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Written exam

Part A (3pt/problem)

Write down Ito’s lemma for a function f(x) where x(t) is a drift-diffusion stochastic process.
Write down the definition of Wiener increment dW (t) in the drift-diffusion process and its
[to’s calculus rules (average of dW and average of dW?).

Write the expression of the thermal force acting on a particle in a viscous medium at tempe-
rature T, assuming that the drag force experienced by the same particle is given by

F= —ymo, (1)
where v and m is the particle velocity and mass.

If {x;}i—1,. n is a set of random variables with the same average (x;) = a and variance ((x; —
(x;})?) = b?, and N is a large number, find the probability distribution P(X) of the average
X=L1yN x.

N &i=1"*1

Provide an example of probability distribution to which the central limit theorem is not
applicable.

Write down the quantum Langevin equation for the dynamics of a harmonic oscillator with
frequency wp and damping rate 7y coupled to a bath in thermal equilibrium. If 4 is the
annihilation operator of the oscillator what are the two-time correlators (a4 (f + 7)al (¢))
and (4! (t+ T)ain(t)) for the input noise operators?

Write down quantum regression theorem and apply it to find correlation functions (a(t +
7)a(t)) and (a(t + 7)a’(t)) of an oscillator in thermal equilibrium. Here 4 is the annihilation
operator, harmonic oscillator frequency is wy, and its damping rate is 7.

Why is the classical spectral density of a (stable) stochastic process Syx[w] = [ (x(t +
7)x(t))eTdT always symmetric with respect to frequency (Syy[w] = Sxx[—w]) and its quan-
tum counterpart Sy [w] = [*_(£(t + T)£(t))e’“TdT may not be?

Write down the quantum optical master equation for a zero temperature bath and for a
energy relaxation process of a harmonic oscillator.

Part B (6pt/problem)

. Consider a one-dimensional random walk between sites i = 0, ..., 00. Assume that the parti-

cle on the n-th site is subjected to two forces, one of which makes it jump randomly to one
of the neighbouring sites n — 1 or n + 1 with total probability per unit time being a, and the
other making the particle jump only in one direction, to n — 1, with a probability per unit
time of B. Find steady state probability distribution p(#) to find the particle on n-th site.

In the Langevin formalism without the assumption of a Markovian reservoir the damping
force, F;, acting on a particle is given by
t
Ey=—-m | q(t—t)o(t)dt. ()
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Write down the Langevin equation for the velocity, v, of the particle in both the time and
frequency domains. Assuming the fluctuations of velocity to be stationary calculate their
spectrum, [;° e ! (v(t)v(0))dt and relate it to the environment temperature. Using this
result, drive the generalized fluctuation-dissipation theorem, i.e. find the spectrum of the
random thermal force, Fy,, defined as

[ )R e ®

—00

and express it using the force susceptibility, x (w) =

3. Derive Jarzynski equality from the Crooks theorem. Crooks theorem can be expressed in the

following form:
Pr(W) ox W —-AG
Pg(—W) kgT )’
where Pr(W) is the probability to perform work W over forward process, Pg(W) is the pro-

bability to perform work W for backward process, AG is the free energy change between the
initial and final states, T is the temperature and kg is Boltzmann constant.

(4)

4. Prove that any stochastic process X(t) satisfying the update formula
X(t+dt) = X(t) + Adt + vVDN(0,1)Vdt, (5)

where A and D are constants and N (0, 1) is a random variable with unit normal distribution,
also satisfies the forward Fokker Planck equation. You may use Ito’s lemma.



