)
Please pick 4 questions out of the following 5 and solve the corresponding exercises. Please
indicate your choices on the first sheet.

1. The process X, defined by the Itô equation dX = cX dW, is known as a multiplicative white
noise process, or geometric Brownian motion (GBM).

(a) Define the process Y = log X, and by using Itô’s lemma, obtain its equation of motion
(b) Integrate this equation, calculate 〈X(t)〉 and show that the covariance satisfies,

〈X(t)X(s)〉 =
〈

X(0)2〉 exp
(
c2 min(t, s)

)
.

Hint: Use the formula 〈exp z〉 = exp
( 1

2 〈z2〉
)
, valid for any Gaussian random variable z with

zero mean.

2. Consider an ensemble of atoms with two states E1 and E2, resonant with a mode of the
radiation field of frequency ω = |E2 − E1|/h̄. The numbers of atoms in the ground and
excited state are N1 and N2. According to the quantum theory of light the energy of the
radiation field is quantized and obeys E = nh̄ω, where n is the number of photons in the
radiation field. Transition from the ground state to the excited state absorbs a photon, and
happens at a rate rn = nγN1. Transition from the excited to the ground state creates a photon,
and happens at a rate gn = (n + 1)γN2. The extra factor of one originates from spontaneous
emission. We assume the numbers of atoms in each state N1 and N2 to be fixed by some other
process and stay constant, so that we only consider the fluctuations of the photon number n.

(a) Derive the master equation and solve it in the steady state.
(b) Assume that kBT � |E2 − E1| = h̄ω. If the atoms are in thermal equilibrium, it follows

from the Boltzmann statistics that N2/N1 = e−h̄ω/kBT. Derive an expression for the
steady state distribution of P(n) and calculate 〈n〉. Show that this yields the Bose-
Einstein statistics.

3. The generalized Langevin equation for a particle under damping is given as

v̇ = −
∫ t

0
γ(t− t′)v(t′)dt′ +

F(t)
m

. (5)

The generic solution of this equation of motion is

v(t) = v(0) ·mχ(t) +
∫ t

0
χ(t− t′)F(t′)dt′, (6)

where χ(t) is the inverse Fourier-Laplace transform of

χ(ω) = v(ω)/F(ω) =
∫ ∞

0
e−iωtχ(t)dt. (7)

(a) Using the solution above, derive the generalized fluctuation dissipation theorem, i.e.
find the spectrum of the random thermal force F defined as∫ +∞

−∞
〈Fth(t)Fth(0)〉e−iωtdt. (8)

(b) The equation of motion for the current in a RLC series circuit is given by

RI(t) + L
dI(t)

dt
+

1
C

∫ t

0
I(t′)dt′ = Vth(t), (9)

where Vth(t) is a thermally induced fluctuating voltage. Write down the spectrum of I
and Vth using generalized fluctuation dissipation theorem.
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4. Consider a harmonic oscillator coupled to a heat bath, consisting of a large ensemble of
harmonic oscillators. The Hamiltonian of the system and the bath can be expressed as

Ĥsys = h̄ωs

(
â† â +

1
2

)
(10)

Ĥbath = ∑
k

h̄ωk

(
b̂k

†
b̂k +

1
2

)
(11)

Here, â and (â†) are the annihilation and creation operators which satisfy the commutator

relation [â, â†] = 1 and can be related to the position operator via x̂sys =
√

h̄
2mΩm

(â† + â).
Assume that the bath and the system are interacting in a bilinear way, i.e.that the interaction
Hamiltonian takes the form:

Ĥint = h̄ ∑
k

gk(âb̂†
k + b̂k â†). (12)

We also assume that the heat bath is in thermal equilibrium and has a finite temperature.
This implies that 〈b̂†

k (0)〉 = 〈b̂k(0)〉 = 0, as well as 〈b̂†
k (0)b̂l(0)〉 = δk,l n̄k and 〈b̂k(0)b̂†

l (0)〉 =
δk,l(n̄k + 1), where n̄k is the effective occupation number of the kth mode. Finally, we assume
that the bath modes are initially uncorrelated with each other, i.e. 〈b̂k(0)b̂†

l (0)〉 = 0 for k 6= l.

(a) Derive the Heisenberg equations of motion for the bath and system operators sepa-
rately.

(b) Next, eliminate the bath operators from the equation of motion for â(t) by inserting the
equation of the bath. Moreover, introduce the density of states D(ω) (that is, the number
of modes in a given volume between ω and ω + dω) of the bath modes and convert
the summation over k to an integral over ω, assuming that the coupling is frequency
independent, i.e. gk = g(ωk) = g (this is called the 1st Markov approximation). Carry
out the integration over ω using

∫ ∞
−∞ dωe−iω(t−t′) = 2πδ(t− t′).1

(c) Transform the equations of motion to a frame rotating with ωs with respect to the orig-
inal Hamiltonian H0 = Hsys + Hbath. Show that the equation of motion for the system
operator obeys the Quantum Langevin Equation:

d
dt

â(t) = −κ

2
â(t) + F̂(t)

Give an expression for the Langevin noise term F̂(t) in terms of the bath operators.

5. Consider a simple quantum harmonic oscillator with mass m and frequency Ω. The oscilla-
tor is at a temperature T; this temperature is maintained through an infinitesimal coupling
to a heat bath (therefore, one can neglect the energy decay rate κ of the oscillator). Let x̂
and p̂ denote the position and momentum operators (obeying the canonical commutation
relation) and â, â† the standard annihilation and creation operators.

(a) Show that the autocorrelation function of the position operator is given by

Cxx(t) ≡ 〈x̂(t)x̂(0)〉 = 〈x̂(0)x̂(0)〉 cos(Ωt) + 〈 p̂(0)x̂(0)〉 1
MΩ

sin(Ωt)

(b) Show that in thermal equilibrium the following expressions hold: 〈x̂(0) p̂(0)〉 = ih̄/2
and 〈 p̂(0)x̂(0)〉 = −ih̄/2

1Note that this property also gives rise to the equality
∫ t

t0
c(t′)δ(t − t′)dt′ = 1

2 c(t), which is needed to derive the
exact form of the quantum Langevin equation.

3



Prof. T.J. Kippenberg
Spring Term 2021

(c) Using these expressions, show that the autocorrelation function is given by

Cxx(t) ∝ n̄(h̄Ω)eiΩt + [n̄(h̄Ω) + 1]e−iΩt,

where n̄ is the Bose-Einstein occupation factor. Calculate the proportionality factor.

(d) Using the correlation function above, calculate the spectral density Sxx(ω) and show
that it is asymmetric in frequency. Show that in the high temperature limit (kBT � h̄Ω),
this spectral density becomes symmetric (thus, it coincides with the classical case).
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