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The topic of quantum noise has become extremely timely due to the rise of quantum information
physics and the resulting interchange of ideas between the condensed matter and atomic, molecular,
optical-quantum optics communities. This review gives a pedagogical introduction to the physics of
quantum noise and its connections to quantum measurement and quantum amplification. After
introducing quantum noise spectra and methods for their detection, the basics of weak continuous
measurements are described. Particular attention is given to the treatment of the standard quantum
limit on linear amplifiers and position detectors within a general linear-response framework. This
approach is shown how it relates to the standard Haus-Caves quantum limit for a bosonic amplifier
known in quantum optics and its application to the case of electrical circuits is illustrated, including
mesoscopic detectors and resonant cavity detectors.
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I. INTRODUCTION

Recently several advances have led to a renewed in-
terest in the quantum-mechanical aspects of noise in me-
soscopic electrical circuits, detectors, and amplifiers.
One motivation is that such systems can operate simul-
taneously at high frequencies and at low temperatures,
entering the regime where fiw>kgT. As such, quantum
zero-point fluctuations will play a more dominant role in
determining their behavior than the more familiar ther-
mal fluctuations. A second motivation comes from the
relation between quantum noise and quantum measure-
ment. There exists an ever-increasing number of experi-
ments in mesoscopic electronics where one is forced to
think about the quantum mechanics of the detection
process, and about fundamental quantum limits which
constrain the performance of the detector or amplifier
used.

Given the above, we will focus in this review on dis-
cussing what is known as the “standard quantum limit”
(SQL) on both displacement detection and amplifica-
tion. To preclude any possible confusion, it is worthwhile
to state explicitly from the start that there is no limit to
how well one may resolve the position of a particle in an
instantaneous measurement. Indeed, in the typical
Heisenberg microscope setup, one would scatter pho-
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tons off an electron, thereby detecting its position to an
accuracy set by the wavelength of photons used. The
fact that its momentum will suffer a large uncontrolled
perturbation, affecting its future motion, is of no con-
cern here. Only as one tries to further increase the res-
olution will one finally encounter relativistic effects (pair
production) that set a limit given by the Compton wave-
length of the electron. The situation is obviously very
different if one attempts to observe the whole trajectory
of the particle. As this effectively amounts to measure-
ments of both position and momentum, there has to be a
trade-off between the accuracies of both, set by the
Heisenberg uncertainty relation. This is enforced in
practice by the uncontrolled perturbation of the momen-
tum during one position measurement adding to the
noise in later measurements, a phenomenon known as
“measurement back-action.”

Just such a situation is encountered in “weak mea-
surements” (Braginsky and Khalili, 1992), where one in-
tegrates the signal over time, gradually learning more
about the system being measured; this review will focus
on such measurements. There are many good reasons
why one may be interested in doing a weak measure-
ment, rather than an instantaneous, strong, projective
measurement. On a practical level, there may be limita-
tions to the strength of the coupling between the system
and the detector, which have to be compensated by in-
tegrating the signal over time. One may also deliberately
opt not to disturb the system too strongly, e.g., to be able
to apply quantum feedback techniques for state control.
Moreover, as one reads out an oscillatory signal over
time, one effectively filters away noise (e.g., of a techni-
cal nature) at other frequencies. Finally, consider an ex-
ample like detection of the collective coordinate of mo-
tion of a micromechanical beam. Its zero-point
uncertainty (ground-state position fluctuation) is typi-
cally on the order of the diameter of a proton. It is out
of the question to reach this accuracy in an instanta-
neous measurement by scattering photons of such a
small wavelength off the structure, since they would in-
stead resolve the much larger position fluctuations of the
individual atoms comprising the beam (and induce all
kinds of unwanted damage), instead of reading out the
center-of-mass coordinate. The same holds true for
other collective degrees of freedom.

The prototypical example we discuss is that of a weak
measurement detecting the motion of a harmonic oscil-
lator (such as a mechanical beam). The measurement
then actually follows the slow evolution of amplitude
and phase of the oscillations (or, equivalently, the two
quadrature components), and the SQL derives from the
fact that these two observables do not commute. It es-
sentially says that the measurement accuracy will be lim-
ited to resolving both quadratures down to the scale of
the ground-state position fluctuations, within one me-
chanical damping time. Note that, in special applica-
tions, one might be interested only in one particular
quadrature of motion. Then the Heisenberg uncertainty
relation does not enforce any SQL and one may again
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obtain unlimited accuracy, at the expense of renouncing
all knowledge of the other quadrature.

Position detection by weak measurement essentially
amounts to amplification of the quantum signal up to a
classically accessible level. Therefore, the theory of
quantum limits on displacement detection is intimately
connected to limits on how well an amplifier can work. If
an amplifier does not have any preference for any par-
ticular phase of the oscillatory signal, it is called “phase
preserving,” which is the case relevant for amplifyin%
and thereby detecting both quadratures equally well.
We derive and discuss the SQL for phase-preserving lin-
ear amplifiers (Haus and Mullen, 1962; Caves, 1982).
Quantum mechanics demands that such an amplifier
adds noise that corresponds to half a photon added to
each mode of the input signal, in the limit of high
photon-number gain G. In contrast, for small gain, the
minimum number of added noise quanta, (1-1/G)/2,
can become arbitrarily small as the gain is reduced down
to 1 (no amplification). One might ask, therefore,
whether it should not be possible to evade the SQL by
being content with small gains. The answer is no, since
high gains G>1 are needed to amplify the signal to a
level where it can be read out (or further amplified) us-
ing classical devices without their noise having any fur-
ther appreciable effect, converting 1 input photon into
G>1 output photons. According to Caves, it is neces-
sary to generate an output that “we can lay our grubby,
classical hands on” (Caves, 1982). It is a simple exercise
to show that feeding the input of a first, potentially low-
gain amplifier into a second amplifier results in an over-
all bound on the added noise that is just the one ex-
pected for the product of their respective gains.
Therefore, as one approaches the classical level, i.e.,
large overall gains, the SQL always applies in its simpli-
fied form of half a photon added.

Unlike traditional discussions of the amplifier SQL,
here we devote considerable attention to a general
linear-response approach based on the quantum relation
between susceptibilities and noise. This approach treats
the amplifier or detector as a black box with an input
port coupling to the signal source and an output port to
access the amplified signal. It is more suited for mesos-
copic systems than the quantum optics scattering-type
approach, and it leads us to the quantum noise inequal-
ity: a relation between the noise added to the output and
the back-action noise feeding back to the signal source.
In the ideal case (what we term a “quantum-limited de-
tector”), the product of these two contributions reaches
the minimum value allowed by quantum mechanics. We
show that optimizing this inequality on noise is a neces-
sary prerequisite for having a detector achieve the quan-
tum limit in a specific measurement task, such as linear
amplification.

There are several motivations for understanding in

'In the literature this is often referred to as a “phase insensi-
tive” amplifier. We prefer the term “phase preserving” to avoid
any ambiguity.

Rev. Mod. Phys., Vol. 82, No. 2, April-June 2010

principle, and realizing in practice, amplifiers whose
noise reaches this minimum quantum limit. Achieving
the quantum limit on continuous position detection has
been one of the goals of many recent experiments on
quantum electromechanical (Cleland et al., 2002; Knobel
and Cleland, 2003; LaHaye et al., 2004; Naik et al., 2006;
Flowers-Jacobs et al., 2007; Etaki et al., 2008; Poggio et
al., 2008; Regal et al., 2008) and optomechanical systems
(Arcizet et al., 2006; Gigan et al., 2006; Schliesser et al.,
2008; Thompson et al, 2008; Marquardt and Girvin,
2009). As we will show, having a near-quantum-limited
detector would allow one to continuously monitor the
quantum zero-point fluctuations of a mechanical resona-
tor. It is also necessary to have a quantum-limited detec-
tor is for such tasks as single-spin NMR detection (Ru-
gar et al., 2004), as well as gravitational wave detection
(Abramovici et al., 1992). The topic of quantum-limited
detection is also directly relevant to recent activity ex-
ploring feedback control of quantum systems (Wiseman
and Milburn, 1993, 1994; Doherty et al., 2000; Korotkov,
2001b; Ruskov and Korotkov, 2002); such schemes re-
quire need a close-to-quantum-limited detector.

This review is organized as follows. We start in Sec. 11
by providing a review of the basic statistical properties
of quantum noise, including its detection. In Sec. III we
turn to quantum measurements and give a basic intro-
duction to weak continuous measurements. To make
things concrete, we discuss heuristically measurements
of both a qubit and an oscillator using a simple resonant
cavity detector, giving an idea of the origin of the quan-
tum limit in each case. Section IV is devoted to a more
rigorous treatment of quantum constraints on noise aris-
ing from general quantum linear-response theory. The
heart of the review is contained in Sec. V, where we give
a thorough discussion of quantum limits on amplification
and continuous position detection. We also discuss vari-
ous methods for beating the usual quantum limits on
added noise using back-action evasion techniques. We
are careful to distinguish two very distinct modes of am-
plifier operation (the “scattering” versus “op-amp”
modes); we expand on this in Sec. VI, where we discuss
both modes of operation in a simple two-port bosonic
amplifier. Importantly, we show that an amplifier can be
quantum limited in one mode of operation, but fail to be
quantum limited in the other mode of operation. Finally,
in Sec. VII we highlight a number of practical consider-
ations that one must keep in mind when trying to per-
form a quantum-limited measurement. Table I provides
a synopsis of the main results discussed in the text as
well as definitions of symbols used.

In addition to the above, we have supplemented the
main text with several pedagogical appendixes that
cover basic background topics. Particular attention is
given to the quantum mechanics of transmission lines
and driven electromagnetic cavities, topics that are espe-
cially relevant given recent experiments making use of
microwave stripline resonators. These appendixes are
contained in a separate online-only supplementary
document (Clerk et al., 2009) (see also http://arxiv.org/
abs/0810.4729). In Table II, we list the contents of these
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TABLE I. Table of symbols and main results.

Symbol Definition or result
General definitions
flw] Fourier transform of the function or operator f(t), defined via flw]=[" dtf(t)e'!
(Note that for operators, we use the convention fw]=/".dif ()¢, implying fw]=(f-w])’)
SrA o] Classical noise spectral density or power spectrum: Sp{w]=["2dte’(F(t)F(0))
SrA ] Quantum noise spectral density: Sp{w]=/ el F(t) F(0))
Srdw] Symmetrized quantum noise spectral density Sy w]= %(S rA@]+SpH-w])= % ) fidlei“”({f’ (1) N3 )}
Xa5(0) General linear-response susceptibility describing the response of A to a perturbation that couples to B; in the
quantum case, given by the Kubo formula y,z(t)=—(i/#) 0(t)<[A(t),é(O)]> [Eq. (2.14)]
A Coupling constant (dimensionless) between measured system and detector or amplifier,e.g., V:AF(I)&X, V:A)?f’,
or V=Ahw.d,d'd
M,Q Mass and angular frequency of a mechanical harmonic oscillator
X7PF Zero-point uncertainty of a mechanical oscillator, xzpp=\A/2MQ
Yo Intrinsic damping rate of a mechanical oscillator due to coupling to a bath via V=AZF: yy=(A212MhQ) (S Q]
-Srd—-Q]) [Eq. (2.12)]
W, Resonant frequency of a cavity
K,0, Damping, quality factor of a cavity: Q.=w./k
Sec. II
o) Effective temperature at a frequency o for a given quantum noise spectrum, defined via Spd w]/SpH-w]
=exp(fiw/kpTerl 0]) [Eq. (2.8)]
Fluctuation-dissipation theorem relating the symmetrized noise spectrum to the dissipative part for an
equilibrium bath: Sz o] :% coth(fiw/2kgT)(Sp w]—Srd—w]) [Eq. (2.16)]
Sec. III
Number-phase uncertainty relation for a coherent state: ANA 62% [Egs. (3.6) and (G12)]
N Photon-number flux of a coherent beam
66 Imprecision noise in the measurement of the phase of a coherent beam
Fundamental noise constraint for an ideal coherent beam: SynS 99:% [Egs. (3.8) and (G21)]
ggx(w) Symmetrized spectral density of zero-point position fluctuations of a damped harmonic oscillator
S*xx’ml(w) Total output noise spectral density (symmetrized) of a linear position detector, referred back to the oscillator
Sxx,a () Added noise spectral density (symmetrized) of a linear position detector, referred back to the oscillator
Sec. IV
X Input signal
F Fluctuating force from the detector, coupling to X via V=A%F
I Detector output signal
General quantum constraint on the detector output noise, back-action noise, and gain: S;[ ]S w]—|S;d w]?
=|h g wl/12(1+ALS 0] /iN[0]/2]) [Eq. (4.11)], where gid ]= xid o] -[xplo]l* and Alz]=[]1+2%-(1+]z[)]1/2
(Note that 1+A[z]=0 and A=0 in most cases of relevance; see discussion around Eq. (4.17))
@ Complex proportionality constant characterizing a quantum-ideal detector: |@|?=S;;/Sr and sin(arg of w])
=i\ w]|/2/ NS [0]S ] [Egs. (4.18) and (117)]
[cas Measurement rate [for a quantum nondemolition (QND) qubit measurement] [Eq. (4.24)]
r, Dephasing rate (due to measurement back-action) [Egs. (3.27) and (4.19)]
Constraint on weak, continuous QND qubit state detection: 7=I'ycas/I', <1 [Eq. (4.25)]
Sec. V
G Photon-number (power) gain, e.g., in Eq. (5.7)

Input-output relation for a bosonic scattering amplifier: bt =\Ga'+ F' [Eq. (5.7)]
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TABLE 1. (Continued.)

Symbol Definition or result

(Aa)? S}|/<m>|n§etrized field operator uncertainty for the scattering description of a bosonic amplifier: (Aa)?= %({ﬁ,d*})
—|a
Standard quantum limit for the noise added by a phase-preserving bosonic scattering amplifier in the high-gain
limit, G>1, where ((Aa)?)zpp=13: (Ab)?/ G =(Aa)?+3 [Eq. (5.10)]

Gplw] Dimensionless power gain of a linear position detector or voltage amplifier(maximum ratio of the power
delivered by the detector output to a load, vs the power fed into signal source):
Gplol=|xid @]/ @ Im xpd wllm x;lw]) [Eq. (5.52)]
For a quantum-ideal detector, in the high-gain limit: G p=[(Im a/|a|)(4 kgT./fhw)]* [Eq. (5.57)]

S‘xx’eq[w, 71 Intrinsic equilibrium noise S‘queq[w, T1=h coth(fiw/2kgT)(-Im y, [w]) [Eq. (5.59)]

Aopt Optimal coupling strength of a linear position detector which minimizes the added noise at frequency w: Af)pl[w]
=Sl (Nolxulo]PSplo) [Eq. (5.64)]

AAopid Detector-induced damping of a quantum-limited linear position detector at optimal coupling; satisfies YA qp/ %o
+ A Agp=[Im a/ of A/NGp[Q]) =1 Q/ 4k g T <1 [Eq. (5.69)]
Standard quantum limit for the added noise spectral density of a linear position detector (valid at each frequency
w): Sxx,add[w] = lin’1T—»0 Sxx,eq[w > T] [Eq (562)]
Effective increase in oscillator temperature due to coupling to the detector back-action, for an ideal detector,
with iQ/kp<Toan<Tett:  Tose= (¥Tett+ Yo Tvam)/ (v+ ¥0) = 1/ 4k g+ T [Eq. (5.70)]

Zin>Zout Input and output impedances of a linear voltage amplifier

Zy Impedance of signal source attached to input of a voltage amplifier

Ay Voltage gain of a linear voltage amplifier

%0) Voltage noise of a linear voltage amplifier (Proportional to the intrinsic output noise of the generic
linear-response detector [Eq. (5.81)])

(1) Current noise of a linear voltage amplifier (Related to the back-action force noise of the generic linear-response
detector [Egs. (5.80)])

Ty Noise temperature of an amplifier [defined in Eq. (5.74)]

Zn Noise impedance of a linear voltage amplifier [Eq. (5.77)]
Standard quantum limit on the noise temperature of a linear voltage amplifier: kzTy[w]=7%w/2 [Eq. (5.89)]

Sec. VI

vV, (V) Voltage at the input (output) of the amplifier
Relation to bosonic mode operators: Eq. (6.2a)

1, Current drawn at the input (leaving the output) of the amplifier
Relation to bosonic mode operators: Eq. (6.2b)

Yy Reverse current gain of the amplifier

slw] Input-output 2 X2 scattering matrix of the amplifier [Eq. (6.3)]
Relation to op-amp parameters Ny, \;, Ziy, Z oy Egs. (6.7)

v ( ;) Voltage (current) noise operators of the amplifier

Flo],Fylw] Input (output) port noise operators in the scattering description [Eq. (6.3)]

Relation to op-amp noise operators I:/j: Eq. (6.9)

Appendixes. Note that, while some aspects of the topics
discussed in this review have been studied in the quan-
tum optics and quantum dissipative systems communi-
ties and are the subject of several comprehensive books
(Braginsky and Khalili, 1992; Weiss, 1999; Gardiner and
Zoller, 2000; Haus, 2000), they are somewhat newer to
the condensed matter physics community; moreover,
some of the technical machinery developed in these
fields is not directly applicable to the study of quantum
noise in quantum electronic systems. Finally, note that
while this article is a review, there is considerable new
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material presented, especially in our discussion of quan-
tum amplification (see Secs. V.D and VI).

II. QUANTUM NOISE SPECTRA

A. Introduction to quantum noise

In classical physics, the study of a noisy time-
dependent quantity invariably involves its spectral den-
sity S[w]. The spectral density tells us the intensity of the
noise at a given frequency and is directly related to the
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TABLE II. Contents of online appendix material. Page num-
bers refer to the supplementary material.

Section Page

A. Basics of classical and quantum noise 1
B. Quantum spectrum analyzers: further details

C. Modes, transmission lines and
input-output theory

classical 8

D. Quantum modes and noise of a transmission line 15

E. Back-action and input-output theory for driven 18
damped cavities

F. Information theory and measurement rate 29
G. Number phase uncertainty 30
H. Using feedback to reach the quantum limit 31
I. Additional technical details 34

autocorrelation function of the noise.” In a similar fash-
ion, the study of quantum noise involves quantum noise
spectral densities. These are defined in a manner that
mimics the classical case

40

dte™(%(1)£(0)).

—©

Sxx[w] = (21)

Here x is a quantum operator (in the Heisenberg repre-
sentation) whose noise we are interested in, and the an-
gular brackets indicate the quantum statistical average
evaluated using the quantum density matrix. Note that
we use S[w] throughout this review to denote the spec-
tral density of a classical noise, while S[w] will denote a
quantum noise spectral density.

As a simple introductory example illustrating impor-
tant differences from the classical limit, consider the po-
sition noise of a simple harmonic oscillator having mass
M and frequency (). The oscillator is maintained in equi-
librium with a large heat bath at temperature 7" via some
infinitesimal coupling, which we ignore in considering
the dynamics. The solutions of the Heisenberg equations
of motion are the same as for the classical case but with
the initial position x and momentum p replaced by the
corresponding quantum operators. It follows that the
position autocorrelation function is

G (1) = (X(1)x£(0)) = (x(0)£(0))cos ()
+ <15(0)£(0)>ﬁ sin(Q).  (2.2)

Classically the second term on the right-hand side
(RHS) vanishes because in thermal equilibrium x and p
are uncorrelated random variables. As we will see
shortly for the quantum case, the symmetrized (some-
times called the “classical”) correlator vanishes in ther-
mal equilibrium, just as it does classically: (xp+px)=0.

For readers unfamiliar with the basics of classical noise, a
compact review is given in Appendix A (supplementary
material).
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Note, however, that in the quantum case the canonical
commutation relation between position and momentum
implies there must be some correlations between the
two, namely, (X(0)p(0))—(p(0)x(0))=ih. These correla-
tions are easily evaluated by writing X and p in terms of
harmonic oscillator ladder operators. We find that in
thermal equilibrium (p(0)x(0))=-if/2 and (x(0)p(0))
=+ifi/2. Not only are the position and momentum cor-
related, but their correlator is imaginary:’ This means
that, despite the fact that the position is Hermitian ob-
servable with real eigenvalues, its autocorrelation func-
tion is complex and given from Eq. (2.2) by

G o) = pelnp(iQ)e ™ + [np(hQ2) + 1]}, (2.3)

where x%p-=%/2MQ is the RMS zero-point uncertainty

of x in the quantum ground state and np is the Bose-
Einstein occupation factor. The complex nature of the
autocorrelation function follows from the fact that the
operator X does not commute with itself at different
times.

Because the correlator is complex it follows that the
spectral density is not symmetric in frequency,

Sl o] = 2mxpednp(hQ) Sw + Q)

+[ng(hQ) + 118w - Q)}. (2.4)

In contrast, a classical autocorrelation function is always
real, and hence a classical noise spectral density is al-
ways symmetric in frequency. Note that in the high-
temperature limit kz7># we have ng(hQ)~ng(hQ)
+1~kgT/hQ. Thus, in this limit S, [w] becomes sym-
metric in frequency as expected classically, and coincides
with the classical expression for the position spectral
density [cf. Eq. (A12)].

The Bose-Einstein factors suggest a way to under-
stand the frequency asymmetry of Eq. (2.4): the positive-
frequency part of the spectral density has to do with
stimulated emission of energy into the oscillator and the
negative-frequency part of the spectral density has to do
with emission of energy by the oscillator. That is, the
positive-frequency part of the spectral density is a mea-
sure of the ability of the oscillator to absorb energy,
while the negative-frequency part is a measure of the
ability of the oscillator to emit energy. As we will see,
this is generally true, even for nonthermal states. Figure
1 shows this idea for the case of the voltage noise spec-
tral density of a resistor (see Appendix D.3 for more
details). Note that the result Eq. (2.4) can be extended to
the case of a bath of many harmonic oscillators. As de-
scribed in Appendix D a resistor can be modeled as an
infinite set of harmonic oscillators and from this model
the Johnson or Nyquist noise of a resistor can be de-
rived.

3Notice that this occurs because the product of two noncom-
muting Hermitian operators is not itself a Hermitian operator.
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FIG. 1. Quantum noise spectral density of voltage fluctuations
across a resistor (resistance R) as a function of frequency at
zero temperature (dashed line) and finite temperature (solid
line).

B. Quantum spectrum analyzers

The qualitative picture described previously can be
confirmed by considering simple systems which act as
effective spectrum analyzers of quantum noise. The sim-
plest such example is a quantum two-level system (TLS)
coupled to a quantum noise source (Aguado and Kou-
wenhoven, 2000; Gavish et al., 2000; Schoelkopf et al.,
2003). With the TLS described as a fictitious spin-1/2
particle with spin down (spin up) representing the

ground state (excited state), its Hamiltonian is fIO
=(hwy/2)d,, where fiwy; is the energy splitting between
the two states. The TLS is then coupled to an external
noise source via an additional term in the Hamiltonian,

V=AFé,, (2.5)
where A is a coupling constant and the operator F rep-
resents the external noise source. The coupling Hamil-

tonian V can lead to the exchange of energy between the
two-level system and noise source and hence transitions
between its two eigenstates. The corresponding Fermi
golden rule transition rates can be compactly expressed

in terms of the quantum noise spectral density of F,

Spiw],

FT = (AZ/hZ)SFF[_ wo1l, (2.6a)

rl = (AZ/hZ)SFF[+ (1)01]. (26b)

Here I'; is the rate at which the qubit is excited from its
ground to excited state and I'| is the corresponding rate
for the opposite relaxation process. As expected,
positive- (negative-) frequency noise corresponds to ab-
sorption (emission) of energy by the noise source. Note
that if the noise source is in thermal equilibrium at tem-
perature 7, the transition rates of the TLS must satisfy
the detailed balance relation I';/T’ L:e‘ﬁﬁ‘"m, where B
=1/kgT. This in turn implies that in thermal equilibrium

the quantum noise spectral density must satisfy
Spr+ wo1] = P08l — wy]. (2.7)

The more general situation is where the noise source is
not in thermal equilibrium; in this case, no general de-
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tailed balance relation holds. However, if we are con-
cerned only with a single particular frequency, then it is
always possible to define an “effective temperature” T
for the noise using Eq. (2.7), i.e.,

hiw
log[Srd @)/Srd - w]]’

Note that for a nonequilibrium system 7. will in gen-
eral be frequency dependent. In NMR language, T will
simply be the “spin temperature” of our TLS spectrom-
eter once it reaches steady state after being coupled to
the noise source.

Another simple quantum noise spectrometer is a har-
monic oscillator (frequency (), mass M, and position x)
coupled to a noise source [see, e.g., Schwinger (1961)
and Dykman (1978)]. The coupling Hamiltonian is now

kTl w] = (2.8)

V = ARF = A[xzpp(a + a"]F, (2.9)
where 4 is the oscillator annihilation operator, F is the
operator describing the fluctuating noise, and A is again

a coupling constant. We see that ~AF plays the role of a
fluctuating force acting on the oscillator. In complete

analogy to the previous section, noise in F at the oscil-
lator frequency () can cause transitions between the os-
cillator energy eigenstates. The corresponding Fermi
golden rule transition rates are again simply related to
the noise spectrum Sy w]. Incorporating these rates
into a simple master equation describing the probability
to find the oscillator in a particular energy state, one
finds that the stationary state of the oscillator is a Bose-
Einstein distribution evaluated at the effective tempera-
ture T[] defined in Eq. (2.8). Further, one can use the
master equation to derive a classical-looking equation
for the average energy (E) of the oscillator (see Appen-
dix B.2),

d(E)/dt =P — yE), (2.10)

where

P = (AY4M)(Spd Q] + Sp— Q) = A2S - Q)2M,
(2.11)

y = (A2xZpe/ B2 (S Q] - S - Q).

The two terms in Eq. (2.10) describe, heating and damp-
ing of the oscillator by the noise source, respectively.
The heating effect of the noise is completely analogous
to what happens classically: a random force causes the
oscillator’s momentum to diffuse, which in turn causes
(E) to grow linearly in time at rate proportional to the
force noise spectral density. In the quantum case, Eq.
(2.11) indicates that it is the symmetric-in-frequency part

(2.12)

of the noise spectrum, Sy{ ], which is responsible for
this effect, and which thus plays the role of a classical

noise source. This is another reason why Sy w] is often
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referred to as the “classical” part of the noise.* In con-
trast, we see that the asymmetric-in-frequency part of
the noise spectrum is responsible for the damping. This
also has a simple heuristic interpretation: damping is
caused by the net tendency of the noise source to ab-
sorb, rather than emit, energy from the oscillator.

The damping induced by the noise source may equiva-
lently be attributed to the oscillator’s motion inducing an
average value to (F) which is out of phase with x, i.e.,
KAF(t))=—Myx(t). Standard quantum linear-response
theory yields

XAF(1) = A? f dt’ xpelt = 1')(E(1")), (2.13)
where we have introduced the susceptibility
Xer(0) = (= i) OO0, FO0)]). (2.14)

Using the fact that the oscillator’s motion involves only
the frequency (), we thus have

y= QAN pe/f)[- Im x{Q]]. (2.15)

A straightforward manipulation of Eq. (2.14) for xgr
shows that this expression for vy is exactly equivalent to
our previous expression, Eq. (2.12).

In addition to giving insight on the meaning of the
symmetric and asymmetric parts of a quantum noise
spectral density, the above example also directly yields
the quantum version of the fluctuation-dissipation theo-
rem (Callen and Welton, 1951). As we saw earlier, if our
noise source is in thermal equilibrium, the positive- and
negative-frequency parts of the noise spectrum are
strictly related to one another by the condition of de-
tailed balance [cf. Eq. (2.7)]. This in turn lets us link the
classical symmetric-in-frequency part of the noise to the
damping (i.e., the asymmetric-in-frequency part of the
noise). Setting B=1/kpT and making use of Eq. (2.7), we
have

SpA Q]+ Spd - Q]
2
= 3 coth(BhQ/2) (S Q] - Spd - Q)

QM
A2

SrHQ] =

= coth(Bh/2)

Q. (2.16)

Thus, in equilibrium, the condition that noise-induced
transitions obey detailed balance immediately implies
that noise and damping are related to one another via
the temperature. For 7> (), we recover the more fa-
miliar classical version of the fluctuation-dissipation
theorem

*Note that with our definition (F2)= " (dw/2m)Sr{w]. It is
common in engineering contexts to define so-called one-sided
classical spectral densities, which are equal to twice our
definition.
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A2Sp Q] =2k TMy. (2.17)
Further insight into the fluctuation-dissipation theorem
is provided in Appendix C.3, where we discuss it in the
simple but instructive context of a transmission line ter-
minated by an impedance Z[ w].

We have thus considered two simple examples of
methods of measure quantum noise spectral densities.
Further details, as well as examples of other quantum
noise spectrum analyzers, are given in Appendix B.

III. QUANTUM MEASUREMENTS

Having introduced both quantum noise and quantum
spectrum analyzers, we are now in a position to intro-
duce the general topic of quantum measurements. All
practical measurements are affected by noise. Certain
quantum measurements remain limited by quantum
noise even though they use completely ideal apparatus.
As we will see, the limiting noise here is associated with
the fact that canonically conjugate variables are incom-
patible observables in quantum mechanics.

The simplest idealized description of a quantum mea-
surement, introduced by von Neumann (von Neumann,
1932; Wheeler and Zurek, 1984; Bohm, 1989; Haroche
and Raimond, 2006), postulates that the measurement
process instantaneously collapses the system’s quantum
state onto one of the eigenstates of the observable to be
measured. As a consequence, any initial superposition of
these eigenstates is destroyed and the values of observ-
ables conjugate to the measured observable are per-
turbed. This perturbation is an intrinsic feature of quan-
tum mechanics and cannot be avoided in any
measurement scheme, be it of the projection type de-
scribed by von Neumann or a rather weak continuous
measurement to be analyzed further below.

To form a more concrete picture of quantum measure-
ment, we begin by noting that every quantum measure-
ment apparatus consists of a macroscopic ‘“pointer”
coupled to the microscopic system to be measured. [A
specific model is discussed by Allahverdyan et al.
(2001).] This pointer is sufficiently macroscopic that its
position can be read out “classically.” The interaction
between the microscopic system and the pointer is ar-
ranged so that the two become strongly correlated. One
of the simplest possible examples of a quantum mea-
surement is that of the Stern-Gerlach apparatus, which
measures the projection of the spin of an S=1/2 atom
along some chosen direction. What is really measured in
the experiment is the final position of the atom on the
detector plate. However, the magnetic field gradient in
the magnet causes this position to be perfectly corre-
lated (“entangled”) with the spin projection so that the
latter can be inferred from the former. Suppose, for ex-
ample that the initial state of the atom is the product of
a spatial wave function &(7) centered on the entrance to
the magnet and a spin state that is the superposition of
up and down spins corresponding to the eigenstate of d,,
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FIG. 2. (Color online) Schematic of position distributions of an
atom in the detector plane of a Stern-Gerlach apparatus whose
field gradient is in the z direction. For small values of the
displacement d (described in the text), there is significant over-
lap of the distributions and the spin cannot be unambiguously
inferred from the position. For large values of d, the spin is
perfectly entangled with position and can be inferred from the
position. This is the limit of strong projective measurement.

[Wo) = (N2 + | L)} (3.1)

After passing through a magnet with field gradient in the
z direction, an atom with spin up is deflected upward
and an atom with spin down is deflected downward. By
the linearity of quantum mechanics, an atom in a spin
superposition state thus ends up in a superposition of
the form

W) = (LA2MIDYED + | IED), (3.2)

where (7| £,) = (F+dZ) are spatial orbitals peaked in the
plane of the detector. The deflection d is determined by
the device geometry and the magnetic field gradient.
The z-direction position distribution of the particle for
each spin component is shown in Fig. 2. If d is suffi-
ciently large compared to the wave packet spread then,
given the position of the particle, one can unambigu-
ously determine the distribution from which it came and
hence the value of the spin projection of the atom. This
is the limit of a strong “projective” measurement.

In the initial state one has (¥y|6,|W,)=+1, but in the
final state one has

(W6, W) = S{(E|E,) + (] ED).

For sufficiently large d the states &, are orthogonal and
thus the act of 6, measurement destroys the spin coher-
ence

(W1]6: W) — 0.

(3.3)

(3.4)

This is what we mean by projection or wave function
“collapse.” The result of measurement of the atom po-
sition will yield a random and unpredictable value of i%
for the z projection of the spin. This destruction of the
coherence in the transverse spin components by a strong
measurement of the longitudinal spin component is the
first of many examples we will see of the Heisenberg
uncertainty principle in action. Measurement of one
variable destroys information about its conjugate vari-
able. We study several examples in which we understand
microscopically how it is that the coupling to the mea-
surement apparatus causes the back-action quantum
noise which destroys our knowledge of the conjugate
variable.

In the special case where the eigenstates of the ob-
servable we are measuring are also stationary states (i.e.,
energy eigenstates), a second measurement of the ob-
servable would reproduce exactly the same result, thus
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providing a way to confirm the accuracy of the measure-
ment scheme. These optimal kinds of repeatable mea-
surements are called quantum nondemolition (QND)
measurements (Braginsky et al, 1980; Braginsky and
Khalili, 1992, 1996; Peres, 1993). A simple example
would be a sequential pair of Stern-Gerlach devices ori-
ented in the same direction. In the absence of stray mag-
netic perturbations, the second apparatus would always
yield the same answer as the first. In practice, one terms
a measurement QND if the observable being measured
is an eigenstate of the ideal Hamiltonian of the mea-
sured system (i.e., one ignores any couplings between
this system and sources of dissipation). This is reason-
able if such couplings give rise to dynamics on time
scales longer than needed to complete the measurement.
This point is elaborated in Sec. VII, where we discuss
practical considerations related to the quantum limit.
We also discuss in that section the fact that the repeat-
ability of QND measurements is of fundamental practi-
cal importance in overcoming detector inefficiencies
(Gambetta et al., 2007).

A common confusion is to think that a QND measure-
ment has no effect on the state of the system being mea-
sured. While this is true if the initial state is an eigen-
state of the observable, it is not true in general. Consider
again our example of a spin oriented in the x direction.
The result of the first 4, measurement will be that the
state randomly and completely unpredictably collapses
onto one of the two &, eigenstates: the state is indeed
altered by the measurement. However, all subsequent
measurements using the same orientation for the detec-
tors will always agree with the result of the first mea-
surement. Thus QND measurements may affect the
state of the system, but never the value of the observ-
able (once it is determined). Other examples of QND
measurements include (i) measurement of the electro-
magnetic field energy stored inside a cavity by determin-
ing the radiation pressure exerted on a moving piston
(Braginsky and Khalili, 1992), (ii) detection of the pres-
ence of a photon in a cavity by its effect on the phase of
an atom’s superposition state (Nogues et al, 1999;
Haroche and Raimond, 2006), and (iii) the “dispersive”
measurement of a qubit state by its effect on the fre-
quency of a driven microwave resonator (Blais ef al.,
2004; Wallraff et al., 2004; Lupascu et al., 2007), which is
the first canonical example described below.

In contrast to the above, in non-QND measurements
the back-action of the measurement will affect the ob-
servable being studied. The canonical example we con-
sider is the position measurement of a harmonic oscilla-
tor. Since the position operator does not commute with
the Hamiltonian, the QND criterion is not satisfied.
Other examples of non-QND measurements include (i)
photon counting via photodetectors that absorb the pho-
tons, (ii) continuous measurements where the observ-
able does not commute with the Hamiltonian, thus in-
ducing a time dependence of the measurement result,
and (iii) measurements that can be repeated only after a
time longer than the energy relaxation time of the sys-
tem (e.g., for a qubit, 7).
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A. Weak continuous measurements

In discussing “real” quantum measurements, another
key notion to introduce is that of weak continuous mea-
surements (Braginsky and Khalili, 1992). Many measure-
ments in practice take an extended time interval to com-
plete, which is much longer than the “microscopic” time
scales (oscillation periods, etc.) of the system. The rea-
son may be quite simply that the coupling strength be-
tween the detector and the system cannot be made arbi-
trarily large, and one has to wait for the effect of the
system on the detector to accumulate. For example, in
our Stern-Gerlach measurement, suppose that we are
only able to achieve small magnetic field gradients and
that, consequently, the displacement d cannot be made
large compared to the wave packet spread (see Fig. 2).
In this case the states & would have nonzero overlap
and it would not be possible to reliably distinguish them:
we thus would have only a weak measurement. How-
ever, by cascading together a series of such measure-
ments and taking advantage of the fact that they are
QND, we can eventually achieve an unambiguous strong
projective measurement: at the end of the cascade, we
are certain of which &, eigenstate the spin is in. During
this process, the overlap of &, would gradually fall to
zero corresponding to a smooth continuous loss of phase
coherence in the transverse spin components. At the end
of the process, the QND nature of the measurement en-
sures that the probability of measuring o,=1 or | will
accurately reflect the initial wave function. Note that it is
only in this case of weak continuous measurements that
it makes sense to define a measurement rate in terms of
a rate of gain of information about the variable being
measured, and a corresponding dephasing rate, the rate
at which information about the conjugate variable is be-
ing lost. We see that these rates are intimately related
via the Heisenberg uncertainty principle.

While strong projective measurements may seem to
be the ideal, there are many cases where one may inten-
tionally desire a weak continuous measurement; as dis-
cussed in the Introduction. There are many practical ex-
amples of weak continuous measurement schemes.
These include (i) charge measurements, where the cur-
rent through a device [e.g., quantum point contact
(QPCQ) or single-electron transistor (SET)] is modulated
by the presence or absence of a nearby charge, and
where it is necessary to wait for a sufficiently long time
to overcome the shot noise and distinguish between the
two current values, (ii) the weak dispersive qubit mea-
surement discussed below, and (iii) displacement detec-
tion of a nanomechanical beam (e.g., optically or by ca-
pacitive coupling to a charge sensor), where one looks at
the two quadrature amplitudes of the signal produced at
the beam’s resonance frequency.

Not surprisingly, quantum noise plays a crucial role in
determining the properties of a weak continuous quan-
tum measurement. For such measurements, noise both
determines the back-action effect of the measurement
on the measured system and how quickly information is
acquired in the measurement process. Previously, we
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saw that a crucial feature of quantum noise is the asym-
metry between positive and negative frequencies; we
further saw that this corresponds to the difference be-
tween absorption and emission events. For measure-
ments, another key aspect of quantum noise will be im-
portant: as will be discussed extensively, quantum
mechanics places constraints on the noise of any system
capable of acting as a detector or amplifier. These con-
straints in turn place restrictions on any weak continu-
ous measurement, and lead directly to quantum limits
on how well one can make such a measurement.

In the remainder of this section, we give an introduc-
tion to how one describes a weak continuous quantum
measurement, considering the specific examples of using
parametric coupling to a resonant cavity for QND detec-
tion of the state of a qubit and the (necessarily non-
QND) detection of the position of a harmonic oscillator.
In the following section (Sec. IV), we give a derivation
of a very general quantum-mechanical constraint on the
noise of any system capable of acting as a detector, and
show how this constraint directly leads to the quantum
limit on qubit detection. Finally, in Sec. V, we turn to the
important but slightly more involved case of a quantum
linear amplifier or position detector. We show that the
basic quantum noise constraint derived Sec. IV again
leads to a quantum limit; here this limit is on how small
one can make the added noise of a linear amplifier.

Before leaving this section, it is worth pointing out
that the theory of weak continuous measurements is
sometimes described in terms of some set of auxiliary
systems which are sequentially and momentarily weakly
coupled to the system being measured (see Appendix
E). One then envisions a sequence of projective von
Neumann measurements on the auxiliary variables. The
weak entanglement between the system of interest and
one of the auxiliary variables leads to a kind of partial
collapse of the system wave function (more precisely, the
density matrix), which is described in mathematical
terms not by projection operators, but rather by positive
operator valued measures (POVMs). We will not use
this and the related “quantum trajectory” language here,
but direct the interested reader to the literature for
more information on this important approach (Peres,
1993; Brun, 2002; Haroche and Raimond, 2006; Jordan
and Korotkov, 2006).

B. Measurement with a parametrically coupled resonant
cavity

A simple yet experimentally practical example of a
quantum detector consists of a resonant optical or rf
cavity parametrically coupled to the system being mea-
sured. Changes in the variable being measured (e.g., the
state of a qubit or the position of an oscillator) shift the
cavity frequency and produce a varying phase shift in
the carrier signal reflected from the cavity. This changing
phase shift can be converted (via homodyne interferom-
etry) into a changing intensity; this can then be detected
using diodes or photomultipliers.
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In this section, we analyze weak continuous measure-
ments made using such a parametric cavity detector; this
will serve as a good introduction to the more general
approaches presented later. We show that this detector is
capable of reaching the “quantum limit” meaning that it
can be used to make a weak continuous measurement,
as optimally as is allowed by quantum mechanics. This is
true for both the (QND) measurement of the state of a
qubit and the (non-QND) measurement of the position
of a harmonic oscillator. Complementary analyses of
weak continuous qubit measurement are given by Ma-
khlin et al. (2000, 2001) (using a single-electron transis-
tor) and by Gurvitz (1997), Korotkov (2001b), Korotkov
and Averin (2001), Pilgram and Biittiker (2002), and
Clerk et al. (2003) (using a quantum point contact). We
focus here on a high-Q cavity detector; weak qubit mea-
surement with a low-Q cavity was studied by Johansson
et al. (2006).

It is worth noting the widespread usage of cavity de-
tectors in experiment. One important current realization
is a microwave cavity used to read out the state of a
superconducting qubit (Il'ichev et al., 2003; Blais et al.,
2004; Izmalkov et al., 2004; Lupascu et al., 2004, 2005;
Wallraff et al., 2004; Duty et al., 2005; Schuster et al.,
2005; Sillanpaa et al., 2005). Another class of examples
are optical cavities used to measure mechanical degree
of freedom. Examples of such systems include those
where one of the cavity mirrors is mounted on a canti-
lever (Arcizet et al., 2006; Gigan et al., 2006; Kleckner
and Bouwmeester, 2006). Related systems involve a
freely suspended mass (Abramovici et al., 1992; Corbitt
et al., 2007), an optical cavity with a thin transparent
membrane in the middle (Thompson et al., 2008), and,
more generally, an elastically deformable whispering gal-
lery mode resonator (Schliesser et al., 2006). Systems
where a microwave cavity is coupled to a mechanical
element are also under active study (Blencowe and
Buks, 2007; Regal et al., 2008; Teufel et al., 2008).

We start our discussion with a general observation.
The cavity uses interference and the wave nature of light
to convert the input signal to a phase-shifted wave. For
small phase shifts we have a weak continuous measure-
ment. Interestingly, it is the complementary particle na-
ture of light that turns out to limit the measurement. As
we will see, it both limits the rate at which we can make
a measurement (via photon shot noise in the output
beam) and also controls the back-action disturbance of
the system being measured (due to photon shot noise
inside the cavity acting on the system being measured).
These dual aspects are an important part of any weak
continuous quantum measurement; hence, an under-
standing of both the output noise (i.e., the measurement
imprecision) and back-action noise of detectors will be
crucial.

All of our discussion of noise in the cavity system will
be framed in terms of the number-phase uncertainty re-
lation for coherent states. A coherent photon state con-
tains a Poisson distribution of the number of photons,
implying that the fluctuations in photon number obey

(AN)?=N, where N is the mean number of photons. Fur-
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ther, coherent states are overcomplete and states of dif-
ferent phase are not orthogonal to each other; this di-
rectly implies (see Appendix G) that there is an
uncertainty in any measurement of the phase. For large

N, this is given by

(A9)*=1/4N. (3.5
Thus, large-N coherent states obey the number-phase
uncertainty relation

ANAG=3, (3.6)

analogous to the position-momentum uncertainty rela-
tion.

Equation (3.6) can also be usefully formulated in
terms of noise spectral densities associated with the
measurement. Consider a continuous photon beam car-

rying an average photon flux N. The variance in the
number of photons detected grows linearly in time and
can be represented as (AN)?’=Sxxt, where Syy is the
white-noise spectral density of photon flux fluctuations.
On a physical level, it describes photon shot noise, and is

given by Sxn=N.

Consider now the phase of the beam. Any homodyne
measurement of this phase will be subject to the same
photon shot noise fluctuations discussed above (see Ap-
pendix G for more details). Thus, if the phase of the
beam has some nominal small value 6,, the output signal
from the homodyne detector integrated up to time ¢ will
be of the form I=6y+ [(d756(7), where 86 is a noise
representing the imprecision in our measurement of 6,
due to the photon shot noise in the output of the homo-
dyne detector. An unbiased estimate of the phase ob-
tained from I is §=1/t, which obeys (6)= 6,. Further, one
has (A6)*>=S8,,/t, where S, is the spectral density of the
86 white noise. Comparison with Eq. (3.5) yields

Spo=1/4N. (3.7)

The above results lead us to the fundamental wave-
particle relation for ideal coherent beams,

(3.8)

Before we study the role that these uncertainty rela-
tions play in measurements with high-Q cavities, con-
sider the simplest case of reflection of light from a mir-
ror without a cavity. The phase shift of the beam (having
wave vector k) when the mirror moves a distance x is
2kx. Thus, the uncertainty in the phase measurement
corresponds to a position imprecision which can again
be represented in terms of a noise spectral density S
=S40/4k?. Here the superscript I refers to the fact that
this is noise representing imprecision in the measure-
ment, not actual fluctuations in the position. We also
need to worry about back-action: each photon hitting
the mirror transfers a momentum 2%k to the mirror, so
photon shot noise corresponds to a random back-action
force noise spectral density Spp=44%k>Syx. Multiplying

WS %
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these together, we have the central result for the product
of the back-action force noise and the imprecision,

SppSt. = h2S xS o= 124, (3.9)
or in analogy with Eq. (3.6)
VSRSt =112, (3.10)

Not surprisingly, the situation considered here is as ideal
as possible. Thus, the RHS above is actually a lower
bound on the product of imprecision and back-action
noise for any detector capable of significant amplifica-
tion; we will prove this rigorously in Sec. IV.A Equation
(3.10) thus represents the quantum limit on the noise of
our detector. As we will see shortly, having a detector
with quantum-limited noise is a prerequisite for reaching
the quantum limit on various different measurement
tasks (e.g., continuous position detection of an oscillator
and QND qubit state detection). Note that in general, a
given detector will have more noise than the quantum-
limited value; we devote considerable effort later to de-
termining the conditions needed to achieve the lower
bound of Eq. (3.10).

We now turn to the story of measurement using a
high-Q cavity; it will be similar to the above discussion,
except that we have to account for the filtering of the
noise by the cavity response. We relegate relevant calcu-
lational details to Appendix E. The cavity is simply de-
scribed as a single bosonic mode coupled weakly to elec-
tromagnetic modes outside the cavity. The Hamiltonian
of the system is given by

H=Hy+hw(l+A2)ad"d+ Hep,. (3.11)

Here H, is the unperturbed Hamiltonian of the system
whose variable Z (which is not necessarily a position) is
being measured, 4 is the annihilation operator for the
cavity mode, and w, is the cavity resonance frequency in
the absence of the coupling A. We will take both A and

Z to be dimensionless. The term I—AlenVt describes the elec-
tromagnetic modes outside the cavity, and their coupling
to the cavity; it is responsible for both driving and damp-
ing the cavity mode. The damping is parametrized by
rate «, which tells us how quickly energy leaks out of the
cavity; we consider the case of a high-quality factor cav-
ity, where Q.= w./k>1.

Turning to the interaction term in Eq. (3.11), we see
that the parametric coupling strength A determines the
change in frequency of the cavity as the system variable
Z changes. We assume for simplicity that the dynamics of
Z is slow compared to «. In this limit the reflected phase
shift simply varies slowly in time adiabatically following
the instantaneous value of Z. We also assume that the
coupling A is small enough that the phase shifts are al-
ways very small and hence the measurement is weak.
Many photons will have to pass through the cavity be-
fore much information is gained about the value of the
phase shift and hence the value of Z.

We first consider the case of a one-sided cavity where
only one of the mirrors is semitransparent, the other
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being perfectly reflecting. In this case, a wave incident
on the cavity [say, in a one-dimensional (1D) waveguide]
will be perfectly reflected, but with a phase shift 6 deter-
mined by the cavity and the value of Z. The reflection
coefficient at the bare cavity frequency w, is simply
given by (Walls and Milburn, 1994)

r=—(1+2iA0.5)/(1 -2iAQ0.3). (3.12)

Note that r has unit magnitude because all incident pho-
tons are reflected if the cavity is lossless. For weak cou-
pling we can write the reflection phase shift as r=—e’,
where

0*4QCAZA: (chf)tw]). (313)

We see that the scattering phase shift is simply the fre-
quency shift caused by the parametric coupling multi-
plied by the Wigner delay time (Wigner, 1955)

twp=Im dlnr/dw=4/k. (3.14)

Thus the measurement-imprecision noise power for a

given photon flux N incident on the cavity is given by

Siz = Spl(Awtyp)*.

The random part of the generalized back-action force
conjugate to 7 is, from Eq. (3.11),

(3.15)

F,=—0H/9% = — Ahw.O0, (3.16)
where, since Z is dimensionless, ﬁz has units of energy.
Here &i=rA-n=a'a—(a'd) represents the photon-
number fluctuations around the mean 7 inside the cavity.
The back-action force noise spectral density is thus

Sk.F, = (A w.)*S,,. (3.17)
As shown in Appendix E, the cavity filters the photon
shot noise so that at low frequencies w<< k, the number
fluctuation spectral density is simply

Snn:ﬁtWD' (318)

The mean photon number in the cavity is found to be

ﬁ:NtWD, where again N is the mean photon flux inci-
dent on the cavity. From this it follows that

Sr.r, = (Afw.twp) S - (3.19)
Combining this with Eq. (3.15) again yields the same
result as Eq. (3.10) obtained without the cavity. The
parametric cavity detector (used in this way) is thus a
quantum-limited detector, meaning that the product of
its noise spectral densities achieves the ideal minimum
value.

We now examine how the quantum limit on the noise
of our detector directly leads to quantum limits on dif-
ferent measurement tasks. In particular, we consider the
cases of continuous position detection and QND qubit
state measurement.
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FIG. 3. (Color online) Distribution of the integrated output for
the cavity detector I(¢) for the two different qubit states. The
separation of the means of the distributions grows linearly in
time, while the widths of the distributions grow only as V1.

1. QND measurement of the state of a qubit using a resonant
cavity

Here we specialize to the case where the system op-
erator Z=¢, represents the state of a spin-1/2 quantum
bit. Equation (3.11) becomes

H=1hwy 6, + o1 +Ad,)d"d + Hepy. (3.20)

We see that ¢, commutes with all terms in the Hamil-
tonian and is thus a constant of the motion (assuming

that f]envt contains no qubit decay terms so that 7 =)
and hence the measurement will be QND. From Eq.
(3.13) we see that the two states of the qubit produce
phase shifts =6, where

00:chtWD' (321)

As 6y<1, we need many reflected photons before we
are able to determine the state of the qubit. This is a
direct consequence of the unavoidable photon shot
noise in the output of the detector, and is a basic feature
of weak measurements—information on the input is ac-
quired only gradually in time.

Let I(¢) be the homodyne signal for the wave reflected
from the cavity integrated up to time ¢. Depending on
the state of the qubit the mean value of I will be (/)
=+6yt, and the rms Gaussian fluctuations about the
mean will be A/= \m As shown in Fig. 3 and discussed
by in Makhlin et al. (2001), the integrated signal is drawn
from one of two Gaussian distributions, which are better
and better resolved with increasing time (as long as the
measurement is QND). The state of the qubit thus be-
comes ever more reliably determined. The signal energy
to noise energy ratio becomes

SNR = (IY/(AD)?> = /S et , (3.22)

which can be used to define the measurement rate via

[ eas = SNR/2 = /28 45= 128! (3.23)

There is a certain arbitrariness in the scale factor of 2
appearing in the definition of the measurement rate; this
particular choice is motivated by precise information-
theoretic grounds (as defined, I, is the rate at which
the “accessible information” grows, Appendix F).
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While Eq. (3.20) makes it clear that the state of the
qubit modulates the cavity frequency, we can easily re-
write this equation to show that this same interaction
term is also responsible for the back-action of the mea-
surement (i.e., the disturbance of the qubit state by the
measurement process)

H = (112)(wg; + 2A0,d"0)6, + hwd'd + Hepy. (3.24)

We now see that the interaction can also be viewed as
providing a “light shift” (i.e., ac Stark shift) of the qubit
splitting frequency (Blais et al, 2004; Schuster et al.,
2005) which contains a constant part 2A71A w, plus a ran-

domly fluctuating part Awm:Zﬁz/ f, that depends on 7
=ad'd, the number of photons in the cavity. During a
measurement, 7 will fluctuate around its mean and act as
a fluctuating back-action “force” on the qubit. In the
present QND case, noise in /i=4'G@ cannot cause transi-
tions between the two qubit eigenstates. This is the op-
posite of the situation considered in Sec. I1.B, where we
wanted to use the qubit as a spectrometer. Despite the
lack of any noise-induced transitions, there still is a
back-action here, as noise in 7 causes the effective split-
ting frequency of the qubit to fluctuate in time. For weak
coupling, the resulting phase diffusion leads to
measurement-induced dephasing of superpositions in
the qubit (Blais et al., 2004; Schuster et al., 2005) accord-
ing to

(e7) = eXp(—if dTAwOI(T)) (3.25)

0
For weak coupling the dephasing rate is slow and thus
we are interested in long times ¢. In this limit the integral
is a sum of a large number of statistically independent
terms and thus we can take the accumulated phase to be
Gaussian distributed. Using the cumulant expansion we
then obtain

) 1 t 2
(e719) = exp(— > {f dTAwm(T)} )
0

2
=exp| - ESFzet .

Note also that the noise correlator above is naturally
symmetrized—the quantum asymmetry of the noise
plays no role for this type of coupling. Equation (3.26)
yields the dephasing rate

T, = Q)Srr, = 26035 K- (3.27)

Using Egs. (3.23) and (3.27), we find the interesting
conclusion that the dephasing rate and measurement
rates coincide,

T/l ineas = (4157)SL S p = 4S§nSgp= 1.

(3.26)

(3.28)

As we will see and prove rigorously, this represents the
ideal quantum-limited case for QND qubit detection:
the best one can do is measure as quickly as one
dephases. In keeping with our earlier discussions, it rep-
resents the enforcement of the Heisenberg uncertainty
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principle. The faster you gain information about one
variable, the faster you lose information about the con-
jugate variable. Note that, in general, the ratio I',/ T e,
will be larger than 1, as an arbitrary detector will not
reach the quantum limit on its noise spectral densities.
Such a nonideal detector produces excess back-action
beyond what is required quantum mechanically.

In addition to the quantum noise point of view pre-
sented above, there is a second complementary way in
which to understand the origin of measurement-induced
dephasing (Stern et al., 1990), which is analogous to our
description of loss of transverse spin coherence in the
Stern-Gerlach experiment in Eq. (3.3). The measure-
ment takes the incident wave, described by a coherent
state |a@), to a reflected wave described by a (phase
shifted) coherent state |r;-a) or |r|-a), where ry; is the
qubit-dependent reflection amplitude given in Eq. (3.12).
Considering now the full state of the qubit-plus-detector,
the measurement results in a state change:

1 1 .
=D +11) ® |y = —=(e"1™[1) ® |r; - a)
V2 V2

+emien||) & |rL ca)).  (3.29)

As |ry-a) #|r|-a), the qubit has become entangled with
the detector: the above state cannot be written as a
product of a qubit state times a detector state. To assess
the coherence of the final qubit state (i.e., the relative
phase between | and |), one looks at the off-diagonal
matrix element of the qubit’s reduced density matrix,

P = Trdetector(” ¢><¢|T> (330)
=(e*"02)(r, - o|r, - @) (3.31)
=(e*e0’/2) exp[- |af*(1 - rir)l. (3.32)

In Eq. (3.31) we have used the usual expression for the
overlap of two coherent states. We see that the measure-
ment reduces the magnitude of p;: this is dephasing.
The amount of dephasing is directly related to the over-
lap between the different detector states that result
when the qubit is up or down; this overlap can be

straightforwardly found using Eq. (3.32) and |o|*=N

=Nt, where N is the mean number of photons that have
reflected from the cavity after time t. We have

lexpl[— [a*(1 = r}r)]| = exp[- 2N 5] = exp[ - T'1],
(3.33)
with the dephasing rate I';, given by
T,=26N (3.34)

in complete agreement with the previous result in Eq.
(3.27).

2. Quantum limit relation for QND qubit state detection
We now return to the ideal quantum limit relation of

Eq. (3.28). As stated previously, this is a lower bound:
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quantum mechanics enforces the constraint that in a
QND qubit measurement the best you can possibly do is
measure as quickly as you dephase (Devoret and Schoel-
kopf, 2000; Korotkov and Averin, 2001; Makhlin et al.,
2001; Averin, 2000b, 2003; Clerk et al., 2003),

1_‘meas < Fgo'

(3.35)

While a detector with quantum-limited noise has an
equality above, most detectors will be very far from this
ideal limit, and will dephase the qubit faster than they
acquire information about its state. We provide a proof
of Eq. (3.35) in Sec. IV.B; for now, we note that its heu-
ristic origin rests on the fact that both measurement and
dephasing rely on the qubit becoming entangled with
the detector. Consider again Eq. (3.29), describing the
evolution of the qubit-detector system when the qubit is
initially in a superposition of T and |. To say that we
have truly measured the qubit, the two detector states
|ria) and |r|a) need to correspond to different values of
the detector output (i.e., phase shift § in our example);
this necessarily implies they are orthogonal. This in turn
implies that the qubit is completely dephased: p; =0,
just as we saw in Eq. (3.4) in the Stern-Gerlach example.
Thus, measurement implies dephasing. The opposite is
not true. The two states |r;a) and |r|a) could in principle
be orthogonal without them corresponding to different
values of the detector output (i.e., 6). For example, the
qubit may have become entangled with extraneous mi-
croscopic degrees of freedom in the detector. Thus, on a
heuristic level, the origin of Eq. (3.35) is clear.

Returning to our one-sided cavity system, we see from
Eq. (3.28) that the one-sided cavity detector reaches the
quantum limit. It is natural to now ask why this is the
case: Is there a general principle in action here that al-
lows the one-sided cavity to reach the quantum limit?
The answer is yes: reaching the quantum limit requires
that there is no “wasted” information in the detector
(Clerk et al., 2003). There should not exist any unmea-
sured quantity in the detector which could have been
probed to learn more about the state of the qubit. In the
single-sided cavity detector, information on the state of
the qubit is only available in (that is, is entirely encoded
in) the phase shift of the reflected beam; thus, there is no
“wasted” information, and the detector does indeed
reach the quantum limit.

To make this idea of “no wasted information” more
concrete, we now consider a simple detector that fails to
reach the quantum limit precisely due to wasted infor-
mation. Consider again a 1D cavity system where now
both mirrors are slightly transparent. Now, a wave inci-
dent at frequency wgr on one end of the cavity will be
partially reflected and partially transmitted. If the initial
incident wave is described by a coherent state |a), the
scattered state can be described by a tensor product of
the reflected wave’s state and the transmitted wave’s
state,
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(3.36)

where the qubit-dependent reflection and transmission
amplitudes r, and ¢, are given by (Walls and Milburn,
1994)

t,=1/(1+2iAQ,),

|a/> - |ra" a/>|t0' Cl{>,

(3.37)

r =2iQ.A/(1+2iAQ0,), (3.38)

with #,=(¢))* and r;=(r|)*. Note that the incident beam is
almost perfectly transmitted: |¢,|>=1-0(AQ,)>.

Similar to the one-sided case, the two-sided cavity
could be used to make a measurement by monitoring
the phase of the transmitted wave. Using the expression
for ¢, above, we find that the qubit-dependent transmis-
sion phase shift is given by

0, = * 6= +2A0,, (3.39)

where again the two signs correspond to the two differ-
ent qubit eigenstates. The phase shift for transmission is
only half as large as in reflection so the Wigner delay
time associated with transmission is

fWD =2/k. (340)

Upon making the substitution of #wp for twp, the one-
sided cavity Egs. (3.15) and (3.17) remain valid. How-
ever, the internal cavity photon-number shot noise re-
mains fixed so that Eq. (3.18) becomes

Snn = ZﬁfWD (341)
which means that

S = 2NByp = 28 iafn (3.42)
and

Sr.r, = 20 A’ RypSK- (3.43)

As aresult the back-action dephasing doubles relative to
the measurement rate and we have

Tineas/To = 2SN S 09 = 3 (3.44)

Thus the two-sided cavity fails to reach the quantum
limit by a factor of 2.

Using the entanglement picture, we may again alter-
natively calculate the amount of dephasing from the
overlap between the detector states corresponding to
the qubit states 7 and | [cf. Eq. (3.31)]. We find

eiF%"t: |<t1a|tla><rTa|rla>| (345)

=exp[— |o*(1 = (1)1, — (ry)*r))]. (3.46)

Note that both the changes in the transmission and re-
flection amplitudes contribute to the dephasing of the
qubit. Using the above expressions, we find

Tt = 4(G0)%|af? = 4(80)N = 4(8p)*Nt = 2T et (3.47)

Thus, in agreement with the quantum noise result, the
two-sided cavity misses the quantum limit by a factor of
2.
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Why does the two-sided cavity fail to reach the quan-
tum limit? The answer is clear from Eq. (3.46): even
though we are not monitoring it, there is information on
the state of the qubit available in the phase of the re-
flected wave. Note from Eq. (3.38) that the magnitude of
the reflected wave is weak («<A2), but (unlike the trans-
mitted wave) the difference in the reflection phase asso-
ciated with the two qubit states is large (+m/2). The
“missing information” in the reflected beam makes a di-
rect contribution to the dephasing rate [i.e., the second
term in Eq. (3.46)], making it larger than the measure-
ment rate associated with measurement of the transmis-
sion phase shift. In fact, there is an equal amount of
information in the reflected beam as in the transmitted
beam, so the dephasing rate is doubled. We thus have a
concrete example of the general principle connecting a
failure to reach the quantum limit to the presence of
wasted information. Note that the application of this
principle to generalized quantum point contact detectors
is found in Clerk et al. (2003).

Returning to our cavity detector, we note in closing
that it is often technically easier to work with the trans-
mission of light through a two-sided cavity, rather than
reflection from a one-sided cavity. One can still reach
the quantum limit in the two-sided cavity case if one
uses an asymmetric cavity in which the input mirror has
much less transmission than the output mirror. Most
photons are reflected at the input, but those that enter
the cavity will almost certainly be transmitted. The price
to be paid is that the input carrier power must be in-
creased.

3. Measurement of oscillator position using a resonant cavity

The qubit measurement discussed previously was an
example of a QND measurement: the back-action did
not affect the observable being measured. We now con-
sider the simplest example of a non-QND measurement,
namely, the weak continuous measurement of the posi-
tion of a harmonic oscillator. The detector will again be
a parametrically coupled resonant cavity, where the po-
sition of the oscillator x changes the frequency of the
cavity as per Eq. (3.11) [see, e.g., Tittonen et al. (1999)].
Similarly to the qubit case, for a sufficiently weak cou-
pling the phase shift of the reflected beam from the cav-
ity will depend linearly on the position x of the oscillator
[cf. Eq. (3.13)]; by reading out this phase, we may thus
measure x. The origin of back-action noise is the same as
before, namely, photon shot noise in the cavity. Now,
however, this represents a random force which changes
the momentum of the oscillator. During the subsequent
time evolution these random force perturbations will re-
appear as random fluctuations in the position. Thus the
measurement is not QND. This will mean that the mini-
mum uncertainty of even an ideal measurement is larger
(by exactly a factor of 2) than the “true” quantum un-
certainty of the position (i.e., the ground-state uncer-
tainty). This is known as the standard quantum limit on
weak continuous position detection. It is also an ex-
ample of a general principle that a linear phase-
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preserving amplifier necessarily adds noise, and that the
minimum added noise exactly doubles the output noise
for the case where the input is vacuum (i.e., zero-point)
noise. A more general discussion of the quantum limit
on amplifiers and position detectors will be presented in
Sec. V.

We start by emphasizing that we are speaking here of
a weak continuous measurement of the oscillator posi-
tion. The measurement is sufficiently weak that the po-
sition undergoes many cycles of oscillation before sig-
nificant information is acquired. Thus we are not talking
about the instantaneous position but rather the overall
amplitude and phase, or more precisely the two quadra-
ture amplitudes describing the smooth envelope of the
motion,

£(6) = X(H)cos(Qt) + Y()sin(Q4). (3.48)

One can easily show that, for an oscillator, the two

quadrature amplitudes X and Y are canonically conju-
gate and hence do not commute with each other,

[X,Y] = iIMQ = 2ix%pp. (3.49)

As the measurement is both weak and continuous, it will

yield information on both X and Y. As such, one is ef-
fectively trying to simultaneously measure two incom-
patible observables. This basic fact is intimately related
to the property mentioned above, that even a com-
pletely ideal weak continuous position measurement will
have a total uncertainty that is twice the zero-point un-
certainty.

We are now ready to start our heuristic analysis of
position detection using a cavity detector; relevant cal-
culational details presented in Appendix E.3. Consider
first the mechanical oscillator we wish to measure. We
take it to be a simple harmonic oscillator of natural fre-
quency ) and mechanical damping rate 7y, For weak
damping, and at zero coupling to the detector, the spec-
tral density of the oscillator’s position fluctuations is
given by Egl (2.4) with the delta function replaced by a
Lorentzian

Yo
(0 + Q)%+ (9/2)?

S Jw]= xZZPF{ ng(#Q)

Yo
(0= Q)+ (%/2)* )’

When we now weakly couple the oscillator to the cav-
ity [as per Eq. (3.11), with Z=X/xzpg] and drive the cav-
ity on resonance, the phase shift 6 of the reflected beam
will be proportional to x (i.e., 80(¢t)=[d60/dx]x(t)). As
such, the oscillator’s position fluctuations will cause ad-

+[ng(hQ) +1]

(3.50)

>This form is valid only for weak damping because we are
assuming that the oscillator frequency is still sharply defined.
We have evaluated the Bose-Einstein factor exactly at fre-
quency ) and have assumed that the Lorentzian centered at
positive (negative) frequency has negligible weight at negative
(positive) frequencies.

Rev. Mod. Phys., Vol. 82, No. 2, April-June 2010

12
10

8 qareaprop.to T,

6 - measurement

imprecision

Output Noise Syi(w) (arb. units)

4
2

0_| T T T T

0.0 0.5 1.0 1.5 2.0
Frequency o/ Q

FIG. 4. (Color online) Spectral density of the symmetrized
output noise S, w] of a linear position detector. The oscilla-
tor’s noise appears as a Lorentzian on top of a noise floor (i.e.,
the measurement imprecision). As discussed in the text, the
width of the peak is proportional to the oscillator damping rate
v, While the area under the peak is proportional to tempera-
ture. This latter fact can be used to calibrate the response of
the detector.

ditional fluctuations of the phase 6, over and above the
intrinsic shot noise-induced phase fluctuations Sgy. We
consider the usual case where the noise spectrometer
being used to measure the noise in 6 (i.e., the noise in
the homodyne current) measures the symmetric-in-
frequency noise spectral density; as such, it is the
symmetric-in-frequency position noise that we detect. In
the classical limit k37> (), this is given by

- 1
Sxx[w] = E(Sxx[w] + Sxx[_ w])

- kgT Yo
2MO? (Jo| = Q)% + (1/2)*

(3.51)

If we ignore back-action effects, we expect to see this
Lorentzian profile riding on top of the background im-
precision noise floor; this is shown in Fig. 4.

Note that additional stages of amplification would also
add noise, and would thus further augment this back-
ground noise floor. If we subtract off this noise floor, the
full width at half maximum of the curve will give the
damping parameter 7,, and the area under the experi-
mental curve,

* dw - kBT
S —
f 2moalel= e

(3.52)

—

measures the temperature. What the experimentalist ac-
tually plots in making such a curve is the output of the
entire detector-plus-following-amplifier chain. Impor-
tantly, if the temperature is known, then the area of the
measured curve can be used to calibrate the coupling of
the detector and the gain of the total overall amplifier
chain (see, e.g., LaHaye et al., 2004; Flowers-Jacobs et
al.,2007). One can thus make a calibrated plot where the
measured output noise is referred back to the oscillator
position.
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Consider now the case where the oscillator is at zero
temperature. Equation (3.50) then yields for the symme-
trized noise spectral density

’)/0/2
- Q)+ (/2>

One might expect that one could see this Lorentzian
directly in the output noise of the detector (i.e., the
noise), above the measurement-imprecision noise floor.
However, this neglects the effects of measurement back-
action. From the classical equation of motion we expect
the response of the oscillator to the back-action force
F=F,/xzpp [cf. Eq. (3.16)] at frequency o to produce an

ng[w] = XZZPF (3.53)
(|e]

additional displacement &x[w]=yx,[w]Flw], where
XexL @] 18 the mechanical susceptibility
1 1
Xl @] = (3.54)

MO — o —iyyw’
These extra oscillator fluctuations will show up as addi-
tional fluctuations in the output of the detector. For sim-
plicity, we focus on this noise at the oscillator’s reso-
nance frequency (). As a result of the detector’s back-
action, the total measured position noise (i.e., inferred
spectral density) at the frequency () is given by

_ _ O 2
Snal1= 50000+ g, 01 s o
£ TSI 0]+ SL- 1) (3.55)
=50 101+ S, aad Q1. (3.56)

The first term here is just the intrinsic zero-point noise
of the oscillator,

G0

Sxx[‘Q’] = 2'XZZPF/')/O = ﬁ|Xxx[Q]| . (357)
The second term Sxx’add is the total noise added by the
measurement, and includes both the measurement im-
precision SixESizx%PF and the extra fluctuations caused

by the back-action. We stress that S'mtot corresponds to a
position noise spectral density inferred from the output
of the detector: one simply scales the spectral density of

total output fluctuations S 00101l Q2] bY (d6/dx)?.

Implicit in Eq. (3.57) is the assumption that the back-
action noise and the imprecision noise are uncorrelated
and thus add in quadrature. It is not obvious that this is
correct, since in the cavity detector the back-action noise
and output shot noise are both caused by the vacuum
noise in the beam incident on the cavity. It turns out that
there are indeed correlations, however, the symmetrized

(i.e., classical) correlator S, does vanish for our choice
of a resonant cavity drive. Further, Eq. (3.55) assumes
that the measurement does not change the damping rate
of the oscillator. Again, while this will not be true for an
arbitrary detector, it is the case here for the cavity de-
tector when (as we have assumed) it is driven on reso-
nance. Details justifying both these statements are given
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FIG. 5. (Color online) Noise power of the added position noise
of a linear position detector, evaluated at the oscillator’s reso-
nance frequency (S, ,a[Q]) as a function of the magnitude of
the back-action noise spectral density Spr. Spr is proportional
to the oscillator-detector coupling, and in the case of the cavity
detector is also proportional to the power incident on the cav-
ity. The optimal value of Sgp is given by S op=AMQyy/2 [cf.
Eq. (3.59)]. We have assumed that there are no correlations
between measurement-imprecision noise and back-action
noise, as is appropriate for the cavity detector.

in Appendix E; the more general case with nonzero
noise correlations and back-action damping is discussed
in Sec. V.E.

Assuming we have a quantum-limited detector that
obeys Eq. (3.9) (ie., SiXSFF:h2/4) and that the shot
noise is symmetric in frequency, the added position noise
spectral density at resonance [i.e., second term in Eq.
(3.56)] becomes

- A 1
Sxx,add[Q] = |X[‘Q']|2SFF+ Z_ .
SFr

Recall from Eq. (3.19) that the back-action noise is pro-
portional to the coupling of the oscillator to the detector
and to the intensity of the drive on the cavity. The added
position-uncertainty noise is plotted in Fig. 5 as a func-
tion of Sgr. We see that for high drive intensity the back-
action noise dominates the position uncertainty, while
for low drive intensity the output shot noise (the last
term in the equation above) dominates.

The added noise (and hence the total noise S‘xx’lm[Q])
is minimized when the drive intensity is tuned so that
Ser is equal to Sppop, With

Srropt = 12| X[ Q] = (R12)MQy,.

(3.58)

(3.59)

The more heavily damped is the oscillator, the less sus-
ceptible it is to back-action noise and hence the higher is
the optimal coupling. At the optimal coupling strength,
the measurement-imprecision noise and back-action
noise each make equal contributions to the added noise,
yielding

S eadd Q] = AIMQy, = 52 [Q]. (3.60)

Thus, the spectral density of the added position noise is
exactly equal to the noise power associated with the os-
cillator’s zero-point fluctuations. This represents a mini-
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mum value for the added noise of any linear position
detector, and is referred to as the standard quantum
limit on position detection. Note that this limit only in-
volves the added noise of the detector, and thus has
nothing to do with the initial temperature of the oscilla-
tor.

We emphasize that to reach the above quantum limit
on weak continuous position detection one needs the
detector itself to be quantum limited, i.e., the product
SppSL. must be as small as is allowed by quantum me-
chanics, namely, #%/4. Having a quantum-limited detec-
tor, however, is not enough: in addition, one must be
able to achieve sufficiently strong coupling to reach the
optimum given in Eq. (3.59). Further, the measured out-
put noise must be dominated by the output noise of the
cavity, not by the added noise of following amplifier
stages.

A related, stronger quantum limit refers to the total

inferred position noise from the measurement S, [ @].
It follows from Egs. (3.60) and (3.56) that at resonance
the smallest this can be is twice the oscillator’s zero-
point noise

Sxx,tot[Q] = ZSQX[Q] (361)

Half the noise here is from the oscillator itself, half is
from the added noise of the detector. It is even more
challenging to reach this quantum limit: one needs to
both reach the quantum limit on the added noise and
cool the oscillator to its ground state.

Finally, we emphasize that the optimal value of the
coupling derived above was specific to the choice of
minimizing the total position noise power at the reso-
nance frequency. If a different frequency had been cho-
sen, the optimal coupling would have been different;
one again finds that the minimum possible added noise
corresponds to the ground-state noise at that frequency.
It is interesting to ask what the total position noise
would be as a function of frequency, assuming that the
coupling has been optimized to minimize the noise at
the resonance frequency, and that the oscillator is ini-
tially in the ground state. From our results above we
have

G Yo/2
Sxx [w] = xZ
2P (|| = )7 + (99/2)
N ﬁ[ Xurl@]?
2{ [xulO|

+ Ixxx[ﬂ]l}

2 2
__XzpF (7/2)
" {“3<|w|—m2+(70/2>2}’ (362

which is plotted in Fig. 6. Assuming that the detector is
quantum limited, one sees that the Lorentzian peak rises
above the constant background by a factor of 3 when the
coupling is optimized to minimize the total noise power
at resonance. This represents the best one can do when
continuously monitoring zero-point position fluctua-
tions. Note that the value of this peak-to-floor ratio is a
direct consequence of two simple facts which hold for an

Rev. Mod. Phys., Vol. 82, No. 2, April-June 2010

2.0 H
total noise
o 1.5 eq. + back
o% action noise
10
3 1.0 equilibrium
8 noise (T=0)
X
0.5
OO —T_ T T T T T T T
0.0 0.4 0.8 1.2

Frequency w/Q

FIG. 6. (Color online) Spectral density of measured position
fluctuations of a harmonic oscillator S x.totl @] as a function of
frequency w, for a detector which reaches the quantum limit at
the oscillator frequency (). We have assumed that without the
coupling to the detector the oscillator would be in its ground
state. The y axis has been normalized by the zero-point posi-
tion noise spectral density S" [w], evaluated at w=Q. One
clearly sees that the total noise at ) is twice the zero-point
value, and that the peak of the Lorentzian rises a factor of 3

above the background. This background represents the mea-

surement imprecision and is equal to 1/2 of S‘SX(Q).

optimal coupling at the quantum limit: (i) the total
added noise at resonance (back-action plus measure-
ment imprecision) is equal to the zero-point noise and
(ii) back-action and measurement imprecision make
equal contributions to the total added noise. Somewhat
surprisingly, the same maximum peak-to-floor ratio is
obtained when one tries to continuously monitor coher-
ent qubit oscillations with a linear detector which is
transversely coupled to the qubit (Korotkov and Averin,
2001); this is also a non-QND situation. Finally, if one
only wants to detect the noise peak (as opposed to mak-
ing a continuous quantum-limited measurement), one
could use two independent detectors coupled to the os-
cillator and look at the cross correlation between the
two output noises: in this case, there need not be any
noise floor (Jordan and Biittiker, 2005a; Doiron et al.,
2007).

In Table III, we give a summary of recent experiments
which approach the quantum limit on weak continuous
position detection of a mechanical resonator. Note that
in many of these experiments the effects of detector
back-action were not seen. This could either be the re-
sult of too low a detector-oscillator coupling or due to
the presence of excessive thermal noise. As shown, the
back-action force noise serves to slightly heat the oscil-
lator. If it is already at an elevated temperature due to
thermal noise, this additional heating can be hard to re-
solve.

In closing, we stress that this section has given only a
rudimentary introduction to the quantum limit on posi-
tion detection. A complete discussion which treats the
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TABLE III. Synopsis of recent experiments approaching the quantum limit on continuous position detection of a mechanical
resonator. The second column corresponds to the best measurement-imprecision noise spectral density S’ix achieved in the experi-

ment. This value is compared against the zero-point position noise spectral density SXX, calculated using the total measured
resonator damping (which may include a back-action contribution). All spectral densities are at the oscillator’s resonance fre-

quency (). As discussed in the text, there is no quantum limit on how small one can make SL . for an ideal detector, one needs to

\’X’

tune the detector-resonator coupling so that Schx_Sxx/z in order to reach the quantum limit on position detection. The third

column presents the product of the measured imprecision noise (unless otherwise noted) and measured back-action noises, divided

by #/2; this quantity must be one to achieve the quantum limit on the added noise.

Imprecision
Mechanical noise Detect(cj)r I:Sise
frequency [Hz zero-pomt noise roduc

Experiment qm@f,)[ : ST 18° [0] ST Sppl (1112)
Cleland et al. (2002) (quantum point contact) 1.5x 100 4.2x10*
Knobel and Cleland (2003) (single-electron transistor) 1.2x108 1.8 102
LaHaye er al. (2004) (single-electron transistor) 2.0%x107 5.4
Naik et al. (2006) (single-electron transistor) 2.2%107 53" 8.1x10?
(if $7, had been limited by SET shot noise) 1.5%x 10!
Arcizet et al. (2006) (optical cavity) 8.1x10° 0.87
Flowers-Jacobs et al. (2007) (atomic point-contact) 4.3x107 29 1.7x10°
Regal et al. (2008) (microwave cavity) 2.4%10° 21
Schliesser et al. (2008) (optical cavity) 4.1x107 0.50
Poggio et al. (2008) (quantum point contact) 52x10° 63
Etaki et al. (2008) (dc SQUID) 2.0x10° 47
Groblacher et al. (2009) (optical cavity) 9.5x 102 0.57
Schliesser et al. (2009) (optical cavity) 6.5x107 5.5 1.0x 10%
Teufel et al. (2009) (microwave cavity) 1.0x 100 0.63

2A blank value in this column indicates that back-action was not measured in the experiment.
PNote that back-action effects dominated the mechanical Q in this measurement, lowering it from 1.2 X 10° to ~4.2 X 10%. If one

compares the imprecision against the zero-point noise of the uncoupled mechanical resonator, one finds \SI / S0 [Q]~0.33.

important topics of back-action damping, effective tem-
perature, noise cross correlation, and power gain is
given in Sec. V.E.

IV. GENERAL LINEAR-RESPONSE THEORY
A. Quantum constraints on noise

In this section, we further develop the connection be-
tween quantum limits and noise discussed previously, fo-
cusing now on a more general approach. As before, we
emphasize the idea that reaching the quantum limit re-
quires a detector having quantum-ideal noise properties.
The approach here is different from typical treatments
in the quantum optics literature (Gardiner and Zoller,
2000; Haus, 2000), and uses nothing more than features
of quantum linear response. Our discussion here will ex-
pand upon Clerk et al. (2003) and Clerk (2004); some-
what similar approaches to quantum measurement are
also discussed by Braginsky and Khalili (1992) and
Averin (2003).

In this section, we start by heuristically sketching how
constraints on noise [similar to Eq. (3.9) for the cavity
detector] can emerge directly from the Heisenberg un-
certainty principle. We then present a rigorous and gen-
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eral quantum constraint on noise. We introduce both the
notion of a generic linear-response detector and the ba-
sic quantum constraint on detector noise. Next, we dis-
cuss how this noise constraint leads to the quantum limit
on QND state detection of a qubit. The quantum limit
on a linear amplifier (or a position detector) is discussed
in the next section.

1. Heuristic weak-measurement noise constraints

As stressed in the introduction, there is no fundamen-
tal quantum limit on the accuracy with which a given
observable can be measured, at least not within the
framework of nonrelativistic quantum mechanics. For
example, one can, in principle, measure the position of a
particle to arbitrary accuracy in the course of a projec-
tion measurement. However, the situation is different
when we specialize to continuous non-QND measure-
ments. Such a measurement can be envisaged as a series
of instantaneous measurements, in the limit where the
spacing between the measurements ¢ is taken to zero.
Each measurement in the series has a limited resolution
and perturbs the conjugate variables, thereby affecting
the subsequent dynamics and measurement results. We
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input output
operator

detector

FIG. 7. (Color online) Schematic of a generic linear-response
detector.

discuss this for the example of a series of position mea-
surements of a free particle.

After initially measuring the position with an accuracy
Ax, the momentum suffers a random perturbation of
size Ap=1/(2Ax). Consequently, a second position mea-
surement taking place a time &t later will have an addi-
tional uncertainty of size &t(Ap/m)~hdt/mAx. Thus,
when one is trying to obtain a good estimate of the po-
sition by averaging several such measurements, it is not
optimal to make Ax too small, because otherwise this
additional perturbation, called the back-action of the
measurement device, will become large. The back-action
can be described as a random force AF=Ap/dt. A mean-
ingful limit &—0 is obtained by keeping both Ax?dt

=S, and Ap?/ 8t= Sy fixed. In this limit, the deviations
&x(t) describing the finite measurement accuracy and the
fluctuations of the back-action force F can be described
as white noise processes, (x(f)éx(0))=S,,8() and
(F(1)F(0))=Sz8(t). The Heisenberg uncertainty relation
ApAx=#/2 then implies S,.Sp-=#%%/4 (Braginsky and
Khalili, 1992). Note that this is completely analogous to
the relation (3.9) we derived for the resonant cavity de-
tector using the fundamental number-phase uncertainty
relation. In this section, we derive rigorously more gen-

eral quantum limit relations on noise spectral densities
of this form.

2. Generic linear-response detector

To rigorously discuss the quantum limit, we start with
a description of a detector that is as general as possible.
To that end, we think of a detector as some physical

system (described by some unspecified Hamiltonian ﬁdet
and some unspecified density matrix p,) which is time
independent in the absence of coupling to the signal
source. The detector has both an input port, character-

ized by an operator F, and an output port, characterized

by an operator I (see Fig. 7). The output operator I is
simply the quantity that is read out at the output of the
detector (e.g., the current in a single-electron transistor,
or the phase shift in the cavity detector of the previous

section). The input operator F is the detector quantity
that directly couples to the input signal (e.g., the qubit)
and that causes a back-action disturbance of the signal
source; in the cavity example of the previous section, we
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had F=#, the cavity photon number. As we are inter-
ested in weak couplings, we assume a simple bilinear
form for the detector-signal interaction Hamiltonian
H,, = AXF. 4.1)
Here the operator £ (which is not necessarily a position
operator) carries the input signal. Note that because *
belongs to the signal source, it necessarily commutes

with the detector variables [ ,I:“.

We always assume the coupling strength A to be small
enough that we can accurately describe the output of the
detector using linear response.® We thus have

()= (D), + A f dt’ x et — 1)(x(1)), (4.2)

where (1), is the input-independent value of the detector
output at zero coupling and y;x(¢) is the linear-response
susceptibility or gain of our detector. Note that Clerk et
al. (2003) and Clerk (2004) denoted this gain coefficient
\. Using standard time-dependent perturbation theory

in the coupling H,,, one can easily derive Eq. (4.2), with
x:r(t) given by a Kubo-like formula,

xXie() = = (i11) 001 (1), F(0) ).

Here and in what follows the operators [ and F are
Heisenberg operators with respect to the detector
Hamiltonian, and the subscript 0 indicates an expecta-
tion value with respect to the density matrix of the un-
coupled detector.

As discussed, there will be unavoidable noise in both
the input and output ports of our detector. This noise is
subject to quantum-mechanical constraints, and its pres-
ence is what limits our ability to make a measurement or
amplify a signal. We thus need to quantitatively charac-
terize the noise in both these ports. Recall from the dis-
cussion in Sec. II.B that it is the symmetric-in-frequency
part of a quantum noise spectral density which plays a
role akin to classical noise. We thus want to characterize
the symmetrized noise correlators of our detector (de-
noted as always with an overbar). Redefining these op-
erators so that their average value is zero at zero cou-

pling (i.e., ﬁaﬁ—(ﬁ}o, f—>f—<i>0), we have

(4.3)

Srd] = % f dt e ({F (). F(0) Dy, (4.42)

—o

- 1(” LA A
Su[w]EE f dt e""{1(1),1(0)})o, (4.4b)

—o0

SThe precise condition for the breakdown of linear response
will depend on specific details of the detector. For example, in
the cavity detector discussed in Sec. III.B, one would need the
dimensionless coupling A to satisfy A <1/0Q«Z) to ensure that
the nonlinear dependence of the phase shift # on the signal (Z)
is negligible. This translates to the signal modulating the cavity
frequency by an amount much smaller than its linewidth «.
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_ 1~ . ~ ~
SiHw] = EJ' dt e'"({1(1),F(0)})o, (4.4c)

where {,} indicates the anticommutator, S;; represents

the intrinsic noise in the output of the detector, and Sgr
describes the back-action noise seen by the source of the
input signal. In general, there will be some correlation
between these two kinds of noise; this is described by

the cross correlator S;p.

Finally, we must also allow for the possibility that our
detector could operate in reverse (i.e., with input and
output ports playing opposite roles). We thus introduce
the reverse gain yy; of our detector. This is the response
coefficient describing an experiment where we couple
our input signal to the output port of the detector (i.e.,

I:Iim:A)Ef), and attempt to observe something at the in-

put port [i.e., in (F())]. In complete analogy to Eq. (4.2),
one would then have

(F(t)y = (F)y+ A f dt’ xp(t — 1)) (4.5)
with
Xei(t) = = (i1R) 6O F(2),1(0) ). (4.6)

Note that if our detector is in a time-reversal symmetric,
thermal equilibrium state, then Onsager reciprocity re-
lations would imply either y;z= )(;I (if 7 and F have the
same parity under time reversal) or x;z=—x,, (if I and F
have the opposite parity under time reversal) [see, e.g.,
Pathria (1996)]. Thus, if the detector is in equilibrium,
the presence of gain necessarily implies the presence of
reverse gain. Nonzero reverse gain is also found in many
standard classical electrical amplifiers such as op-amps
(Boylestad and Nashelsky, 2006).

The reverse gain is something that we must worry
about even if we are not interested in operating our de-
tector in reverse. To see why, note that to make a mea-

surement of the output operator I, we must necessarily
couple to it in some manner. If yz # 0, the noise associ-
ated with this coupling could in turn lead to additional

back-action noise in the operator F. Even if the reverse
gain did nothing but amplify vacuum noise entering the
output port, this would heat up the system being mea-
sured at the input port and hence produce excess back-
action. Thus, the ideal situation is to have yz=0, imply-
ing a high asymmetry between the input and output of
the detector, and requiring the detector to be in a state
far from thermodynamic equilibrium. We note that al-
most all mesoscopic detectors that have been studied in
detail (e.g., single-electron transistors and generalized
quantum point contacts) have been found to have a van-
ishing reverse gain: xp;=0 (Clerk et al., 2003). For this
reason, we often focus on the ideal (but experimentally
relevant) situation where yz=0 in what follows.

Before proceeding, it is worth emphasizing that there
is a relation between the detector gains y;r and yr; and
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the unsymmetrized I-F quantum noise correlator, S;{ w].
This spectral density, which need not be symmetric in
frequency, is defined as

S;Hw] = f z dt e (I(t) F(0)). (4.7)
Using the definitions, one can easily show that

Sido] = 3Sido] + Sid- o]l (4.8)

xid o] = xplo]* =~ @RS dw] - S~ o]].  (4.8b)

Thus, while S, represents the classical part of the I-F
quantum noise spectral density, the gains x;r, xr; are de-
termined by the quantum part of this spectral density.
This also demonstrates that though the gains have an
explicit factor of 1/# in their definitions, they have a
well-defined % — 0 limit, as the asymmetric-in-frequency
part of S;{ w] vanishes in this limit.

3. Quantum constraint on noise

Despite having said nothing about the detector’s
Hamiltonian or state (except that it is time indepen-
dent), we can nonetheless derive a general quantum con-
straint on its noise properties. Note first that for purely
classical noise spectral densities one always has the in-
equality

Sulw]lS e w] - |S;{w]* = 0. (4.9)

This simply expresses the fact that the correlation be-
tween two different noisy quantities cannot be arbi-
trarily large; it follows immediately from the Schwartz
inequality. In the quantum case, this simple constraint
becomes modified whenever there is an asymmetry be-
tween the detector’s gain and reverse gain. This asym-
metry is parametrized by the quantity y;d o],

X ol = xid o] = (xplwl)*. (4.10)

We show below that the following quantum noise in-
equality (involving symmetrized noise correlators) is al-
ways valid [see also Eq. (6.36) in Braginsky and Khalili
(1996)],

Sll[w]gFF[w] - |SIF[W]|2
5 _
(1ea] S )
hxiA wl/2
where

Alz]=[1+ 2% - (1 +|z)]2. (4.12)

To interpret the quantum noise inequality Eq. (4.11),
note that 1+A[z]=0. Equation (4.11) thus implies that if
our detector has gain and does not have a perfect sym-
metry between input and output (i.e., x;r# )(;I), then it
must in general have a minimum amount of back-action
and output noise; moreover, these two noises cannot be
perfectly anticorrelated. As shown in the following sec-
tions, this constraint on the noise of a detector directly

ﬁf(m[w]
2

=
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leads to quantum limits on various different measure-
ment tasks. Note that in the zero-frequency limit y;z and

S;r are both real, implying that the term involving A in
Eq. (4.11) vanishes. The result is a simpler-looking in-
equality found elsewhere (Averin, 2003; Clerk et al.,
2003; Clerk, 2004).

While Eq. (4.11) may appear reminiscent of the stan-
dard fluctuation-dissipation theorem, its origin is quite
different: in particular, the quantum noise constraint ap-
plies irrespective of whether the detector is in equilib-
rium. Equation (4.11) instead follows directly from
Heisenberg’s uncertainty relation applied to the fre-

quency representation of the operators [ and F. In its
most general form, the Heisenberg uncertainty relation
gives a lower bound for the uncertainties of two observ-
ables in terms of their commutator and their noise cor-
relator (Gottfried, 1966),

(AA)X(AB)? = L({A, B} + S[([A,BDP. (4.13)

Here we have assumed <A>=<é>=o. We now choose the
Hermitian operators A and B to be given by the cosine

transforms of I and F, respectively, over a finite time
interval T,

. 5 (T2 .

A= \/jf dt cos(wt + 8)I(t), (4.14a)
TJ 1

. 5 (T2 A

B= \/jJ dt cos(wt) F(t). (4.14b)
TJ) 1

Note that we have phase shifted the transform of I rela-

tive to that of £ by a phase 6. In the limit 7— < we find,
at any finite frequency w#0

(AA)=S;[w], (AB)?=Spdw], (4.15a)
{A,B}) =2 Re €S {w], (4.15b)
([A,B]) = f - dt cos(wt + S)[1(), F(0)])

= it Re[e"(x;d 0] — (xpl@])*)]. (4.15¢)

In the last equality, we have simply made use of the
Kubo formula definitions of the gain and reverse gain
[cf. Egs. (4.3) and (4.6)]. As a consequence of Egs.
(4.15a), (4.15b), and (4.15¢), the Heisenberg uncertainty
relation (4.13) directly yields

_ _ o h2 A
Sulw]Spd @] = {Re(e’S;{ w])}* + Z[Re e’(xil ]

- (Xrl@) 9T

Maximizing the RHS of this inequality over & then yields
the general quantum noise constraint of Eq. (4.11).
With this derivation, we can now interpret the quan-
tum noise constraint Eq. (4.11) as stating that the noise
at a given frequency given frequency in two observables

(4.16)
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I and F is bounded by the value of their commutator at

that frequency. The fact that I and F do not commute is
necessary for the existence of linear response (gain)
from the detector, but also means that the noise in both

I and F cannot be arbitrarily small. A more detailed
derivation, yielding additional important insights, is de-
scribed in Appendix I.1.

Given the quantum noise constraint of Eq. (4.11), we
can now very naturally define a quantum-ideal detector
(at a given frequency w) as one which minimizes the
left-hand side (LHS) of Eq. (4.11)—a quantum-ideal de-
tector has a minimal amount of noise at frequency w. We
are often interested in the ideal case where there is no

reverse gain (i.e., measuring / does not result in addi-

tional back-action noise in ﬁ); the condition to have a
quantum-limited detector thus becomes

S’H[w]S'FF{w] - |SIF[w]|2

| i) ( [ Slw] D
“ L8 den2 ] )

2

where A[z] is given in Eq. (4.12). Again, as discussed
below, in most cases of interest (e.g., zero frequency
and/or large amplifier power gain) the last term on the
RHS will vanish. In the following, we demonstrate that
the ideal noise requirement of Eq. (4.17) is necessary in
order to achieve the quantum limit on QND detection of
a qubit, or on the added noise of a linear amplifier.

Before leaving our general discussion of the quantum
noise constraint, it is worth emphasizing that achieving
Eq. (4.17) places a strong constraint on the properties of
the detector. In particular, there must exist a tight con-
nection between the input and output ports of the

(4.17)

detector—in a certain restricted sense, the operators /

and F must be proportional to one another [see Eq. (I13)
in Appendix I.1]. As is discussed in Appendix 1.1, this
proportionality immediately tells us that a quantum-
ideal detector cannot be in equilibrium. The proportion-
ality exhibited by a quantum-ideal detector is param-
etrized by a single complex-valued number of w], whose
magnitude is given by

lofw]* = S {w)/Sp{w]. (4.18)

While this proportionality requirement may seem purely
formal, it does have a simple heuristic interpretation; as
discussed by Clerk et al. (2003), it may be viewed as a
formal expression of the principle that a quantum-
limited detector must not contain any wasted informa-
tion (cf. Sec. I111.B.2).

4. Evading the detector quantum noise inequality

We now turn to situations where the RHS of Eq.
(4.11) vanishes, implying that there is no additional
quantum constraint on the noise of our detector beyond
what exists classically. In such situations, one could have
a detector with perfectly correlated back-action and out-
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put noises (i.e., SppS;;=|S;6%), or even with a vanishing

back-action Sz=0. Perhaps not surprisingly, these situ-
ations are not of much utility. As we now show, in cases
where the RHS of Eq. (4.11) vanishes, the detector may
be low noise, but will necessarily be deficient in another
important regard: it will not be good enough that we can
ignore the extra noise associated with the measurement

of the detector output I. As discussed, the reading out of

1 will invariably involve coupling the detector output to
some other physical system. In the ideal case, this cou-
pling will not generate any additional back-action on the
system coupled to the detector’s input port. In addition,
the signal at the detector output should be large enough

that any noise introduced in measuring Iis negligible;
we already came across this idea in our discussion of the
resonant cavity detector [see discussion following Eq.
(3.60)]. This means that we need our detector to truly
amplify the input signal, not simply reproduce it at the
output with no gain in energy. As now shown, a detector
that evades the quantum constraint of Eq. (4.11) by
making the RHS of the inequality zero will necessarily
fail in one or both of the above requirements.

The most obvious case where the quantum noise con-
straint vanishes is for a detector which has equal forward
and reverse gains, xp= X;F' As mentioned, this relation
will necessarily hold if the detector is time-reversal sym-

metric and in equilibrium, and I and F have the same
parity under time reversal. In this case, the relatively
large reverse gain implies that in the analysis of a given
measurement task, it is not sufficient to just consider the
noise of the detector: one must necessarily also consider
the noise associated with whatever system is coupled to

I to read out the detector output, as this noise will be fed
back to the detector input port, causing additional back-
action; we give an explicit example of this in the next
subsection, where we discuss QND qubit detection.
Even more problematically, when xp= )(jF, there is
never any amplification by the detector. As discussed in
Sec. V.E.3, the proper metric of the detector’s ability to
amplify is its dimensionless power gain: What is the
power supplied at the output of the detector versus the
amount of power drawn at the input from the signal
source? When ;= )(;F, one has negative feedback, with
the result that the power gain cannot be larger than 1
[see Eq. (5.53)]. There is thus no amplification when
XFI= X;F' Further, if one also insists that the noise con-
straint of Eq. (4.11) is optimized, then one finds the
power gain must be exactly 1; this is explicitly demon-
strated in Appendix 1.2. The detector thus will simply
act as a transducer, reproducing the input signal at the
output without any increase in energy. We have here a
specific example of a more general idea that will be dis-
cussed in Sec. V:if a detector acts only as a transducer, it
need not add any noise.

At finite frequencies, there is a second way to make
the RHS of the quantum noise constraint of Eq. (4.11)

vanish: one needs the quantity S;{w]/¥;r to be purely
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imaginary, and larger in magnitude than #/2. In this
case, it would again be possible to have the LHS of the
noise constraint of Eq. (4.11) equal to 0. However, one
again finds that in such a case the dimensionless power
gain of the detector is at most equal to 1; it thus does not
amplify. This is shown explicitly in Appendix [.2. An
important related statement is that a quantum-limited
detector with a large power gain must have the quantity

S;r! x;r be real. Thus, at the quantum limit, correlations
between the back-action force and the intrinsic output
noise fluctuations must have the same phase as the gain
xrr- As discussed in Sec. V.F, this requirement can be
interpreted in terms of the principle of no wasted infor-
mation introduced in Sec. I11.B.2.

B. Quantum limit on QND detection of a qubit

In Sec. II1.B, we discussed the quantum limit on QND
qubit detection in the specific context of a resonant cav-
ity detector. We now show how the full quantum noise
constraint of Eq. (4.11) directly leads to this quantum
limit for an arbitrary weakly coupled detector. Similar to
Sec. II1.B, we couple the input operator of our generic
linear-response detector to the &, operator of the qubit
we wish to measure [i.e., we take ¥=0 in Eq. (4.1)]; we
also consider the QND regime, where ¢, commutes with
the qubit Hamiltonian. As we saw in Sec. III.B, the
quantum limit in this case involves the inequality I'j ..
<T',, where I';¢,, is the measurement rate and I, is the
back-action dephasing rate. For the latter quantity, we
can directly use the results of our calculation for the
cavity system, where we found the dephasing rate was
set by the zero-frequency noise in the cavity photon
number [see Eq. (3.27)]. In complete analogy, the back-
action dephasing rate will be determined here by the

zero-frequency noise in the input operator F of our de-
tector,

I',=QAYH)S . (4.19)

We omit frequency arguments in this section, as it is
always the zero-frequency susceptibilities and spectral
densities that appear.

The measurement rate (the rate at which information
on the state of qubit is acquired) is also defined in com-
plete analogy to what was done for the cavity detector.
We imagine we turn the measurement on at t=0 and
start to integrate up the output /(¢) of our detector,

w(t) = f ar'i(t").

0

(4.20)

The probability distribution of the integrated output
m(t) will depend on the state of the qubit; for long times,
we may approximate the distribution corresponding to
each qubit state as being Gaussian. Noting that we have

chosen I so that its expectation vanishes at zero cou-
pling, the average value of (#1(f)) corresponding to each
qubit state is (in the long-time limit of interest)



1178 Clerk et al.: Introduction to quantum noise, measurement, ...

MmOy =Axpt, (M), =—Axpt. (4.21)

The variance of both distributions is, to leading order,
independent of the qubit state,

<ﬁ12(l)>m - <’7A1(I)>%/l = <<’f12(t)>>m =Syt

For the last equality above, we have taken the long-time
limit, which results in the variance of m being deter-
mined completely by the zero-frequency output noise

(4.22)

S, [w=0] of the detector. The assumption here is that,
due to the weakness of the measurement, the measure-
ment time 1/I",.,s Will be much longer than the autocor-
relation time of the detector’s noise.

We can now define the measurement rate, in complete
analogy to the cavity detector of the previous section [cf.
Eq. (3.23)], by how guickly the resolving power of the
measurement grows,

SR (0)) = (o) PILGRA0)) + (R 0))] = Tineast-
(4.23)

This yields

[ ineas = AZ(XIF)z/ZSII' (4.24)
Putting this all together, we find that the “efficiency”
ratio 7=/, is given by

7= D'neas/ Fcp = ﬁz(X]F)z/ 4SIISFF- (4.25)

In the case where our detector has a vanishing reverse
gain (i.e., yz;=0), the quantum-limit bound <1 follows
immediately from the quantum noise constraint of Eq.
(4.11). We thus see that achieving the quantum limit for
QOND qubit detection requires both a detector with
quantum-ideal noise properties, as defined by Eq. (4.17),
and a detector with a vanishing noise cross correlator:
S]FZO.

If in contrast yz# 0, it would seem that it is possible
to have n=1. This is of course an invalid inference: as
discussed, xz;#0 implies that we must necessarily con-
sider the effects of extra noise injected into the detec-

tor’s output port when one measures i, as the reverse
gain will bring this noise back to the qubit, causing extra
dephasing. The result is that one can do no better than
n=1. To see this explicitly, consider the extreme case

xir=xr; and S,,zS‘FF=0, and suppose we use a second
detector to read out the output I of the first detector.
This second detector has input and output operators ﬁz,

fz; we also take it to have a vanishing reverse gain, so
that we do not have to also worry about how its output
is read out. Coupling of the detectors linearly in the

standard way (i.e., Him,2=iﬁ2), gives the overall gain of

"The factor of 1/4 here is purely chosen for convenience; we
are defining the measurement rate based on the information-
theoretic definition given in Appendix F. This factor of 4 is
consistent with the definition used in the cavity system.
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the two detectors in series as X1,F,XIF> while the back-
action driving the qubit dephasing is described by the
spectral density (xz)>SF F,- Using the fact that our sec-
ond detector must itself satisfy the quantum noise in-
equality, we have

(XS k1S 1,1, = (B214) (X0, X16) (4.26)

Thus, the overall chain of detectors satisfies the usual
zero-reverse-gain quantum noise inequality, implying
that we still have n=<1.

V. QUANTUM LIMIT ON LINEAR AMPLIFIERS AND
POSITION DETECTORS

In the previous section we established the fundamen-
tal quantum constraint on the noise of any system ca-
pable of acting as a linear detector; we further showed
that this quantum noise constraint directly leads to the
quantum limit on nondemolition qubit detection using a
weakly coupled detector. In this section, we turn to the
more general situation where our detector is a phase-
preserving quantum linear amplifier: the input to the de-
tector is described by some time-dependent operator
x(1), which we wish to have amplified at the output of
our detector. As we see, the quantum limit in this case is
a limit on how small one can make the noise added by
the amplifier to the signal. The discussion in this section
both furthers and generalizes the heuristic discussion of
position detection using a cavity detector presented in
Sec. IILI.B.

In this section, we start by presenting a heuristic dis-
cussion of quantum constraints on amplification. We
then demonstrate explicitly how the previously dis-
cussed quantum noise constraint leads directly to the
quantum limit on the added noise of a phase-preserving
linear amplifier; we examine the cases of both a generic
linear position detector and a generic voltage amplifier,
following the approach outlined by Clerk (2004). We
also spend time explicitly connecting the linear-response
approach used here to the bosonic scattering formula-
tion of the quantum limit favored by the quantum optics
community (Haus and Mullen, 1962; Caves, 1982; Gras-
sia, 1998; Courty et al., 1999), paying particular attention
to the case of a two-port scattering amplifier. We will see
that there are some important subtleties involved in con-
verting between the two approaches. In particular, there
exists a crucial difference between the case where the
input signal is tightly coupled to the input of the ampli-
fier (the case usually considered in the quantum optics
community), versus the case where, as in an ideal op-
amp, the input signal is only weakly coupled to the input
of the amplifier (the case usually considered in the solid
state community).

A. Preliminaries on amplification

What exactly does one mean by amplification? As we
will see (Sec. V.E.3), a precise definition requires that the
energy provided at the output of the amplifier be much
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larger than the energy drawn at the input of the
amplifier—the power gain of the amplifier must be
larger than 1. For the moment, however, we work with
the cruder definition that amplification involves making
some time-dependent signal larger. To set the stage, we
first consider an extremely simple classical analog of a
linear amplifier. Imagine that the “signal” we wish to
amplify is the coordinate x(z) of a harmonic oscillator;
we can write this signal as

x(2) = x(0)cos(wgt) + [p(0)/M wg] sin(wgt). (5.1)
Our signal has two quadrature amplitudes, i.e., the am-
plitude of the cosine and sine components of x(¢). To
amplify this signal, we start at t=0 to parametrically
drive the oscillator by changing its frequency wg periodi-
cally in time: wg(f)=wy+ dw sin(wpt), where we assume
dw<w). The well-known physical example is a swing
whose motion is being excited by effectively changing
the length of the pendulum at the right frequency and
phase. For a “pump frequency” wp equalling twice the
“signal frequency,” wp=2wy, the resulting dynamics will
lead to an amplification of the initial oscillator position,
with the energy provided by the external driving,

x(t) = x(0)eM cos(wgt) + [p(0)/Mawgle™ sin(wgt).
(5.2)

Thus, one of the quadratures is amplified exponentially,
at a rate A=J0w/2, while the other one decays. In a
quantum-mechanical description, this produces a
squeezed state out of an initial coherent state. Such a
system is called a “degenerate parametric amplifier,”
and we discuss its quantum dynamics in Sec. V.H. We
see that such an amplifier, which amplifies only a single
quadrature, is not required quantum mechanically to
add any noise (Caves et al., 1980; Caves, 1982; Braginsky
and Khalili, 1992).

Can we now change this parametric amplification
scheme slightly in order to make both signal quadratures
grow with time? It turns out that this is impossible as
long as we restrict ourselves to a driven system with a
single degree of freedom. The reason in classical me-
chanics is that Liouville’s theorem requires phase-space
volume to be conserved during motion. More formally,
this is related to the conservation of Poisson brackets, or
in quantum mechanics to the conservation of commuta-
tion relations. Nevertheless, it is certainly desirable to
have an amplifier that acts equally on both quadratures
(a so-called phase-preserving or phase-insensitive ampli-
fier), since the signal’s phase is often not known before-
hand. The way around the restriction created by Liou-
ville’s theorem is to add more degrees of freedom, such
that the phase-space volume can expand in both quadra-
tures (i.e., position and momentum) of the interesting
signal degree of freedom, while being compressed in
other directions. This is achieved most easily by coupling
the signal oscillator to another oscillator, the “idler
mode.” The external driving now modulates the cou-
pling between these oscillators, at a frequency that has
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to equal the sum of the oscillators’ frequencies. The re-
sulting scheme is called a phase-preserving nondegener-
ate parametric amplifier (see Sec. V.C).

Crucially, there is a price to pay for the introduction of
an extra degree of freedom: there will be noise associ-
ated with the idler oscillator, and this noise will contrib-
ute to the noise in the output of the amplifier. Classi-
cally, one could make the noise associated with the idler
oscillator arbitrarily small by simply cooling it to zero
temperature. This is not possible quantum mechanically;
there are always zero-point fluctuations of the idler os-
cillator to contend with. It is this noise which sets a fun-
damental quantum limit for the operation of the ampli-
fier. We thus have a heuristic accounting for the
existence of a quantum limit on the added noise of a
phase-preserving linear amplifier: one needs extra de-
grees of freedom to amplify both signal quadratures, and
such extra degrees of freedom invariably have noise as-
sociated with them.

B. Standard Haus-Caves derivation of the quantum limit on a
bosonic amplifier

We now make the ideas of the previous section more
precise by sketching the standard derivation of the
quantum limit on the noise added by a phase-preserving
amplifier. This derivation is originally due to Haus and
Mullen (1962), and was both clarified and extended by
Caves (1982); the amplifier quantum limit was also mo-
tivated in a slightly different manner by Heffner (1962).8
While extremely compact, the Haus-Caves derivation
can lead to confusion when improperly applied; we dis-
cuss this in Sec. V.D, as well as in Sec. VI, where we
apply this argument carefully to the important case of a
two-port quantum voltage amplifier and discuss the con-
nection to the general linear-response formulation of
Sec. IV.

The starting assumption of this derivation is that both
the input and output ports of the amplifier can be de-
scribed by sets of bosonic modes. If we focus on a nar-
row bandwidth centered on frequency w, we can de-
scribe a classical signal E(f) in terms of a complex
number a defining the amplitude and phase of the signal
(or equivalently the two quadrature amplitudes) (Haus
and Mullen, 1962; Haus, 2000)

E(t) = i[ae™ ™ — a*e*']. (5.3)

In the quantum case, the two signal quadratures of E(f)
[i.e., the real and imaginary parts of a(f)] cannot be mea-
sured simultaneously because they are canonically con-
jugate; this is in complete analogy to a harmonic oscilla-
tor [see Eq. (3.48)]. As a result a,a* must be elevated to
the status of photon ladder operators: a—d, a*—a'.
Consider the simplest case where there is only a single
mode at both the input and output, with corresponding

8Note that Caves (1982) provided a discussion of why the
derivation of the amplifier quantum limit given by Heffner
(1962) is not rigorously correct.
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operators @ and b.? It follows that the input signal into
the amplifier is described by the expectation value (a),

while the output signal is described by (b). Correspond-

ingly, the symmetrized noise in both these quantities is

described by
(Aa)? = 3({a,a'"}

~ (@),

with an analogous definition for (Ab)>.

To derive a quantum limit on the added noise of the
amplifier, one uses two simple facts. First, both the input
and the output operators must satisfy the usual commu-
tation relations

(5.4)

[4,a"1=1, [b,bT]=1. (5.5)

Second, the linearity of the amplifier and the fact that it
is phase preserving (i.e., both signal quadratures are am-
plified the same way) implies a simple relation between

the output operator b and the input operator d,

bh=\Ga, bf=\Ga, (5.6)

where G is the dimensionless photon-number gain of the
amplifier. It is clear, however, that this expression cannot
possibly be correct as written because it violates the fun-

damental bosonic commutation relation [B,IST]:L We
are therefore forced to write

b=\Ga+F, b'=1Ga'+F, (5.7)

where F is an operator representing additional noise
added by the amplifier. Based on the discussion of the

previous section, we can anticipate what F represents: it
is noise associated with the additional degrees of free-
dom that must invariably be present in a phase-
preserving amplifier.

As F represents noise, it has a vanishing expectation
value; in addition, one also assumes that this noise is

uncorrelated with the input signal, implying [F,d]
=[F,d"1=0 and (Fa)=(Fa")=0. Insisting that [b,b7]=1
thus yields
[FF1=1-G. (5.8)
The question now becomes how small can we make

the noise described by #? From Egs. (5.7), the noise at
the amplifier output Ab is given by

(A0)2 = G(Aa)? + JUFF) = GAa) + s{[F.FD)
= G(Aa)? + |G - 1)12. (5.9)

We have used here a standard inequality to bound the

expectation of {F, F'}. The first term here is simply the

°To relate this to the linear-response detector of Sec. IV.A,
one could naively write X, the operator carrylng the input sig-

nal as, £=d+4’, and the output operator I as, I1=b+b" (we
discuss how to make this correspondence in Sec. VI).
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amplified noise of the input, while the second term rep-
resents the noise added by the amplifier. Note that if
there is no amplification (i.e., G=1), there need not be
any added noise. However, in the more relevant case of
large amplification (G>1), the added noise cannot van-
ish. It is useful to express the noise at the output as an
equivalent noise at the input by simply dividing out the
photon gain G. Taking the large-G limit, we have

(Ab)G = (Aa)* + 3. (5.10)

Thus, we have a simple demonstration that an amplifier
with a large photon gain must add at least half a quan-
tum of noise to the input signal. Equivalently, the mini-
mum value of the added noise is equal to the zero-point
noise associated with the input mode; the total output
noise (referred to the input) is at least twice the zero-
point input noise. Note that both these conclusions are
identical to what we found in our analysis of the reso-
nant cavity position detector in Sec. II1.B.3. We discuss
later how this conclusion can also be reached using the
general linear-response language of Sec. IV (cf. Secs.
V.E and V.F).

As discussed, the added noise operator F is associated
with additional degrees of freedom (beyond input and
output modes) necessary for phase-preserving amplifica-
tion. To see this more concretely, note that every linear
amplifier is inevitably a nonlinear system consisting of
an energy source and a “spigot” controlled by the input
signal, which redirects the energy source partly to the
output channel and partly to some other channel(s).
Hence there are inevitably other degrees of freedom in-
volved in the amplification process beyond the input and
output channels. An explicit example is the quantum
parametric amplifier, discussed in the next subsection.
Further insights into amplifier-added noise and its con-
nection to the fluctuation-dissipation theorem can be ob-
tained by considering a simple model where a transmis-
sion line is terminated by an effective negative
impedance; we discuss this model in Appendix C.4.

To see explicitly the role of the additional degrees of
freedom, note first that for G>1 the RHS of Eq. (5.8) is
negative. Hence the simplest possible form for the
added noise is

_ \/ d’r

F=\G-1d, (5.11)
where d and d represent a single additional mode of the
system. This is the minimum number of additional de-
grees of freedom that must inevitably be involved in the
amplification process. Note that for this case the in-
equality in Eq. (5.9) is satisfied as an equality, and the
added noise takes on its minimum possible value. If in-
stead we have, say, two additional modes (coupled in-
equivalently)

F=VG - 1(cosh 0511 +sinh 6d,), (5.12)

it is straightforward to show that the added noise is in-
evitably larger than the minimum. This again can be in-
terpreted in terms of wasted information, as the extra
degrees of freedom are not being monitored as part of
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FIG. 8. (Color online) Energy level scheme of the nondegen-
erate (phase-preserving) parametric oscillator.

the measurement process and so information is being
lost.

C. Nondegenerate parametric amplifier

1. Gain and added noise

Before we start our discussion of the connection of
the Haus-Caves formulation of the quantum limit to the
general linear-response approach of Sec. IV, it is useful
to consider a specific example. To that end, we analyze
here a nondegenerate parametric amplifier, a linear
phase-preserving amplifier which reaches the quantum
limit on its added noise (Louisell et al., 1961; Gordon et
al., 1963; Mollow and Glauber, 1967a, 1967b) and di-
rectly realizes the ideas of the previous subsection. One
possible realization (Yurke et al., 1989) is a cavity with
three internal resonances that are coupled together by a
nonlinear element (such as a Josephson junction) whose
symmetry permits three-wave mixing. The three modes
are called the pump, idler, and signal and their energy
level structure (shown in Fig. 8) obeys wp=w;+ wg. The
system Hamiltonian is then

Hyyo = hwppip + wd)d; + wsilds) + i ndldjap
(5.13)

We have made the rotating wave approximation in the
three-wave mixing term, and without loss of generality
we take the nonlinear susceptibility # to be real and
positive. The system is driven at the pump frequency
and the three-wave mixing term permits a single pump
photon to split into an idler photon and a signal photon.
This process is stimulated by signal photons already
present and leads to gain. A typical mode of operation
would be the negative-resistance reflection mode in
which the input signal is reflected from a nonlinear cav-
ity and the reflected beam extracted using a circulator
(Yurke et al., 1989; Bergeal et al., 2008).

The nonlinear equations of motion (EOMs) become
tractable if we assume the pump has large amplitude and
can be treated classically by making the substitution

dp=yppe P = ype Ot os) (5.14)

where without loss of generality we take ¢p to be real
and positive. We note here the important point that if

—dgddh).
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this approximation were not valid, then our amplifier
would in any case not be the linear amplifier we seek.
With this approximation we can hereafter ignore the dy-
namics of the pump degree of freedom and deal with the
reduced system Hamiltonian

Hyyo = hlwnd]d; + wsiyis) + iin(aaje " @res"

_ ﬁsﬁleﬂ(wﬁws)t) ,

(5.15)

where A= nip. Transforming to the interaction repre-
sentation we are left with the following time-
independent quadratic Hamiltonian for the system

Vs = ihN(@5a] — dgdy). (5.16)

To get some intuitive understanding of the physics, we
temporarily ignore the damping of the cavity modes that
would result from their coupling to modes outside the
cavity. We now have a pair of coupled EOMs for the two
modes

dg=+\dj, af =+ \dg, (5.17)
for which the solutions are
d(f) = cosh(\1)dg(0) + sinh(A1)d(0),
(5.18)

a}(r) = sinh(\)dg(0) + cosh(A)d](0).

We see that the amplitude in the signal channel grows
exponentially in time and that the effect of the time evo-
lution is to perform a simple unitary transformation
which mixes dg with cif in such a way as to preserve the
commutation relations. Note the close connection with
the form found from general arguments in Egs.
(5.7)—(5.11).

We may now tackle the full system which includes the
coupling between the cavity modes and modes external
to the cavity. Such a coupling is of course necessary in
order to feed the input signal into the cavity, as well as
extract the amplified output signal. It will also result in
the damping of the cavity modes, which will cut off the
exponential growth found above and yield a fixed ampli-
tude gain. We present the main results in this section,
relegating details to how one treats the bath modes [so-
called input-output theory (Walls and Milburn, 1994)] to
Appendix E. Working in the standard Markovian limit,
we obtain the following EOMs in the interaction repre-
sentation:

ds=— (ks/2)ds + 7\&; - \"/K_S[;S,in,
(5.19)
aj = - (k1/2)d} + Nds - V’:IbA.Ir,in'
Here kg and «g are the respective damping rates of the
cavity signal mode and the idler mode. The coupling to

extra-cavity modes also lets signals and noise enter the
cavity from the baths: this is described by the bosonic

operators BS,in and 5Lin which drive the signal and idler

modes, respectively. b s;in describes both the input signal
to be amplified and vacuum noise entering from the bath
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coupled to the signal mode, whereas 151,111 simply de-
scribes vacuum noise.

Let us fix our attention on signals inside a frequency
window dw centered on wg (hence zero frequency in the
interaction representation). For simplicity, we first con-
sider the case where the signal bandwidth dw is almost
infinitely narrow (i.e., much smaller than the damping
rate of the cavity modes). It then suffices to find the
steady state solution of these EOMs,

dg= (2N kg)dl — (2 kbsn, (5.20)
af = @M ks — QNi)by . (5.21)

The output signal of the nondegenerate paramp is the
signal leaving the cavity signal mode and entering the

external bath modes; it is described by an operator b S.out-
The standard input-output theory treatment of the
extra-cavity modes (Walls and Milburn, 1994), presented
in Appendix E, yields the simple relation [cf. Eq. (E37)]

(5.22)

The first term corresponds to the reflection of the signal
and noise incident on the cavity from the bath, while the
second term corresponds to radiation from the cavity
mode into the bath. Using this, we find that the output
signal from the cavity is given by

A 2414 2 N
bSout: Qz bSin+ 2Q birin’
o gr oy st g

A A ”_A
bsou=Dbsin+ VKsds.

(5.23)

where O =2\/\kkg is proportional to the pump ampli-
tude and inversely proportional to the cavity decay
rates. We have to require Q><1 to make sure that the
parametric amplifier does not settle into self-sustained
oscillations, i.e., it works below threshold. Under that
condition, we can define the photon-number gain G via

~Gy=(Q*+ )I(Q@*-1), (5.24)
such that
bs.ou = = \Gobsin— VGo— 157, (5.25)

In the ideal case, the noise associated with l;mn,l; Sin 18
simply vacuum noise. As a result, the input-output rela-
tion Eq. (5.25) is precisely of the Haus-Caves form (5.11)
for an ideal quantum-limited amplifier. It demonstrates
that the nondegenerate parametric amplifier reaches the
quantum limit for minimum added noise. In the limit of
large gain the output noise (referred to the input) for a
vacuum input signal is precisely doubled.

2. Bandwidth-gain trade-off

The above results neglected the finite bandwidth dw
of the input signal to the amplifier. The gain G, given in
Eq. (5.24) is only the gain at precisely the mean signal

Note that the b operators are not dimensionless, as btb
represents a photon flux (see Appendix E).
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frequency wg; for a finite bandwidth, we also need to
understand how the power gain varies as a function of
frequency over the entire signal bandwidth. As we see, a
parametric amplifier suffers from the fact that as one
increases the overall magnitude of the gain at the center
frequency wg (e.g., by increasing the pump amplitude),
one simultaneously narrows the frequency range over
which the gain is appreciable. Heuristically, this is be-
cause parametric amplification involves using the pump
energy to decrease the damping and hence increase the
quality factor of the signal mode resonance. This in-
crease in quality factor leads to amplification, but it also
reduces the bandwidth over which dg can respond to the
input signal b Sin-

To deal with a finite signal bandwidth, one simply
Fourier transforms Egs. (5.19). The resulting equations
are easily solved and substituted into Eq. (5.22), result-
ing in a frequency-dependent generalization of the
input-output relation given in Eq. (5.25),

b oul @] = — glwlbs [ w] - g'wlb];[w].

Here gl w] is the frequency-dependent gain of the ampli-
fier, and g'[w] satisfies |g'[w]]*=|g[w]*~1. In the rel-
evant limit where G,=[g[0]]*>1 (i.e., large gain at the
signal frequency), one has to a good approximation

(5.26)

_ \J"EO — i[(KS - KI)/(KI + KS)](w/D)

5.27
glo] I~ i(w/D) ; (5.27)
with
1
D= ——S8 (5.28)
VG ks + K

As always, we work in an interaction picture where the
signal frequency has been shifted to zero. D represents
the effective operating bandwidth of the amplifier. Com-
ponents of the signal with frequencies (in the rotating
frame) |w| < D are strongly amplified, while components
with frequencies |w| > D are not amplified at all, but can
in fact be slightly attenuated. As already anticipated, the
amplification bandwidth D becomes progressively
smaller as the pump power and G, are increased, with
the product VG,D remaining constant. In a parametric
amplifier increasing the gain via increasing the pump
strength comes with a price: the effective operating
bandwidth is reduced.

3. Effective temperature

Recall that in Sec. II.B we introduced the concept of
an effective temperature of a nonequilibrium system,
Eq. (2.8). As we will discuss, this concept plays an im-
portant role in quantum-limited amplifiers; the degener-
ate paramp gives us a first example of this. Returning to
the behavior of the paramp at the signal frequency, we
note that Eq. (5.25) implies that, even for vacuum input
to both the signal and idler ports, the output will contain
a real photon flux. To quantify this in a simple way, it is
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useful to introduce temporal modes which describe the
input and output fields during a particular time interval
[jAt,(j+1)Af] (where j is an integer),

R (+1)At .
Bginj= _f dtbgin(7), (5.29)
j

1
VAL jar
with the temporal modes B s,outj and é”n’]— defined analo-
gously. These temporal modes are discussed in Appen-
dix D.2, where we discuss the windowed Fourier trans-
form [see Eq. (D18)].

With the above definition, we find that the output
mode will have a real occupancy even if the input mode
is empty,

ﬁS,out = <O|B§,out,jBS,0ut,j|O>
= G0<0|é§,in,jé5,in,j|0> +(Go—1){0|Byj,B1 1, 10)

Lin,j
=Gy-1. (5.30)

The dimensionless mode occupancy 7ig o is best thought
of as a photon flux per unit bandwidth [see Eq. (D26)].
This photon flux is equivalent to the photon flux that
would appear in equilibrium at the very high effective
temperature (assuming large gain G)

Teff% hwsGQ. (531)

This is an example of a more general principle, discussed
in Sec. V.E.4: a high-gain amplifier must have associated
with it a large effective temperature scale. Referring this
total output noise back to the input, we have (in the
limit Gy>1)

hws

Teff/GO = th/Z + ﬁwS/Z = 7 + TN' (532)
This corresponds to the half photon of vacuum noise
associated with the signal source, plus the added noise of
a half photon of our phase-preserving amplifier (i.e., the
noise temperature 7Ty is equal to its quantum-limited
value). Here the added noise is simply the vacuum noise
associated with the idler port.

The above argument is merely suggestive that the out-
put noise looks like an effective temperature. In fact, it
is possible to show that the photon-number distribution
of the output is precisely that of a Bose-Einstein distri-
bution at temperature 7. From Eq. (5.13) we see that
the action of the paramp is to destroy a pump photon
and create a pair of new photons, one in the signal chan-
nel and one in the idler channel. Using the SU(1,1) sym-
metry of the quadratic hamiltonian in Eq. (5.16) it is
possible to show that, for vacuum input, the output of
the paramp is a so-called “two-mode squeezed state” of
the form (Caves and Schumaker, 1985; Gerry, 1985;
Knight and Buzek, 2004)

(5.33)

where « is a constant related to the gain and, to simplify
the notation, we have dropped the “out” labels on the
operators. The normalization constant Z can be worked
out by expanding the exponential and using

Tt
|q’out> = Z_1/2eabsbl|0>’

Rev. Mod. Phys., Vol. 82, No. 2, April-June 2010

(65)(0,0) = Vn!

to obtain

|q,0ut> = Z_l/zz an|n»n>
n=0

(5.35)

and hence

Z=1/(1-|aP) (5.36)

so the state is normalizable only for |a]><1.

Because this output is obtained by unitary evolution
from the vacuum input state, the output state is a pure
state with zero entropy. In light of this, it is interesting to
consider the reduced density matrix obtain by tracing
over the idler mode. The pure-state density matrix is

o ax
V4

m(m,m|. (5.37)

p= |\Pout><q}out| = E |n,n)

m,n=0

If we now trace over the idler mode we are left with the

reduced density matrix for the signal channel
|a|2ns

VA

ps = Trigedpt = > |ng)

1
<nS| = _e*Bﬁwsa:{-aS’
=0 Z

(5.38)

which is a pure thermal equilibrium distribution with
effective Boltzmann factor

e Phos = o < 1. (5.39)

The effective temperature can be obtained from the re-
quirement that the signal mode occupancy is Gy—1,

1/(ePhos - 1) = Gy -1, (5.40)

which in the limit of large gain reduces to Eq. (5.31).

This appearance of finite entropy in a subsystem even
when the full system is in a pure state is a purely quan-
tum effect. Classically the entropy of a composite system
is at least as large as the entropy of any of its compo-
nents. Entanglement among the components allows this
lower bound on the entropy to be violated in a quantum
system.'" In this case the two-mode squeezed state has
strong entanglement between the signal and idler chan-
nels (since their photon numbers are fluctuating identi-
cally).

D. Scattering versus op-amp modes of operation

We now begin to address the question of how the
standard Haus-Caves derivation of the amplifier quan-
tum limit presented in Sec. V.B relates to the general
linear-response approach of Sec. IV. Recall that in Sec.
ITI1.B.3 we already used this latter approach to discuss
position detection with a cavity detector, reaching simi-

UThis paradox has prompted Charles Bennett to remark that
a classical house is at least as dirty as its dirtiest room, but a
quantum house can be dirty in every room and still perfectly
clean over all.



1184 Clerk et al.: Introduction to quantum noise, measurement, ...
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FIG. 9. (Color online) Schematic of a two-port bosonic ampli-
fier. Both the inputs and outputs of the amplifier are attached
to transmission lines. The incoming and outgoing wave ampli-
tudes in the input (output) transmission line are labeled
s dout (BinsBout), respectively. The voltages at the end of the
two lines (\A/a, Vb) are linear combinations of incoming and out-
going wave amplitudes.

lar conclusions (i.e., at best, the detector adds noise
equal to the zero-point noise). In that linear-response-
based discussion, we saw that a crucial aspect of the
quantum limit was the trade-off between back-action
noise and measurement-imprecision noise. We saw that
reaching the quantum limit required both a detector
with ideal noise, as well as an optimization of the
detector-oscillator coupling strength. Somewhat disturb-
ingly, none of these ideas appeared explicitly in the
Haus-Caves derivation; this can give the misleading im-
pression that the quantum limit never has anything to do
with back-action. A further confusion comes from the
fact that many detectors have input and outputs that
cannot be described by a set of bosonic modes. How
does one apply the above arguments to such systems?

The first step in resolving these seeming inconsisten-
cies is to realize that there are really two different ways
in which one can use a given amplifier or detector. In
deciding how to couple the input signal (i.e., the signal to
be amplified) to the amplifier, and in choosing what
quantity to measure, the experimentalist essentially en-
forces boundary conditions; as now shown, there are in
general two distinct ways in which to do this. For con-
creteness, consider the situation shown in Fig. 9: a two-
port voltage amplifier where the input and output ports
of the amplifier are attached to one-dimensional trans-
mission lines (see Appendix C for a quick review of
quantum transmission lines). As in the previous section,
we focus on a narrow bandwidth signal centered about a
frequency w. At this frequency, there exists both a right-
moving and a left-moving wave in each transmission
line. We label the corresponding amplitudes in the input
(output) line with a;,a0y (bin>bour), as per Fig. 9. Quan-
tum mechanically these amplitudes become operators,
much in the same way that we treated the mode ampli-
tude a as an operator in the previous section. We ana-
lyze this two-port bosonic amplifier in Sec. VI; here we
only sketch its operation to introduce the two different
amplifier operation modes. This will then allow us to
understand the subtleties of the Haus-Caves quantum
limit derivation.

In the first kind of setup, the experimentalist arranges
things so that g;,,, the amplitude of the wave incident on
the amplifier’s input port, is precisely equal to the signal
to be amplified (i.e., the input signal), irrespective of the
amplitude of the wave leaving the input port (i.e., dqy)-
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TABLE IV. Two different amplifier modes of operation.

Input Signal Output Signal
Mode s(1) o(1)

O(t) :bout(t))
(boye indep. of by,)

o(n=Vy(1)
(bout depends on by,)

s(t)=aiy(1)
(a;, indep. of ayy,)
s(0)=V,(1)
(a;, depends on agy,)

Scattering

Op-amp

Further, the output signal is taken to be the amplitude of
the outgoing wave exiting the output of the amplifier
(i.e., byy), again irrespective of whatever might be enter-
ing the output port (see Table IV). In this situation, the
Haus-Caves description of the quantum limit in the pre-
vious section is almost directly applicable; we make this
precise in Sec. VI. Back-action is indeed irrelevant, as
the prescribed experimental conditions mean that it
plays no role. We call this mode of operation the scat-
tering mode, as it is most relevant to time-dependent
experiments where the experimentalist launches a signal
pulse at the input of the amplifier and looks at what exits
the output port. One is usually only interested in the
scattering mode of operation in cases where the source
producing the input signal is matched to the input of the
amplifier: only in this case is the input wave q;, perfectly
transmitted into the amplifier. As we see in Sec. VI, such
a perfect matching requires a relatively strong coupling
between the signal source and the input of the amplifier;
as such, the amplifier will strongly enhance the damping
of the signal source.

The second mode of linear amplifier operation is what
we call the op-amp mode; this is the mode one usually
has in mind when thinking of an amplifier which is
weakly coupled to the signal source, and will be the next
focus. The key difference from the scattering mode is
that here the input signal is not simply the amplitude of
a wave incident on the input port of the amplifier; simi-
larly, the output signal is not the amplitude of a wave
exiting the output port. As such, the Haus-Caves deriva-
tion of the quantum limit does not directly apply. For the
bosonic amplifier discussed here the op-amp mode
would correspond to using the amplifier as a voltage op-
amp. The input signal would thus be the voltage at the
end of the input transmission line. Recall that the volt-
age at the end of a transmission line involves the ampli-
tude of both left- and right-moving waves, i.e., V,(f)
e Re[a,(t) +agy(t)]. At first this might seem quite con-
fusing: If the signal source determines V,(¢), does this
mean it sets the values of both a;,(¢) and a,,(¢)? Does
not this violate causality? The signal source enforces the
value of V,(¢) by simply changing a;,(¢) in response to
the value of a,(f). While there is no violation of causal-
ity, the fact that the signal source is dynamically re-
sponding to what comes out of the amplifier’s input port
implies that back-action is indeed relevant.

The op-amp mode of operation is relevant to the typi-
cal situation of weak coupling between the signal source
and amplifier input. By weak coupling, we mean here
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FIG. 10. Illustration of a bosonic two-port amplifier used in
the scattering mode of operation. The signal is an incoming
wave in the input port of the amplifier, and does not depend on
what is coming out of the amplifier. This is achieved by con-
necting the input line to a circulator and a “cold load” (i.e., a
zero-temperature resistor): all that goes back toward the
source of the input signal is vacuum noise.

something stronger than just requiring that the amplifier
be linear: we require additionally that the amplifier does
not appreciably change the dissipation of the signal
source. This is analogous to the situation in an ideal volt-
age op-amp, where the amplifier input impedance is
much larger than the impedance of the signal source. We
stress that the op-amp mode and this limit of weak cou-
pling is the relevant situation in most electrical measure-
ments.

Thus, we see that the Haus-Caves formulation of the
quantum limit is not directly relevant to amplifiers or
detectors operated in the usual op-amp mode of opera-
tion. We clearly need some other way to describe quan-
tum amplifiers used in this regime. As we demonstrated
in the remainder of this section, the general linear-
response approach of Sec. IV is exactly what is needed.
To see this, expand the discussion of Sec. IV to include
the concepts of input and output impedance as well as
power gain. The linear-response approach will allow us
to see (similar to Sec. IT11.B.3) that reaching the quantum
limit in the op-amp mode does indeed require a trade-
off between back-action and measurement imprecision,
and requires use of an amplifier with ideal quantum
noise properties [see Eq. (4.11)]. This approach also has
the added benefit of being directly applicable to systems
where the input and output of the amplifier are not de-
scribed by bosonic modes.'? In Sec. VI, we return to the
scattering description of a two-port voltage amplifier
(Fig. 10), and show explicitly how an amplifier can be
quantum limited when used in the scattering mode of
operation, but miss the quantum limit when used in the
op-amp mode of operation.

E. Linear-response description of a position detector

In this section, we examine the amplifier quantum
limit for a two-port linear amplifier in the usual weak-
coupling, op-amp regime of operation. Our discussion
here will make use of the results obtained for the noise

2Note that the Haus-Caves derivation for the quantum limit
of a scattering amplifier has been generalized to the case of
fermionic operators (Gavish et al., 2004).
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properties of a generic linear-response detector in Sec.
IV, including the fundamental quantum noise constraint
of Eq. (4.11). For simplicity, we start with the problem of
continuous position detection of a harmonic oscillator.
Our discussion will thus generalize the discussion of po-
sition detection using a cavity detector given in Sec.
IT1.B.3. We start with a generic detector (as introduced
in Sec. IV.A) coupled at its input to the position £ of a
harmonic oscillator [see Eq. (4.1)]."> We want to under-
stand the total output noise of our amplifier in the pres-
ence of the oscillator, and more importantly how small
we can make the amplifier’s contribution to this noise.
The resulting lower bound is known as the standard
quantum limit (SQL) on position detection, and is analo-
gous to the quantum limit on the added noise of a volt-
age amplifier (discussed in Sec. V.F).

1. Detector back-action

We first consider the consequence of noise in the de-
tector input port. As seen in Sec. I1.B, the fluctuating

back-action force F acting on our oscillator will lead to
both damping and heating of the oscillator. To model the
intrinsic (i.e., detector-independent) heating and damp-
ing of the oscillator, we also assume that our oscillator is
coupled to an equilibrium heat bath. In the weak-
coupling limit that we are interested in, one can use
lowest-order perturbation theory in the coupling A to

describe the effects of the back-action force F on the
oscillator. A full quantum treatment (see Appendix 1.4)
shows that the oscillator is described by an effective clas-
sical Langevin equation,*

Mi(t) = — MQ?x(t) — Myi () + Fy(t)
- MA? f dt' y(t —t")x(t") — AF(t). (5.41)

The position x(¢) in the above equation is not an opera-
tor, but is simply a classical variable whose fluctuations
are driven by the fluctuating forces F(¢) and Fy(f). None-
theless, the noise in x calculated from Eq. (5.41) corre-

sponds precisely to S,[w], the symmetrized quantum-
mechanical noise in the operator X. The fluctuating force
exerted by the detector (which represents the heating
part of the back-action) is described by AF(f) in Eq.
(5.41); it has zero mean, and a spectral density given by

A8, o] in Eq. (4.4a). The kernel (r) describes the
damping effect of the detector. It is given by the asym-

BFor consistency with previous sections, our coupling Hamil-
tonian does not have a minus sign. This is different from the
convention of Clerk (2004), where the coupling Hamiltonian is
written Him:—A)E-f’.

“Note that we have omitted a back-action term in this equa-
tion which leads to small renormalizations of the oscillator fre-
quency and mass. These terms are not important for the fol-
lowing discussion, so we have omitted them for clarity; one can
consider M and () in this equation to be renormalized quanti-
ties. See Appendix 1.4 for more details.
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metric part of the detector’s quantum noise, as was de-
rived in Sec. II.B [see Eq. (2.12)].

Equation (5.41) also describes the effects of an equi-
librium heat bath at temperature 7, which models the
intrinsic (i.e., detector-independent) damping and heat-
ing of the oscillator. The parameter vy, is the damping
arising from this bath and Fj is the corresponding fluc-
tuating force. The spectral density of the Fj noise is de-
termined by v, and 7| via the fluctuation-dissipation
theorem [see Eq. (2.16)]. Ty and 7, have a simple physi-
cal significance: they are the temperature and damping
of the oscillator when the coupling to the detector A is
set to zero.

To make further progress, we recall from Sec. I1.B
that even though our detector will in general not be in
equilibrium, we may nonetheless assign it an effective
temperature T.{w] at each frequency [see Eq. (2.8)].
The effective temperature of an out-of-equilibrium de-
tector is simply a measure of the asymmetry of the de-
tector’s quantum noise. We are often interested in the
limit where the internal detector time scales are much
faster than the time scales relevant to the oscillator (i.e.,
Q' 1, 9%"). We may then take the w—0 limit in the
expression for T, yielding

2k pT 1= Spr(0)/MA0). (5.42)
In this limit, the oscillator position noise calculated from
Eq. (5.41) is given by

1 2(y+ Vksp

1 YoT + YT es
M (o? - Q%) + (v + %)* '

Yoty

Sxx[w] =

(5.43)

This is exactly what would be expected if the oscillator
were only attached to an equilibrium Ohmic bath with a

damping coefficient ys=7y+7y and temperature 7T
=(WT+yTer) s

2. Total output noise

The next step in our analysis is to link fluctuations in
the position of the oscillator [as determined from Eg.
(5.41)] to noise in the output of the detector. As dis-
cussed in Sec. III.B.3, the output noise consists of the
intrinsic  output noise of the detector (i.e.,
“measurement-imprecision noise”) plus the amplified
position fluctuations in the position of the oscillator. The
latter contains both an intrinsic part and a term due to
the response of the oscillator to the back-action.

To start, imagine that we can treat both the oscillator
position x(f) and the detector output /(f) as classically
fluctuating quantities. Using the linearity of the detec-
tor’s response, we can then write 6l ,, the fluctuating
part of the detector’s output, as

Ol gl @] = Sl @] + Ay w]ox[w]. (5.44)

The first term (8l)) describes the intrinsic (oscillator-
independent) fluctuations in the detector output, and

has a spectral density S;[w]. If we scale this by |x;#% we
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have the measurement-imprecision noise discussed in
Sec. III.B.3. The second term corresponds to the ampli-
fied fluctuations of the oscillator, which are in turn given
by solving Eq. (5.41),

UM
(0? — Q%) +iwQ/ Q[ w]

= Xulol(Flo] - AFw]), (5.45)

where Olw]=Q/(yy+ Y w]) is the oscillator quality fac-
tor. It follows that the spectral density of the total noise
in the detector output is given classically by

Sll,tot[w] =Sylw]+ |Xxx[w]X1F[w]|2(A4SFF[w]
+ AZSFOFO[‘U])
+2A% Re[ xul wlxil ]S o]]. (5.46)

Here S;;, Spp, and Sy are the (classical) detector noise
correlators calculated in the absence of any coupling to
the oscillator. Note importantly that we have included

xlw]=- (Folw] - AFlw])

the fact that the two kinds of detector noise (in [ and in

F) may be correlated with one another.

To apply the classically derived Eq. (5.46) to our quan-
tum detector-plus-oscillator system, we recall from Sec.
II.B that symmetrized quantum noise spectral densities
play the role of classical noise. The LHS of Eq. (5.46)
thus becomes Sj;,, the total symmetrized quantum-
mechanical output noise of the detector, while the RHS
will now contain the symmetrized quantum-mechanical

detector noise correlators Sgg, Sy, and S;r, defined as in
Eq. (4.4a). Though this may seem rather ad hoc, one can
easily demonstrate that Eq. (5.46) thus interpreted
would be quantum mechanically rigorous if the detector
correlation functions obeyed Wick’s theorem. Thus,
quantum corrections to Eq. (5.46) will arise solely from
the non-Gaussian nature of the detector noise correla-
tors. We expect from the central limit, theorem that such
corrections will be small in the relevant limit, where w is
much smaller that the typical detector frequency
~kgpT/h, and neglect these corrections in what fol-
lows. Note that the validity of Eq. (5.46) for a specific
model of a tunnel junction position detector has been
explicitly verified by Clerk and Girvin (2004).

3. Detector power gain

Before proceeding, we need to consider our detector
once again in isolation, and return to the fundamental
question of what we mean by amplification. To be able
to say that our detector truly amplifies the motion of the
oscillator, it is not sufficient to simply say that the re-
sponse function y;z must be large (note that y;r is not
dimensionless). Instead, true amplification requires that
the power delivered by the detector to a following am-
plifier be much larger than the power drawn by the de-
tector at its input—i.e., the detector must have a dimen-
sionless power gain Gplw] much larger than 1. As
discussed, if the power gain was not large, we would
need to worry about the next stage in the amplification
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FIG. 11. (Color online) Schematic of a generic linear-response
position detector, where an auxiliary oscillator y is driven by
the detector output.

of our signal, and how much noise is added in that pro-
cess. Having a large power gain means that by the time
our signal reaches the following amplifier, it is so large
that the added noise of this following amplifier is unim-
portant. The power gain is analogous to the dimension-
less photon-number gain G that appears in the standard
Haus-Caves description of a bosonic linear amplifier
[see Eq. (5.7)].

To make the above more precise, we start with the
idea case of no reverse gain yz;=0. We define the power
gain G p[ w] of our generic position detector in a way that
is analogous to the power gain of a voltage amplifier.
Imagine we drive the oscillator we are trying to measure
with a force 2Fp cos wt; this will cause the output of our

detector <f(t)> to also oscillate at frequency w. To opti-
mally detect this signal in the detector output, we fur-
ther couple the detector output / to a second oscillator
with natural frequency w, mass M, and position y: there

is a new coupling term in our Hamiltonian Hi'szf -y,
where B is a coupling strength. The oscillations in (/(z))
will now act as a driving force on the auxiliary oscillator
y (see Fig 11). We can consider the auxiliary oscillator y
as a “load” we are trying to drive with the output of our
detector.

To find the power gain, we need to consider both P,
the power supplied to the output oscillator y from the
detector, and P;,, the power fed into the input of the
amplifier. Consider first P;,. This is simply the time-
averaged power dissipation of the input oscillator x
caused by the back-action damping y{ w]. Using an over-
bar to denote a time average, we have

Py = My 0]i? = My o] xu[o]2F5. (5.47)

Note that the oscillator susceptibility y,.[w] depends on
both the back-action damping y{ ] and the intrinsic os-
cillator damping vy, [see Eq. (5.45)].

Next, we need to consider the power supplied to the
load oscillator y at the detector output. This oscillator
will have some intrinsic detector-independent damping
e as well as a back-action damping vy,,. In the same
way that the back-action damping v of the input oscilla-

tor x is determined by the quantum noise in F [see Egs.
(2.14), (2.13), and (2.12)], the back-action damping of the
load oscillator y is determined by the quantum noise in

the output operator 1,
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70ut[w] = (Bz/Mw)[_ Im X]I[w]]

> (5.48)

= (B2/Mﬁw){

where y;; is the linear-response susceptibility which de-
termines how () responds to a perturbation coupling to

A

1

xill=- f A1), 1(0) e (5.49)
0

As the oscillator y is being driven on resonance, the
relation between y and [ is given by y[w]=x,[w][w]
with y,,[@]=—i[@M youl ®]]". From conservation of en-
ergy, we have that the net power flow into the output
oscillator from the detector is equal to the power dissi-
pated out of the oscillator through the intrinsic damping
vd- We thus have

Pout = *]‘/Iyldy2
= My1q0?| Xy, [ 0]P|BAx1px o[ @]Fp |

L /N

M (g + 7out[w])2

Using the above definitions, we find that the ratio be-

tween P, and P;, is independent of 7, but depends on
Nd>

|BAX1FXxx[w]FD|2- (5.50)

Pa 1 ABladoll ydvulo]
Py, M*o? 70ut[w]7[w] 1+ 'YId/'yout[w])z'

We now define the detector power gain Gplw] as the
value of this ratio maximized over the choice of 4. The
maximum occurs for y,3= vyl @] (i.e., the load oscillator
is “matched” to the output of the detector), resulting in

(5.51)

Pout 1 AZBZ|XIF|2
Gplo]=max| — | = ——
Pin AM*w YoutY
2
_ |X1F[w]| . (5.52)
4 Im xpd o]lm x;l o]

In the last equality, we have used the relation between
the damping rates y{w] and vy,,[w] and the linear-
response susceptibilities yrdw] and y;lw] [see Egs.
(2.15) and (5.48)]. We thus find that the power gain is a
simple dimensionless ratio formed by the three different
response coefficients characterizing the detector, and is
independent of the coupling constants A and B. As we
see in Sec. V.F, it is completely analogous to the power
gain of a voltage amplifier, which is also determined by
three parameters: the voltage gain, the input impedance,
and the output impedance. Note that there are other
important measures of power gain commonly in use in
the engineering community: we comment on these in
Sec. VIL.B.

Finally, the above results are easily generalized to the
case where the detector’s reverse gain y; is nonvanish-
ing. For simplicity, we present results for the case where
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B=Re(x;rxr)!|x1F>=0, implying that there is no posi-
tive feedback. Maximizing the ratio of P.,/P;, over
choices of vy,; now yields

Gprey=2Gpl(1+28Gp+\1+4BGp) <1/8. (5.53)

Here Gp ., is the power gain in the presence of reverse
gain, while Gp is the zero-reverse gain power gain given
by Eq. (5.52). One can confirm that Gp,., is a monotonic
increasing function of Gp, and is bounded by 1/8. As
noted in Sec. IV.A4, if xp=x,,. there is no additional
quantum noise constraint on our detector beyond what
exists classically [i.e., the RHS of Eq. (4.11) vanishes].
We now see explicitly that when xp;= X}kF’ the power gain
of our detector can be at most 1, as B=1. Thus, while
there is no minimum back-action noise required by
quantum mechanics in this case, there is also no ampli-
fication: at best, our detector would act as a transducer.
Note further that if the detector has yp= X;F and opti-
mizes the inequality of Eq. (4.11), then one can show
Gp ey must be 1 (see Appendix 1.2): the detector is sim-
ply a transducer. This is in keeping with the results ob-
tained using the Haus-Caves approach, which also yields
the conclusion that a noiseless detector is a transducer.

4. Simplifications for a quantum-ideal detector

We now consider the important case where our detec-
tor has no reverse gain (allowing it to have a large power
gain), and also has ideal quantum noise [i.e., it satisfies
the ideal noise condition of Eq. (4.17)]. Fulfilling this
condition immediately places some powerful constraints
on our detector.

First, note that we have defined in Eq. (5.42) the ef-
fective temperature of our detector based on what hap-
pens at the input port; this is the effective temperature
seen by the oscillator we are trying to measure. We
could also consider the effective temperature of the de-
tector as seen at the output (i.e., by the oscillator y used
in defining the power gain). This output effective tem-
perature is determined by the quantum noise in the out-

put operator i,
kBTeff,out[w] = hw/log(sll[+ w]/S[[[_ w]) (554)

For a general out-of-equilibrium amplifier, T, does
not have to be equal to the input effective temperature
T defined by Eq. (2.8). However, for a quantum-ideal
detector, the effective proportionality between input and
output operators [see Eq. (I13)] immediately yields

Teioulw] = Tepl @] (5.55)

Thus, a detector with quantum-ideal noise necessarily
has the same effective temperature at its input and its
output. This is all the more remarkable given that a
quantum-ideal detector cannot be in equilibrium, and
thus T, cannot represent a real physical temperature.

Another important simplification for a quantum-ideal
detector is the expression for the power gain. Using the
proportionality between input and output operators [cf.
Eq. (I13)], one finds

Rev. Mod. Phys., Vol. 82, No. 2, April-June 2010

(Im a)? coth’(hw/2k g Tey) + (Re a)?
|of?

Gplo]= , (5.56)

where of w] is the parameter characterizing a quantum-
limited detector in Eq. (4.18); recall that |o[w]|> deter-
mines the ratio of S;; and Sgp. It follows immediately
that for a detector with ideal noise to also have a large
power gain (Gp>1), one absolutely needs kgT.>fiw: a
large power gain implies a large effective detector tem-
perature. In the large-Gp limit, we have

GP _ |:Im akBTeff]Z.

5.57
la| Aw/2 ( )

Thus, the effective temperature of a quantum-ideal de-
tector does more than just characterize the detector
back-action—it also determines the power gain.

Finally, an additional consequence of the large-G p[w],
large T, limit is that the gain x;r and noise cross cor-

relator S;r are in phase: S;z/x;r is purely real, up to
corrections that are as small as w/T.y4 This is shown
explicitly in Appendix 1.3. Thus, we find that a large
power gain detector with ideal quantum noise cannot
have significant out-of-phase correlations between its
output and input noises. This last point may be under-
stood in terms of the idea of wasted information: if there

were significant out-of-phase correlations between I and

F, it would be possible to improve the performance of
the amplifier by using feedback. We discuss this point in

Sec. VL. Note that because S5/ x;is real the last term in
the quantum noise constraint of Eq. (4.11) vanishes.

5. Quantum limit on added noise and noise
temperature

We now turn to calculating the noise added to our
signal [i.e., (X(f))] by our generic position detector. To
characterize this added noise, it is useful to take the total
(symmetrized) noise in the output of the detector and
refer it back to the input by dividing out the gain of the
detector,

Sxx,tot[w] = Sll,tot[w]/A2|XlF[w]|2- (5.58)

S‘xx’tm[w] is simply the frequency-dependent spectral
density of position fluctuations inferred from the output
of the detector. It is this quantity that will directly deter-
mine the sensitivity of the detector—given a certain de-
tection bandwidth, what is the smallest variation of x

that can be resolved? The quantity S‘xx’m[[w] will have
contributions from the intrinsic fluctuations of the input
signal as well as a contribution due to the detector. We

first define S‘meq[w,T] to be the symmetrized equilib-
rium position noise of our damped oscillator (whose
damping is y,+7y) at temperature 7,
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Sereq @, T1=1 coth(hw/2kgT) (- Im x [w]),  (5.59)

where the oscillator susceptibility x,[w] is defined in
Eq. (5.45). The total inferred position noise may then be
written as

Sxx,tot[w] = [70/(70 + 7)] : Sxx,eq[w’ TO] + Sxx,add[w]'
(5.60)

In the usual case where the detector noise can be ap-
proximated as being white, this spectral density will con-
sist of a Lorentzian sitting atop a constant noise floor
(see Fig. 6). The first term in Eq. (5.60) represents posi-
tion noise arising from the fluctuating force 6F(f) asso-
ciated with the intrinsic (detector-independent) dissipa-
tion of the oscillator [see Eq. (5.41)]. The prefactor of
this term arises because the strength of the intrinsic
Langevin force acting on the oscillator is proportional to
Yo, DOt to Yo+ .

The second term in Eq. (5.60) represents the added
position noise due to the detector. It has contributions

both from the detector’s intrinsic output noise S,;; from

the detector’s back-action noise Spp, and may be written
as

SII P
Syvadd @] = Toal2A? + A%\ xS pr

2 Re[X;F(Xxx)*SIF]
|XIF|2

For clarity, we have omitted writing the explicit fre-
quency dependence of the gain y;r, susceptibility x,,
and noise correlators; they should all be evaluated at the
frequency w. Note that the first term on the RHS corre-
sponds to the measurement-imprecision noise of our de-

(5.61)

tector, S’)I(x(w).

We can now finally address the quantum limit on the
added noise in this setup. As discussed in Sec. V.D, the
Haus-Caves derivation of the quantum limit (cf. Sec.
V.B) is not directly applicable to the position detector
we are describing here; nonetheless, we may use its re-
sult to guess what form the quantum limit will take here.
The Haus-Caves argument told us that the added noise
of a phase-preserving linear amplifier must be at least as
large as the zero-point noise. We thus anticipate that, if
our detector has a large power gain, the spectral density

of the noise added by the detector (i.e., S’xx’add[w]) must
be at least as large as the zero-point noise of our
damped oscillator,

Sxx,add[w] = ;HIB Sxx,eq[""» T] = |ﬁ Im Xxx[w]|' (562)
We now show that the bound above is rigorously correct
at each frequency w.

The first step is to examine the dependence of the

added noise Sy, ,qqlw] [as given by Eq. (5.61)] on the
coupling strength A. If we ignore for a moment the
detector-dependent damping of the oscillator, the situa-

Rev. Mod. Phys., Vol. 82, No. 2, April-June 2010

tion is the same as the cavity position detector of Sec.
ITII.B.3: there is an optimal value of the coupling
strength A which corresponds to a trade-off between im-
precision noise and back-action [i.e., the first and second

terms in Eq. (5.61)]. We thus expect S, aqql @] to attain a
minimum value at an optimal choice of coupling A
=Aqp Where both these terms make equal contributions
(see Fig. 5). Defining ¢[w]=arg x,[w], we thus have the
bound

S SuS
Sexaadlw] = 2|xxx[w]|[ \/IF;
|X1F|

. Re[X;Fefid)[w]SIF] :|
|XIF|2 '

(5.63)

where the minimum value at frequency w is achieved
when

A2 =Sl olxal0]PS o] (5.64)

Using the inequality X?>+Y?=2|XY| we see that this
value serves as a lower bound on S, 4 €ven in the
presence of detector-dependent damping. In the case
where the detector-dependent damping is negligible, the
RHS of Eq. (5.63) is independent of A, and thus Eq.
(5.64) can be satisfied by simply tuning the coupling
strength A; in the more general case where there is
detector-dependent damping, the RHS is also a function
of A (through the response function y,,[w]), and it may
no longer be possible to achieve Eq. (5.64) by simply
tuning A."

While Eq. (5.63) is certainly a bound on the added

displacement noise S, ,qql @], it does not in itself repre-
sent the quantum limit. Reaching the quantum limit re-
quires more than simply balancing the detector back-
action and intrinsic output noises [i.e., the first two terms
in Eq. (5.61)]; one also needs a detector with quantum-
ideal noise properties, that is a detector which satisfies Eq.
(4.17). Using the quantum noise constraint of Eq. (4.11)

to further bound S, .44l @], We obtain

Xl @]
Sxx,add[w] =2 =

XIF

V)

) Re[X;Fe_i¢[w]‘§IF]:|
|X1F| '
where the function A[z] is defined in Eq. (4.12). The

minimum value of S, @] in Eq. (5.65) is now
achieved when one has both an optimal coupling [i.e.,

(5.65)

Note that, in the heuristic discussion of position detection
using a resonant cavity detector in Sec. III.B.3, these concerns
did not arise as there was no back-action damping.
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Eq. (5.64)] and a quantum-limited detector, that is one
which satisfies Eq. (4.11) as an equality.

Next, we consider the relevant case where our detec-
tor is a good amplifier and has a power gain Gplw]>1
over the width of the oscillator resonance. As discussed,

this implies that the ratio S;z/y;r is purely real, up to
small Ziw/ kT corrections (see Sec. IV.A.4 and Appen-
dix 13 for more details). This in turn implies that

A[28,7/ix;r]=0; we thus have

2 S 2
Sxx,add[w] = 2|XXX[LU]||: <ﬁ> + (h)

2 XIF

ot | 560

XIF

Finally, as there is no further constraint on S,/ x;r (be-
yond the fact that it is real), we can minimize the expres-

sion over its value. The minimum S,, ,4q[ @] is achieved
for a detector whose cross correlator satisfies

SiH @) XiHoptima = — (8/2) cot lw],

with the minimum value given by

Sxx,adt{w“min = hllm Xxx[w]| = lim Sxx,eq[w7 T], (568)
T7—0

(5.67)

where S’xx,eq[w,T] is the equilibrium contribution to

Sectol@] defined in Eq. (5.59). Thus, in the limit of a
large power gain, we have that at each frequency the
minimum displacement noise added by the detector is
precisely equal to the noise arising from a zero-
temperature bath. This conclusion is irrespective of the
strength of the intrinsic (detector-independent) oscillator
damping.

We have thus derived the amplifier quantum limit (in
the context of position detection) for a two-port ampli-
fier used in the op-amp mode of operation. Though we
reached a conclusion similar to that given by the Haus-
Caves approach, the linear-response, quantum noise ap-
proach used is quite different. This approach makes ex-
plicitly clear what is needed to reach the quantum limit.
We find that to reach the quantum limit on the added

displacement noise S'madd[w] with a large power gain,
one needs (1) a quantum-limited detector, that is, a de-
tector which satisfies the ideal noise condition of Eq.
(4.17), and hence the proportionality condition of Eg.
(I13); (2) a coupling A which satisfies Eq. (5.64); and (3)
a detector cross correlator S, that satisfies Eq. (5.67).
Recall that condition (1) is identical to what is re-
quired for quantum-limited detection of a qubit; it is
rather demanding, and requires that there is no wasted
information about the input signal in the detector which
is not revealed in the output (Clerk et al., 2003). Also
note that cot ¢ changes quickly as a function of fre-

quency across the oscillator resonance, whereas S, will
be roughly constant; condition (2) thus implies that it

will not be possible to achieve a minimal S‘xx,add[w]
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across the entire oscillator resonance. A more reason-
able goal is to optimize S, ,qql @] at resonance, w={). As

Xul Q] is imaginary, Eq. (5.67) tells us that S, should be
zero. Assuming we have a quantum-limited detector
with a large power gain (kgT.>%()), the remaining
condition on the coupling A [Eq. (5.64)] may be written
as

Ao _ 160
Yo+ V[Aopt] 2\’GP[Q] 4kB Teff

As y[A]xA? is the detector-dependent damping of
the oscillator, we thus have that to achieve the quantum-

I
‘ ma (5.69)

o

limited value of S, ,qq[Q] With a large power gain, one
needs the intrinsic damping of the oscillator to be much
larger than the detector-dependent damping. The
detector-dependent damping must be small enough to
compensate the large effective temperature of the detec-
tor; if the bath temperature satisfies AQ/kp<Tyam
<T.4, Eq. (5.69) implies that at the quantum limit the
temperature of the oscillator will be given by

Tose = (v Tege+ Yo Toam)/ (¥ + ¥9) — 71Q/4k g + Tiyp,.
(5.70)

Thus, at the quantum limit and for large 7., the detec-
tor raises the oscillator’s temperature by A€}/ 4kp'® As
expected, this additional heating is only half the zero-
point energy; in contrast, the quantum-limited value of

S caddl @] corresponds to the full zero-point result, as it
also includes the contribution of the intrinsic output
noise of the detector.

Finally, we return to Eq. (5.65); this is the constraint

on the added noise S,y 4 @] before we assumed our
detector to have a large power gain, and consequently a
large T, Note crucially that if we did not require a
large power gain, then there need not be any added
noise. Without the assumption of a large power gain, the

ratio S,/ x;r can be made imaginary with a large magni-

tude. In this limit, 1+A[2S,:/ x;z]— 0: the quantum con-
straint on the amplifier noises [e.g., the RHS of Eq.
(4.11)] vanishes. One can then easily use Eq. (5.65) to

show that the added noise S‘xx,add[w] can be zero. This
confirms a general conclusion that we have seen several
times now (see Secs. IV.A.4 and V.B): if a detector does
not amplify (i.e., the power gain is unity), it need not
produce any added noise.

F. Quantum limit on the noise temperature of a voltage
amplifier

We now turn our attention to the quantum limit on
the added noise of a generic linear voltage amplifier

15If in contrast our oscillator was initially at zero temperature
(i.e., Tpan=0), one finds that the effect of the back-action (at
the quantum limit and for Gp>1) is to heat the oscillator to a
temperature 7 /kgIn 5.
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FIG. 12. Schematic of a linear voltage amplifier, including a
reverse gain \j. V and I represent the standard voltage and
current noises of the amplifier, as discussed in the text. The
case with reverse gain is discussed in Sec. VI.

used in the op-amp mode of operation [see, e.g., De-
voret and Schoelkopf (2000)]. For such amplifiers, the
added noise is usually expressed in terms of the “noise
temperature” of the amplifier; we define this concept
and demonstrate that, when appropriately defined, this
noise temperature must be bigger than Aw/(2kp), where
w is the signal frequency. Though the voltage amplifier is
closely analogous to the position detector treated previ-
ously, its importance makes it worthy of a separate dis-
cussion. As in the previous section, our discussion here
will use the general linear-response approach. In con-
trast, in Sec. VI, we present the bosonic scattering de-
scription of a two-port voltage amplifier, a description
similar to that used in formulating the Haus-Caves proof
of the amplifier quantum limit. We will then be in a good
position to contrast the linear-response and scattering
approaches and will see there that the scattering and the
op-amp modes of operation discussed here are not
equivalent. We stress that the general treatment pre-
sented here can also be applied directly to the system
discussed in Sec. VI.

1. Classical description of a voltage amplifier

We begin by recalling the standard schematic descrip-
tion of a voltage amplifier (see Fig. 12). The input volt-
age to be amplified v;,(7) is produced by a circuit which
has a Thevenin-equivalent impedance Z, the source im-
pedance. We stress that we are considering the op-amp
mode of amplifier operation, and thus the input signal
does not correspond to the amplitude of a wave incident
upon the amplifier (see Sec. V.D). The amplifier itself
has an input impedance Z;, and an output impedance
Zu» as well as a voltage gain coefficient \y: assuming no
current is drawn at the output (i.e., Z,,q—  in Fig. 12),
the output voltage V,(¢) is simply A\ times the voltage
across the input terminals of the amplifier.

The added noise of the amplifier is usually repre-
sented by two noise sources placed at the amplifier in-

put. There is both a voltage noise source V(f) in series
with the input voltage source and a current noise source

I(r) in parallel with the input voltage source (Fig. 12).

The voltage noise produces a fluctuating voltage 1%0)
(spectral density Syy[w]), which simply adds to the sig-
nal voltage at the amplifier input, and is amplified at the
output; as such, it is completely analogous to the intrin-
sic detector output noise S;; of our linear-response de-
tector. In contrast, the current noise source of the volt-
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age amplifier represents back-action: this fluctuating
current (spectral density Sjlw]) flows back across the
parallel combination of the source impedance and am-
plifier input impedance, producing an additional fluctu-
ating voltage at its input. The current noise is thus analo-
gous to the back-action noise Sgp of our generic linear-
response detector.

Putting the above together, the total voltage at the
input terminals of the amplifier is

Zin > Zinn 7
. )= ——— - (1 ‘/ I —I t
vm,tot( )= Z. Zs[vm( )+ V()] Z.+ 7, )

= vy, (t) + V(1) = Z1(1). (5.71)

In the second line, we have taken the usual limit of an
ideal voltage amplifier which has an infinite input im-
pedance (i.e., the amplifier draws zero current). The
spectral density of the total input voltage fluctuations is
thus

Syvialw] =8, . [0]+Syyaale]. (5.72)

Here Svinvin is the spectral density of the voltage fluctua-
tions of the input signal v;,(¢) and Sy ,4q is the amplifi-
er’s contribution to the total noise at the input

Syv.aadl @] = Sy + | Z,[*Sij - 2 Re[ Z Syjl. (5.73)

For clarity, we have dropped the frequency index for the
spectral densities appearing on the RHS of this equa-
tion.

It is useful now to consider a narrow bandwidth input
signal at a frequency w, and ask the following question:
if the signal source was simply an equilibrium resistor at
a temperature 7,,, how much hotter would it have to be
to produce a voltage noise equal to Syy o[w]? The re-
sulting increase in the source temperature is defined as
the noise temperature Th[w] of the amplifier and is a
convenient measure of the amplifier’s added noise. It is
standard among engineers to define the noise tempera-
ture with the assumption that the initial temperature of
the resistor Ty>%w. One may then use the classical ex-
pression for the thermal noise of a resistor, which yields
the definition

2 Re ZSkBTN[w] = va’tot[(u]. (574)
Writing Z,=|Z|e'?, we have
1 | Syw A
2kpTy=——| — +|Z,Sjj - 2 Re(e7*Sy)) |.
BIN cos B |74 +1Z,|Sii e(e vi)
(5.75)

It is clear from this expression that T will have a mini-
mum as a function of |Z,|. For |Z,| too large, the back-
action current noise of the amplifier will dominate 7Y,
while for |Z,| too small, the voltage noise of the amplifier
(i.e., its intrinsic output noise) will dominate. The situa-
tion is completely analogous to that of the position de-
tector of the last section; there we needed to optimize
the coupling strength A to balance back-action and in-
trinsic output noise contributions and thus minimize the
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total added noise. Optimization of the source impedance
thus yields a completely classical minimum bound on
Ty,

kzTn = \SyiSii— [Im Syi2 — Re Syj, (5.76)

where the minimum is achieved for an optimal source
impedance that satisfies

|Zs[w]|0pt =\Syilo)Silo]l = Zy, (5.77)
sin ¢ @]|ope = — Im Syl o]/ Syl w]Sifw]. (5.78)

The above equations define the so-called noise imped-
ance Z . We stress again that the discussion so far in this
section has been completely classical.

2. Linear-response description

It is easy to connect the classical description of a volt-
age amplifier to the quantum-mechanical description of
a generic linear-response detector; in fact, all that is
needed is a “relabeling” of the concepts and quantities
introduced in Sec. V.E when discussing a linear position
detector. Thus, the quantum voltage amplifier will be

characterized by both an input operator O and an out-
put operator Vous, these play the roles of F and ] in the
position detector, respectively. Vout represents the out-
put voltage of the amplifier, while O is the operator
which couples to the input signal v;,(f) via a coupling
Hamiltonian

I:Iint = Uin([)Q- (579)
In more familiar terms, iin—d D/ dt represents the cur-

rent flowing into the amplifier.'” The voltage gain of our
amplifier Ay, will again be given by the Kubo formula of
Eq. (4.3), with the substitutions F —>Q,f — f/om (we as-
sume these substitutions throughout this section).

We can now easily relate the fluctuations of the input
and output operators to the noise sources used to de-
scribe the classical voltage amplifier. As usual, symme-
trized quantum noise spectral densities S[w] will play the
role of the classical spectral densities S[w] appearing in
the classical description. First, as the operator 0 repre-
sents a back-action force, its fluctuations correspond to

the amplifier’s current noise i(t),

Note that one could have instead written the coupling

Hamiltonian in the more traditional form Hi(f)= (1)l
where ¢=[dt'v,(¢') is the flux associated with the input volt-
age. The linear-response results we obtain are exactly the
same. We prefer to work with the charge Q in order to be
consistent with the rest of the text.
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Siilw] « w2S'QQ[a)]. (5.80)
Similarly, the fluctuations in the operator f/out, when re-
ferred back to the amplifier input, will correspond to the

voltage noise V(1) discussed above,

Siilwl < Sy v [wl/\yP.

out” out

(5.81)

A similar correspondence holds for the cross correlator
of these noise sources,

Syflw] = +iwSy_olwl/\y. (5.82)

To proceed, we need to identify the input and output
impedances of the amplifier, and then define its power
gain. The first step in this direction is to assume that the

output of the amplifier (I}Om) is connected to an external
circuit via a term

Hiy = qouVouts (5.83)
where iy =dq.y/dt is the current in the external circuit.
We may now identify the input and output impedances
of the amplifier in terms of the damping at the input and
output. Use of the Kubo formulas for conductance and
resistance yields [cf. Eq. (2.12) and Eq. (5.48), with the

substitutions F— Q and I — 17]

1/ Z o] =iwxgolw], (5.84)

Zout[w] = XVV[w]/(_ o), (5.85)
ie., <Iin>w:(1/Zin[w])vin[w] and <V>wzzout[w]ioul[w]’
where the subscript w indicates the Fourier transform of
a time-dependent expectation value.

We consider throughout this section the case of no
reverse gain, xoy_ =0. We can define the power gain Gp
exactly as in Sec. V.E.3 for a linear position detector. Gp
is defined as the ratio of the power delivered to a load
attached to the amplifier output divided by the power
drawn by the amplifier, maximized over the impedance
of the load. One finds

Gp=|\/|*4 Re(Z,)Re(1/Z;,). (5.86)

Expressing this in terms of the linear-response coeffi-
cients Ayy and xpp, We obtain an expression that is com-
pletely analogous to Eq. (5.52) for the power gain for a
position detector

Gp=\y7/4 Im xp0 Im xyy. (5.87)

Finally, we define again the effective temperature T o]
of the amplifier via Eq. (2.8), and define a quantum-
limited voltage amplifier as one that satisfies the ideal-
noise condition of Eq. (4.17). For such an amplifier, the
power gain will be determined by the effective tempera-
ture via Eq. (5.56).

Turning to the noise, we calculate the total symme-
trized noise at the output port of the amplifier following
the same argument used to get the output noise of the
position detector [cf. Eq. (5.46)]. As we did in the clas-
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sical approach, we assume that the input impedance of
the amplifier is much larger than the source impedance:
Z.> 7 we test this assumption for consistency at the
end of the calculation. Focusing only on the amplifier
contribution to this noise (as opposed to the intrinsic
noise of the input signal), and referring this noise back
to the amplifier input, we find that the symmetrized
quantum noise spectral density describing the added

noise of the amplifier Syy ,q4 @] satisfies the same equa-
tion we found for a classical voltage amplifier, Eq. (5.73),
with each classical spectral density S[w] replaced by the
corresponding symmetrized quantum spectral density

S[w] as per Egs. (5.80)—(5.82).

It follows that the amplifier noise temperature will
again be given by Eq. (5.75), and that the optimal noise
temperature (after optimizing over the source imped-
ance) will be given by Eq. (5.76). Whereas classically
nothing more could be said, quantum mechanically we
now get a further bound from the quantum noise con-
straint of Eq. (4.11) and the requirement of a large
power gain. The latter requirement tells us that the volt-

age gain \y[w] and the cross correlator § V,, o must be
in phase (cf. Sec. IV.A.4 and Appendix 1.3). This in turn

means that Sy; must be purely imaginary. In this case,
the quantum noise constraint may be rewritten as

SivlwlSilo] - [Im Sy = (hwl2)?. (5.88)

Using these results in Eq. (5.76), we find the ultimate
quantum limit on the noise temperature,'®

kgTh[w] = hol2 (5.89)

As for the position detector, reaching the quantum limit
here is not simply a matter of tuning the coupling [i.e.,
tuning the source impedance Z to match the noise im-
pedance, cf. Eq. (5.77) and (5.78)]; one also needs to
have an amplifier with ideal quantum noise, that is, an
amplifier satisfying Eq. (4.17).

Finally, we need to test our initial assumption that
|Z,|<|Z;,|, taking |Z,| to be equal to its optimal value
Zy. Using the proportionality condition of Eq. (I13) and
the fact that we are in the large-power-gain limit
(Gplw]>1), we find

¥Note that our definition of the noise temperature 7 con-
forms with that of Devoret and Schoelkopf (2000) and most
electrical engineering texts, but is slightly different from that of
Caves (1982). Caves assumed the source is initially at zero tem-
perature (i.e., Ty=0), and consequently used the full quantum
expression for its equilibrium noise. In contrast, we have as-
sumed that kpT(>hw. The different definition of the noise
temperature used by Caves leads to the result kpTy
=fw/(In3) as opposed to our Eq. (5.89). We stress that the
difference between these results has nothing to do with phys-
ics, but only with how one defines the noise temperature.
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ho 1
=<1
dkpTe; 2VGplw]
(5.90)

It follows that | Zy| <|Z;,| in the large-power-gain, large-
effective-temperature regime of interest, thus justifying
the form of Eq. (5.73). Equation (5.90) is analogous to
the case of the displacement detector, where we found
that reaching the quantum limit on resonance required
the detector-dependent damping to be much weaker
than the intrinsic damping of the oscillator [cf. Eq.
(5.69)].

Thus, similarly to the situation of the displacement
detector, the linear-response approach allows us both to
derive rigorously the quantum limit on the noise tem-
perature Ty of an amplifier and to state conditions that
must be met to reach this limit. To reach the quantum-
limited value of T with a large power gain, one needs
both a tuned source impedance Z; and an amplifier that
possesses ideal noise properties [cf. Egs. (4.17) and Eq.
(113)].

‘ Znlw]
Re Z;,[ o]

‘ o

Im «

3. Role of noise cross correlations

Before leaving the topic of a linear voltage amplifier,
we pause to note the role of cross correlations in current
and voltage noise in reaching the quantum limit. First,
note from Eq. (5.78) that in both the classical and quan-
tum treatments the noise impedance Zy of the amplifier
will have a reactive part (i.e., Im Zy#0) if there are
out-of-phase correlations between the amplifier’s current
and voltage noises (i.e., if Im Sy;# 0). Thus, if such cor-
relations exist, it will not be possible to minimize the
noise temperature (and hence reach the quantum limit),
if one uses a purely real source impedance Z,.

More significantly, note that the final classical expres-
sion for the noise temperature Ty explicitly involves the
real part of the Sy; correlator [cf. Eq. (5.76)]. In contrast,

we have shown that in the quantum case Re Sy, must be
zero if one wishes to reach the quantum limit while hav-
ing a large power gain (see Appendix 1.3); as such, this
quantity does not appear in the final expression for the
minimal Ty. It also follows that to reach the quantum
limit while having a large power gain, an amplifier can-
not have significant in-phase correlations between its
current and voltage noise.

This last statement can be given a heuristic explana-
tion. If there are out-of-phase correlations between cur-
rent and voltage noise, we can easily make use of these
by appropriately choosing our source impedance. How-
ever, if there are in-phase correlations between current
and voltage noise, we cannot use these simply by tuning
the source impedance. We could, however, have used
them by implementing feedback in our amplifier. The
fact that we have not done this means that these corre-
lations represent a kind of missing information; as a re-
sult, we must necessarily miss the quantum limit. In Sec.
VLB, we explicitly give an example of a voltage ampli-
fier which misses the quantum limit due to the presence
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of in-phase current and voltage fluctuations; we show
how this amplifier can be made to reach the quantum
limit by adding feedback in Appendix H.

G. Near quantum-limited mesoscopic detectors

Having discussed the origin and precise definition of
the quantum limit on the added noise of a linear, phase-
preserving amplifier, we now provide a review of work
examining whether particular detectors are able in prin-
ciple to achieve this ideal limit. We focus on the op-amp
mode of operation discussed in Sec. V.D, where the de-
tector is only weakly coupled to the system producing
the signal to be amplified. As repeatedly stressed, reach-
ing the quantum limit in this case requires the detector
to have quantum-ideal noise, as defined by Eq. (4.17).
Heuristically, this corresponds to the general require-
ment of no wasted information: there should be no other
quantity besides the detector output that could be moni-
tored to provide information on the input signal (Clerk
et al., 2003). We have already given one simple but rel-
evant example of a detector which reaches the amplifier
quantum limit: the parametric cavity detector, discussed
in Sec. III.B. Here we turn to other more complex de-
tectors.

1. dc superconducting quantum interference device amplifiers

The dc superconducting quantum interference device
(SQUID) is a detector based on a superconducting ring
having two Josephson junctions. It can in principle be
used as a near quantum-limited voltage amplifier or
flux-to-voltage amplifier. Theoretically, this was investi-
gated using a quantum Langevin approach (Koch et al.,
1981; Danilov et al., 1983), as well as more rigorously by
using perturbative techniques (Averin, 2000b) and map-
pings to quantum impurity problems (Clerk, 2006). Ex-
periments on SQUIDS have also confirmed their poten-
tial for near-quantum-limited operation. Miick et al.
(2001) were able to achieve a noise temperature Ty ap-
proximately 1.9 times the quantum-limited value at an
operating frequency of w=27X519 MHz. Working at
lower frequencies appropriate to gravitational wave de-
tection applications, Vinante et al. (2001) were able to
achieve a Ty approximately 200 times the quantum-
limited value at a frequency w=27X1.6 kHz; more re-
cently, the same group achieved a T approximately ten
times the quantum limit at a frequency w=2m
X 1.6 kHz (Falferi et al., 2008). In practice, it can be dif-
ficult to achieve the theoretically predicted quantum-
limited performance due to spurious heating caused by
the dissipation in the shunt resistances used in the
SQUID. This effect can be significantly ameliorated,
however, by adding cooling fins to the shunts (Wellstood
et al., 1994).

2. Quantum point contact detectors

A quantum point contact (QPC) is a narrow conduct-
ing channel formed in a two-dimensional gas. The cur-
rent through the constriction is sensitive to nearby
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charges, and thus the QPC acts as a charge-to-current
amplifier. It has been shown theoretically that the QPC
can achieve the amplifier quantum limit, both in the re-
gime where transport is due to tunneling (Gurvitz, 1997),
and in regimes where the transmission is not small
(Aleiner et al., 1997; Levinson, 1997; Korotkov and
Averin, 2001; Pilgram and Biittiker, 2002; Clerk et al.,
2003). Experimentally, QPCs are in widespread use as
detectors of quantum dot qubits. The back-action
dephasing of QPC detectors was studied by Buks et al.
(1998) and Sprinzak et al. (2000); good agreement was
found with the theoretical prediction, confirming that
the QPC has quantum-limited back-action noise.

3. Single-electron transistors and resonant-level detectors

A metallic single-electron transistor (SET) consists of
a small metallic island attached via tunnel junctions to
larger source and drain electrodes. Because of
Coulomb-blockade effects, the conductance of a SET is
sensitive to nearby charges, and hence it acts as a sensi-
tive charge-to-current amplifier. Considerable work has
investigated whether metallic SETs can approach the
quantum limit in various different operating regimes.
Theoretically, the performance of a normal-metal SET
in the sequential tunneling regime was studied by Shnir-
man and Schon (1998), Devoret and Schoelkopf (2000),
Makhlin et al. (2000), Aassime et al. (2001), and Johans-
son et al. (2002, 2003). In this regime, where transport is
via a sequence of energy-conserving tunnel events, one
is far from optimizing the quantum noise constraint of
Eq. (4.17), and hence one cannot reach the quantum
limit (Shnirman and Schon, 1998; Korotkov, 2001b). If
one instead chooses to work with a normal-metal SET in
the cotunneling regime (a higher-order tunneling pro-
cess involving a virtual transition), then one can indeed
approach the quantum limit (Averin, 2000a; van den
Brink, 2002). However, by virtue of being a higher-order
process, the related currents and gain factors are small,
impinging on the practical utility of this regime of opera-
tion. It is worth noting that while most theory on SETs
assume a dc voltage bias, to enhance bandwidth, experi-
ments are usually conducted using the rf-SET configura-
tion (Schoelkopf et al., 1998), where the SET changes
the damping of a resonant LC circuit. Korotkov and
Paalanen (1999) showed that this mode of operation for
a sequential tunneling SET increases the measurement-
imprecision noise by approximately a factor of 2. The
measurement properties of a normal-metal, sequential-
tunneling rf-SET (including back-action) were studied
experimentally by Turek et al. (2005).

Measurement using superconducting SETs has also
been studied. Clerk et al. (2002) showed that so-called
incoherent Cooper-pair tunneling processes in a super-
conducting SET can have a noise temperature which is
approximately a factor of 2 larger than the quantum-
limited value. The measurement properties of supercon-
ducting SETs biased at a point of incoherent Cooper-
pair tunneling have been probed recently in experiment
(Thalakulam et al., 2004; Naik et al., 2006).
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The quantum measurement properties of phase-
coherent noninteracting resonant level detectors have
also been studied theoretically (Averin, 2000b; Clerk
and Stone, 2004; Mozyrsky et al., 2004; Gavish et al.,
2006). These systems are similar to metallic SET, except
that the central island only has a single level (as opposed
to a continuous density of states), and Coulomb-
blockade effects are typically neglected. These detectors
can reach the quantum limit in the regime where the
voltage and temperature are smaller than the intrinsic
energy broadening of the level due to tunneling. They
can also reach the quantum limit in a large-voltage re-
gime that is analogous to the cotunneling regime in a
metallic SET (Averin, 2000b; Clerk and Stone, 2004).
The influence of dephasing processes on such a detector
was studied by Clerk and Stone (2004).

H. Back-action evasion and noise-free amplification

Having discussed in detail quantum limits on phase-
preserving linear amplifiers (i.e., amplifiers which mea-
sure both quadratures of a signal equally well), we now
return to the situation discussed in Sec. V.A: imagine we
wish only to amplify a single quadrature of some time-
dependent signal. For this case, there need not be any
added noise from the measurement. Unlike the case of
amplifying both quadratures, Liouville’s theorem does
not require the existence of any additional degrees of
freedom when amplifying a single quadrature: phase
space volume can be conserved during amplification
simply by contracting the unmeasured quadrature [see
Eq. (5.2)]. As no extra degrees of freedom are needed,
there need not be any extra noise associated with the
amplification process.

Alternatively, single-quadrature detection can take a
form similar to a QND measurement, where the back-
action does not affect the dynamics of the quantity being
measured (Thorne et al., 1978; Braginsky et al., 1980;
Caves et al., 1980; Caves, 1982; Braginsky and Khalili,
1992; Bocko and Onofrio, 1996). For concreteness, con-
sider a high-Q harmonic oscillator with position x(#) and
resonant frequency (). Its motion may be written in
terms of quadrature operators defined as in Eq. (3.48),

£(1) = X {)cos(Qt + 8) + Y s(1)sin(Q + 8). (5.91)

Here X(¢) is the Heisenberg-picture position operator of
the oscillator. The quadrature operators can be written
in terms of the (Schrodinger-picture) oscillator creation
and destruction operators as

X §(1) = xppp(Ce @9 4 flemi @)y (5.92a)

Y s(t) = — ixypp(Ee’ Q1+ _ glemilQur)) (5.92b)
As previously discussed, the two quadrature ampli-

tude operators Xsand Y, are canonically conjugate [cf.
Eq. (3.49)]. Making a measurement of one quadrature

amplitude, say X, will thus invariably lead to back-
action disturbance of the other conjugate quadrature }A’,;.
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However, due to the dynamics of a harmonic oscillator,
this disturbance will not affect the measured quadrature
at later times. One can already see this from the classical
equations of motion. Suppose our oscillator is driven by
a time-dependent force F(f) which has appreciable band-
width only near ). We may write this as
F(t) = Fy(t)cos(Qt + 6) + Fy(t)sin(Qz + 6), (5.93)
where Fy(f), Fy(t) are slowly varying compared to ().
Using the fact that the oscillator has a high-quality fac-
tor Q=()/ vy, one can easily find the equations of motion,

dX {t)dt=— (y12) X 5(t) — Fy(t)[2mQ}, (5.94a)

dYs(t)/dt =— (y12)Ys(t) + Fx(t)12m). (5.94b)

Thus, as long as Fy(t) and Fy(f) are uncorrelated and
sufficiently slow, the dynamics of the two quadratures
are completely independent; in particular, if Y 5is subject
to a narrow-bandwidth, noisy force, it is of no conse-
quence to the evolution of X5 An ideal measurement of
X5 will result in a back-action force having the form of
Eq. (5.93) with Fy(1)=0, implying that X s(r) will be com-
pletely unaffected by the measurement.

Not surprisingly, if one can measure and amplify X
without any back-action, there need not be any added
noise due to the amplification. In such a setup, the only
added noise is the measurement-imprecision noise asso-
ciated with intrinsic fluctuations of the amplifier output.
These may be reduced in principle to an arbitrarily small
value by simply increasing the amplifier gain (e.g., by
increasing the detector-system coupling): in an ideal
setup, there is no back-action penalty on the measured
quadrature associated with this increase.

The above conclusion can lead to what seems like a
contradiction. Imagine we use a back-action evading
amplifier to make a “perfect” measurement of X (i.e.,
negligible added noise). We would then have no uncer-
tainty as to the value of this quadrature. Consequently,
we would expect the quantum state of our oscillator to
be a squeezed state, where the uncertainty in Xis much
smaller than x,pr. However, if there is no back-action
acting on X5, how is the amplifier able to reduce its un-
certainty? This seeming paradox can be fully resolved by
considering the conditional aspects of an ideal single-
quadrature measurement, where one considers the state
of the oscillator given a particular measurement history
(Ruskov et al., 2005; Clerk et al., 2008).

It is worth stressing that the possibility of amplifying a
single quadrature without back-action (and hence with-
out added noise) relies crucially on our oscillator resem-
bling a perfect harmonic oscillator: the oscillator Q must
be large, and nonlinearities (which could couple the two
quadratures) must be small. In addition, the envelope of
the nonvanishing back-action force Fy(f) must have a
narrow bandwidth. One should further note that a very
high-precision measurement of X will produce a very
large back-action force Fy. If the system is not nearly
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perfectly harmonic, then the large amplitude imparted
to the conjugate quadrature Y s will inevitably leak back
into X

Amplifiers or detectors that treat the two signal
quadratures differently are known in the quantum optics
literature as phase sensitive; we prefer the designation
phase nonpreserving since they do not preserve the
phase of the original signal. Such amplifiers invariably
rely on some internal clock (i.e., an oscillator with a
well-defined phase) which breaks time-translation in-
variance and picks out the phase of the quadrature that
will be amplified [i.e., the choice of § used to define the
two quadratures in Eq. (5.91)]; we see this explicitly in
what follows. This leads to an important caveat: even in
a situation where the interesting information is in a
single signal quadrature, to benefit from using a phase-
nonpreserving amplifier, we must know in advance the
precise phase of this quadrature. If we do not know this
phase, we either have to revert to a phase-preserving
amplification scheme (and thus be susceptible to added
noise) or we would have to develop a sophisticated and
high speed quantum feedback scheme to dynamically
adapt the measurement to the correct quadrature in real
time (Armen et al., 2002). In what follows, we make the
above ideas concrete by considering a few examples of
quantum phase-nonpreserving ampliﬁers.19

1. Degenerate parametric amplifier

Perhaps the simplest example of a phase nonpreserv-
ing amplifier is the degenerate parametric amplifier; the
classical version of this system was described in Sec. V.A
[see Eq. (5.2)]. The setup is similar to the nondegenerate
parametric amplifier discussed in Sec. V.C, except that
the idler mode is eliminated, and the nonlinearity con-
verts a single pump photon into two signal photons at
frequency wg=wp/2. As we now show, the resulting dy-
namics causes one signal quadrature to be amplified
while the other is attenuated, in such a way that it is not
necessary to add extra noise to preserve the canonical
commutation relations.

The system Hamiltonian is

Hyi=h(wppdp + wsdlds) + ifig(asasap — dsdsdp).
(5.95)

If the pump is treated classically as before, the analog of
Eq. (5.16) is

Vs = ih(N2) (@55 — dsds), (5.96)
where N/2=7ip, and the analog of Eq. (5.19) is
dg=— (kg/2)ds+ Nak - \‘J’K_SBS,in' (5.97)

YOne could in principle generalize the linear-response ap-
proach of Sec. V to deal with phase-nonpreserving detectors.
However, as such detectors are not time-translational invari-
ant, such a description becomes rather cumbersome and is not
particularly helpful. We prefer instead to present concrete
examples.
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The dimensionless quadrature operators correspond-
ing to the signal mode are

2= (N2)(@h+dg), = N2)ak- dg), (5.98)

which obey [£¢,y¢]=i. We can define quadrature opera-

tors X S.infouts lA’S,in/om corresponding to the input and out-
put fields in a completely analogous manner.

The steady state solution of Eq. (5.97) for the output
fields becomes

)A(S,out = \‘/E)A(S,inv )}S,out = ’}S,in/\“”Ea (599)
where the number gain G is given by
G=[(\+ kg/2)/(N — k5/2) . (5.100)

We thus see clearly that the amplifier treats the two
quadratures differently. One quadrature is amplified and
the other attenuated, with the result that the commuta-
tion relation can be preserved without the necessity of
extra degrees of freedom and added noise. Note that the
large-amplitude pump mode has played the role of a
clock in the degenerate paramp: it is the phase of the
pump that picks out which quadrature of the signal will
be amplified.

Before ending our discussion here, it is important to
stress that while the degenerate parametric amplifier is
phase sensitive and has no added noise, it is not an ex-
ample of back-action evasion [see Caves et al. (1980),
footnote on p. 342]. This amplifier is operated in the
scattering mode of amplifier operation, a mode where
(as discussed in Sec. V.D) back-action is not relevant at
all. Recall that in this mode of operation the amplifier
input is perfectly impedance matched to the signal
source, and the input signal is simply the amplitude of an
incident wave on the amplifier input. This mode of op-
eration necessarily requires a strong coupling between

the input signal and the amplifier input (i.e., (b sin)- If
one instead tried to weakly couple the degenerate para-
metric amplifier to a signal source, and operate it in the
op-amp mode of operation (cf. Sec. V.D), one finds that
there is indeed a back-action disturbance of the mea-
sured quadrature. We have yet another example which
demonstrates that one must be careful to distinguish the
op-amp and scattering modes of amplifier operation.

2. Double-sideband cavity detector

We now turn to a simple but experimentally relevant
detector that is truly back-action evading. We take as
our input signal the position X of a mechanical oscillator.
The amplifier setup we consider is almost identical to
the cavity position detector discussed in Sec. I11.B.3: we
again have a single-sided resonant cavity whose fre-
quency depends linearly on the oscillator’s position, with
the Hamiltonian given by Eq. (3.11) (with Z=x/xpp).
We showed in Sec. III.B.3 and Appendix E.3 that, by
driving the cavity on resonance, it could be used to make
a quantum-limited position measurement: one can oper-
ate it as a phase-preserving amplifier of the mechanical
oscillator’s position and achieve the minimum possible
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amount of added noise. To use the same system to make
a back-action free measurement of one oscillator
quadrature only, one simply uses a different cavity drive.
Instead of driving at the cavity resonance frequency w,,
one drives at the two sidebands associated with the me-
chanical motion (i.e., at frequencies w.+(), where () is as
always the frequency of the mechanical resonator). As
we see, such a drive results in an effective interaction
that couples the cavity to only one quadrature of the
oscillator’s motion. This setup was first proposed as a
means of back-action evasion by Braginsky et al. (1980);
further discussion can be found in Caves et al. (1980) and
Braginsky and Khalili (1992), as well as in Clerk et al.
(2008), which gives a fully quantum treatment and con-
siders conditional aspects of the measurement. In what
follows, we sketch the operation of this system following
Clerk et al. (2008); details are provided in Appendix E.4.

We start by requiring that our system be in the “good-
cavity” limit, where w.>0> « (k is the damping of the
cavity mode); we also require the mechanical oscillator
to have a high-Q factor. In this regime, the two side-
bands associated with the mechanical motion at w,.+()
are well separated from the main cavity resonance at w,.
Making a single-quadrature measurement requires that
one drives the cavity equally at the two sideband fre-

quencies. The amplitude of the driving field b, entering
the cavity will be chosen to have the form

i6,~i(w—~O)t —id

m()———(e —e %

—i(wA+Q)1
2 )

N .
= g sin(Qt + e, (5.101)

Here N is the photon-number flux associated with the
cavity drive (see Appendix E for more details on how to
properly include a drive using input-output theory).
Such a drive could be produced by taking a signal at the
cavity resonance frequency and amplitude-modulating it
at the mechanical frequency.

To understand the effect of this drive, note that it
sends the cavity both photons with frequency w.—{) and
photons with frequency w.+{). The first kind of drive
photon can be converted to a cavity photon if a quantum
is absorbed from the mechanical oscillator; the second
kind of drive photon can be converted to a cavity pho-
ton if a quantum is emitted to the mechanical oscillator.
The result is that we can create a cavity photon by either
absorbing or emitting a mechanical oscillator quantum.
If there is a well-defined relative phase of e”?? between
the two kinds of drive photons, we would expect the
double-sideband drive to yield an effective cavity-
oscillator interaction of the form

Vg \/E[df(e“sé +e %) + Hel] (5.102a)
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o VNI (l+d

(5.102b)

This is exactly what is found in a full calculation (see
Appendix E.4). Note that we have written the interac-
tion in an interaction picture in which the fast oscilla-
tions of the cavity and oscillator operators have been
removed. In the second line, we have made use of Egs.
(5.92) to show that the effective interaction involves only

the X s oscillator quadrature.

We thus see from Eq. (5.102b) that the cavity is
coupled only to the oscillator X5 quadrature. As shown
rigorously in Appendix E.3, the result is that the system
only measures and amplifies this quadrature: the light

leaving the cavity has a signature of X s but not of IA/(;.
Further, Eq. (5.102b) implies that the cavity operator

\]FV (@+a") will act as a noisy force on the Yz quadrature.
While this will cause a back-action heating of Y, it will
not affect the measured quadrature X; We thus have a
true back-action-evading amplifier: the cavity output
light lets one measure X free from any back-action ef-
fect. Note that, in deriving Eq. (5.102a), we have used
the fact that the cavity operators have fluctuations in a
narrow bandwidth ~x<(: the back-action force noise is
slow compared to the oscillator frequency. If this were
not the case, we could still have a back-action heating of
the measured X ; quadrature. Such effects, arising from a
nonzero ratio /), are treated in Clerk et al. (2008).
Finally, as there is no back-action on the measured X5
quadrature, the only added noise of the amplification
scheme is measurement-imprecision noise (e.g., shot
noise in the light leaving the cavity). This added noise
can be made arbitrarily small by increasing the gain of
the detector by, for example, increasing the strength of

the cavity drive N. In a real system where «/w,, is non-
zero, the finite bandwidth of the cavity number fluctua-
tions leads to a small back-action on the X5 As a result,
one cannot make the added noise arbitrarily small, as
too large a cavity drive will heat the measured quadra-
ture. Nonetheless, for a sufficiently small ratio «/wy,,
one can still beat the standard quantum limit on the
added noise (Clerk et al., 2008).

3. Stroboscopic measurements

With sufficiently high bandwidth it should be possible
to do stroboscopic measurements synchronized with the
oscillator motion, which could allow one to go below the
standard quantum limit in one quadrature of motion
(Caves et al., 1980; Braginsky and Khalili, 1992). To un-
derstand this idea, imagine an extreme form of phase-
sensitive detection in which a Heisenberg microscope
makes a strong high-resolution measurement which
projects the oscillator onto a state of well-defined posi-
tion X at time =0,
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Wy (1) = 2 a,e Y ), (5.103)
n=0

where the coefficients obey a,=(n|X,). Because the po-
sition is well defined the momentum is extremely uncer-
tain. (Equivalently, the momentum kick delivered by the
back-action of the microscope makes the oscillator mo-
mentum uncertain.) Thus the wave packet quickly
spreads out and the position uncertainty becomes large.
However, because of the special feature that the har-
monic oscillator levels are evenly spaced, we can see
from Eq. (5.103) that the wave packet re-assembles itself
precisely once each period of oscillation because e
=1 for every integer n. (At half periods, the packet re-
assembles at position —X|.) Hence stroboscopic mea-
surements made once (or twice) per period will be back-
action evading and can go below the standard quantum
limit. The only limitations will be the finite anharmonic-
ity and damping of the oscillator. Note that the possibil-
ity of using mesoscopic electron detectors to perform
stroboscopic measurements has recently received atten-
tion (Jordan and Biittiker, 2005b; Ruskov et al., 2005).

VI. BOSONIC SCATTERING DESCRIPTION OF A
TWO-PORT AMPLIFIER

In this section, we return again to the topic of Sec.
V.F, quantum limits on a quantum voltage amplifier. We
now discuss the physics in terms of the bosonic voltage
amplifier first introduced in Sec. V.D. Recall that in that
section we demonstrated that the standard Haus-Caves
derivation of the quantum limit was not directly relevant
to the usual weak-coupling op-amp mode of amplifier
operation, a mode where the input signal is not simply
the amplitude of a wave incident on the amplifier. In this
section, we expand upon that discussion, giving an ex-
plicit discussion of the differences between the op-amp
description of an amplifier presented in Sec. V.E, and
the scattering description often used in the quantum op-
tics literature (Grassia, 1998; Courty et al., 1999). We see
that what one means by back-action and added noise are
not the same in the two descriptions! Further, even
though an amplifier may reach the quantum limit when
used in the scattering mode (i.e., its added noise is as
small as allowed by commutation relations), it can none-
theless fail to achieve the quantum limit when used in
the op-amp mode. Finally, the discussion here will also
allow us to highlight important aspects of the quantum
limit not easily discussed in the more general context of
Sec. IV.

A. Scattering versus op-amp representations

In the bosonic scattering approach, a generic linear
amplifier is modeled as a set of coupled bosonic modes.
To make matters concrete, we consider the specific case
of a voltage amplifier with distinct input and output
ports, where each port is a semi-infinite transmission line
(see Fig. 9). We start by recalling that a quantum trans-
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mission line can be described as a set of noninteracting
bosonic modes (see Appendix D for a quick review).
Denoting the input transmission line with an a and the
output transmission line with a b, the current and volt-
age operators in these lines may be written as

A “dw .
V(0 = fo T2V fwle ™ + Hee), (6.1a)
o “do . »
=0, f T2 fwle ™+ He), (6.1b)
0 o
with
N hw . .
Vq[(x)] = TZzi(qin[w] + QOut[w])’ (6.2a)
A ho .
Llo]l= |77 (Gulo] - Goulo]). (6.2b)

27,

Here g can be equal to a or b, and we have o,=1,
o,=—1. The operators d;,[ w], d,,[w] are bosonic annihi-
lation operators; d;,[w] describes an incoming wave in
the input transmission line (i.e., incident on the ampli-
fier) having frequency w, while d,,[w] describes an out-

going wave with frequency . The operators b;[w] and
Bom[w] describe analogous waves in the output transmis-
sion line. We can think of Vu as the input voltage to our
amplifier and f/b as the output voltage. Similarly, ia is the

current drawn by the amplifier at the input and I 5 1s the
current drawn at the output of the amplifier. Finally, Z,
(Z) is the characteristic impedance of the input (output)
transmission line.

As we have seen, amplification invariably requires ad-
ditional degrees of freedom. Thus, to amplify a signal at
a particular frequency w, there will be 2N bosonic
modes involved, where the integer N is necessarily
larger than 2. Four of these modes are simply the
frequency-w modes in the input and output lines (i.e.,

dilw], doulo], l;in[w], and lsom[w]). The remaining 2(N
—2) modes describe auxiliary degrees of freedom in-
volved in the amplification process; these additional
modes could correspond to frequencies different from
the signal frequency w. The auxiliary modes can also be
divided into incoming and outgoing modes. It is thus
convenient to represent them as additional transmission
lines attached to the amplifier; these additional lines
could be semi-infinite or could be terminated by active
elements.

1. Scattering representation

In general, our generic two-port bosonic amplifier will
be described by an N X N scattering matrix, which deter-
mines the relation between the outgoing and incoming
mode operators. The form of this matrix is constrained
by the requirement that the output modes obey the
usual canonical bosonic commutation relations. It is con-
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venient to express the scattering matrix in a form which
only involves the input and output lines explicitly,

(dout[«ﬂ) <sn[w] su[w]>(dm[w]> (ﬁa[w])
~ = N + .
boul @] sylw] splw] byl w] j:b[w]

(6.3)

Here f:a[w] and ffb[w] are each an unspecified linear
combination of the incoming auxiliary modes introduced
above. They thus describe noise in the outgoing modes
of the input and output transmission lines which arises
from the auxiliary modes involved in the amplification
process. Note the similarity between Egs. (6.3) and (5.7)
for the simple one-port bosonic amplifier considered in
Sec. V.B.

In the quantum optics literature, one typically views
Eq. (6.3) as the defining equation of the amplifier; we
call this the scattering representation of our amplifier.
The representation is best suited to the scattering mode
of amplifier operation described in Sec. V.D. In this
mode of operation, the experimentalist ensures that
(d;jlw]) is precisely equal to the signal to be amplified,
irrespective of what is coming out of the amplifier. Simi-
larly, the output signal from the amplifier is the ampli-

tude of the outgoing wave in the output line, (l;out[w]>. If

we focus on l;out, we have precisely the same situation as
described in Sec. 5.10, where we presented the Haus-
Caves derivation of the quantum limit [see Eq. (5.7)]. It
follows that in the scattering mode of operation the ma-
trix element s,;[ w] represents the gain of our amplifier at
frequency w, |sy[w]]> the corresponding “photon-

number gain,” and .f:b the added noise operator of the

amplifier. The operator ffa represents the back-action
noise in the scattering mode of operation; this back-
action has no effect on the added noise of the amplifier
in the scattering mode.

Similar to Sec. V.B, one can now apply the standard
argument of Haus and Mullen (1962) and Caves (1982)
to our amplifier. This argument tells us that since the
“out” operators must have the same commutation rela-

tions as the “in” operators, the added noise Fp cannot
be arbitrarily small in the large-gain limit (i.e., |s,;|>1).
Note that this version of the quantum limit on the added
noise has nothing to do with back-action. As discussed,
this is perfectly appropriate for the scattering mode of
operation, as in this mode the experimentalist ensures
that the signal going into the amplifier is completely in-
dependent of whatever is coming out of the amplifier.
This mode of operation could be realized in time-
dependent experiments, where a pulse is launched at the
amplifier. This mode is not realized in most weak-
coupling amplification experiments, where the signal to
be amplified is not identical to an incident wave ampli-
tude.
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2. Op-amp representation

In the usual op-amp amplifier mode of operation (de-
scribed in Sec. IV), the input and output signals are not
simply incoming and outgoing wave amplitudes; thus,
the scattering representation is not an optimal descrip-
tion of our amplifier. The system we are describing here
is a voltage amplifier: thus, in the op-amp mode, the
experimentalist would ensure that the voltage at the end

of the input line (V,) is equal to the signal to be ampli-
fied, and would read out the voltage at the end of the

output transmission line (V,) as the output of the ampli-
fier. From Eq. (6.1a), we see that this implies that the
amplitude of the wave going into the amplifier, a;,, will
depend on the amplitude of the wave exiting the ampli-
fier, ayy.

Thus, if we want to use our amplifier as a voltage
amplifier, we want to find a description that is more tai-
lored to our needs than the scattering representation of
Eq. (6.3). This can be found by simply re-expressing the
scattering matrix relation of Eq. (6.3) in terms of volt-
ages and currents. The result will be what we term the
op amp representation of our amplifier, a representation
which is standard in the discussion of classical amplifiers
[see, e.g., Boylestad and Nashelsky (2006)]. In this rep-

resentation, one views V, and I, as inputs to the ampli-
fier: V, is set by whatever we connect to the amplifier

input, while I 5 1s set by whatever we connect to the am-
plifier output. In contrast, the outputs of our amplifier

are the voltage in the output line, I7b, and the current

drawn by the amplifier at the input, fa. Note that this
interpretation of voltages and currents is identical to the
way we viewed the voltage amplifier in the linear-
response and quantum noise treatment of Sec. V.F.
Using Egs. (6.1a) and (6.1b) and suppressing fre-
quency labels for clarity, Eq. (6.3) may be written explic-
itly in terms of the voltages and current in the input

(Va,fa) and output (Vb,fb) transmission lines,

~ A -7 N 2
(Vb): 1V out (Va)+ )\V'V
A = )\/ A . :
Ia Zin 1 Ib I
The coefficients in the above matrix are completely de-
termined by the scattering matrix of Eq. (6.3) [see Egs.
(6.7) below]; moreover, they are familiar from the dis-
cussion of a voltage amplifier in Sec. V.F. A\y[w] is the
voltage gain of the amplifier, \;[ ] is the reverse current
gain of the amplifier, Z,, is the output impedance, and

Z;, is the input impedance. The last term on the RHS of
Eq. (6.4) describes the two familiar kinds of amplifier

(6.4)

noise. V is the usual voltage noise of the amplifier (re-

ferred back to the amplifier input), while ; is the usual
current noise of the amplifier. Recall that in this stan-

dard description of a voltage amplifier (see Sec. V.F) I
represents the back-action of the amplifier: the system
producing the input signal responds to these current
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fluctuations, resulting in an additional fluctuation in the
input signal going into the amplifier. Similarly, A,V rep-
resents the intrinsic output noise of the amplifier: this
contribution to the total output noise does not depend
on properties of the input signal. Note that we are using

a sign convention where a positive (1) indicates a cur-
rent flowing into the amplifier at its input, while a posi-

tive (I,) indicates a current flowing out of the amplifier

at its output. Also note that the operators Va and ib on
the RHS of Eq. (6.4) will have noise; this noise is en-
tirely due to the systems attached to the input and out-
put of the amplifier, and as such should not be included
in what we call the added noise of the amplifier.

Additional important properties of our amplifier fol-
low immediately from quantities in the op-amp repre-
sentation. As discussed in Sec. V.E, the most important
measure of gain in our amplifier is the dimensionless
power gain. This is the ratio between power dissipated
at the output to that dissipated at the input, taking the
output current /5 to be Vg/Z,y,

. (Kv)2ﬁ<1 xvx;@)l
P — .
4 Zout 2 Zout

Another important quantity is the loaded input im-
pedance: what is the input impedance of the amplifier in
the presence of a load attached to the output? In the
presence of reverse current gain \; # 0, the input imped-
ance will depend on the output load. Taking the load
impedance to be 7,4, some simple algebra yields

(6.5)

1/Zin,loaded = 1/Zin + )\I,)\V/(Zload + Zout) . (66)

It is of course undesirable to have an input impedance
which depends on the load. Thus, we see yet again that it
is undesirable to have appreciable reverse gain in our
amplifier (cf. Sec. IV.A.2).

3. Converting between representations

After some straightforward algebra we now express
the op-amp parameters appearing in Eq. (6.4) in terms
of the scattering matrix appearing in Eq. (6.3),

V4
)\VZZ _bm,
Z,D

(6.7a)
/ Zp s

N =2\ —= 6.7b
I Za D b} ( )

1+ 1+ -
Zow= Zb( Sl + ) = 1251 , (6.7¢)

D

1 1(1- 1- -

2 _( s1)(1 = 52) S12321’ (6.7d)

Zn Z, D

where all quantities are evaluated at the same frequency
w, and D is defined as
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D =(1+s511)(1 —5) + 51252 (6.8)

Further, the voltage and current noises in the op-amp
representation are simple linear combinations of the

noises }A'a and .7A-'b appearing in the scattering representa-
tion,

. 1 1+sy
/ T2 2s F
- \2hoZ, I ) (6.9)
5 St S F
Z(l ] D D

Again, all quantities above are evaluated at frequency w.

Equation (6.9) immediately leads to an important con-
clusion and caveat: what one calls the “back-action” and
“added noise” in the scattering representation (i.e., F,
and F,) are not the same as the “back-action” and
“added noise” defined in the usual op-amp representa-

tion. For example, the op-amp back-action I does not in

general coincide with f-‘a, the back-action in the scatter-
ing picture. If we are indeed interested in using our am-
plifier as a voltage amplifier, we are interested in the
total added noise of our amplifier as defined in the op-
amp representation. As we saw in Sec. V.F [cf. Eq.

(5.71)], this quantity involves both the noises [and V.
We thus see explicitly something discussed in Sec. V.D: it
is dangerous to make conclusions about how an ampli-
fier behaves in the op-amp mode of operation based on
its properties in the scattering mode of operation. As we
see, even though an amplifier is ideal in the scattering
mode (i.e., F, as small as possible), it can nonetheless
fail to reach the quantum limit in the op-amp mode of
operation.

In what follows, we calculate the op-amp noises 12/ and

[ in a minimal bosonic voltage amplifier, and show ex-
plicitly how this description is connected to the more
general linear-response treatment of Sec. V.F. However,
before proceeding, it is worth noting that Egs. (6.7a),
(6.7b), (6.7c), and (6.7d) are themselves completely con-
sistent with linear-response theory. Using linear re-
sponse, one would calculate the op-amp parameters Ay,
N}, Z;y, and Z, using Kubo formulas [cf. Egs. (5.84) and
(5.85) and the discussion following Eq. (5.79)]. These in

turn would involve correlation functions of ia and Vb
evaluated at zero coupling to the amplifier input and
output. Zero coupling means that there is no input volt-
age to the amplifier (i.e., a short circuit at the amplifier

input, V,=0) and there is nothing at the amplifier output
drawing current (i.e., an open circuit at the amplifier

output, 1,=0). Equation (6.4) tells us that in this case V,

and fa reduce to the noise operators )\Vf/ and 1, respec-

tively. Using the fact that the commutators of .7A-'a and ffb
are completely determined by the scattering matrix [cf.
Eq. (6.3)], we verify explicitly in Appendix L5 that the
Kubo formulas yield the same results for the op-amp
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gains and impedances as Egs. (6.7a), (6.7b), (6.7¢), and
(6.7d) above.

B. Minimal two-port scattering amplifier

1. Scattering versus op-amp quantum limit

In this section we demonstrate that an amplifier which
is ideal and minimally complex when used in the scatter-
ing operation mode fails, when used as a voltage op-
amp, to have a quantum-limited noise temperature. The
system we look at is similar to the amplifier considered
by Grassia (1998), though our conclusions are somewhat
different than those found there.

In the scattering representation, one might guess that
an ideal amplifier would be one where there are no re-
flections of signals at the input and output, and no way
for incident signals at the output port to reach the input.
In this case, Eq. (6.3) takes the form

(dout) < 0 O><d1n> j:a
~ = — N + . ,
bout V’G 0 bin .7:1,

where we have defined \JEESZI. All quantities above
should be evaluated at the same frequency w; for clarity,
we omit the explicit o dependence of quantities
throughout this section.

Turning to the op-amp representation, the above
equation implies that our amplifier has no reverse gain,
and that the input and output impedances are simply
given by the impedances of the input and output trans-
mission lines. From Egs. (6.7), we have

(6.10)

Ny =217,GIZ,, (6.11a)
A =0, (6.11b)
Zow=Zs, (6.11¢)
1Zy,=1/Z,. (6.11d)

We immediately see that our amplifier looks less ideal as
an op-amp. The input and output impedances are the
same as those of the input and output transmission line.
However, for an ideal op-amp, we would have liked
Zn—© and Z,—0.

Also of interest are the expressions for the amplifier
noises in the op-amp representation

2 1 1 A

1% — - = |(%
- \hez|2 2VG || (6.12)

Z,-1 1 0 [\

As 51,=0, the back-action noise is the same in both the
op-amp and scattering representations: it is determined

completely by the noise operator ﬁa. However, the volt-
age noise (i.e., the intrinsic output noise) involves both

f-‘a and f-’b. We thus have the unavoidable consequence

that there will be correlations in 7 and V. Note that from
basic linear-response theory we know that there must be
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FIG. 13. Schematic of a minimal two-port amplifier which
reaches the quantum limit in the scattering mode of operation,
but misses the quantum limit when used as a weakly coupled
op-amp. See text for further description.

some correlations between I and V if there is to be gain
[i.e., Ay is given by a Kubo formula involving these op-
erators, see Eq. (4.3)].

To make further progress, we note again that commu-

tators of the noise operators F, and F, are completely
determined by Eq. (6.10) and the requirement that the
output operators obey canonical commutation relations.
We thus have

[FnFil=1, (6.13a)
(7. Fi1=1-]G], (6.13b)
[FoFpl = [FuFj]=0. (6.13¢)

We will be interested in the limit of a large power
gain, which requires |G|>1. A minimal solution to the
above equations would be to have the noise operators
determined by two independent (i.e., mutually commut-
ing) auxiliary input mode operators u;, and v},

m’

A

Fy =l (6.14)
F,=\|G| - 15} (6.15)

Further, to minimize the noise of the amplifier, we take
the operating state of the amplifier to be the vacuum for
both these modes. With these choices, our amplifier is in
exactly the minimal form described by Grassia (1998): an
input and output line coupled to a negative resistance
box and an auxiliary “cold load” via a four-port circula-
tor (see Fig. 13). The negative resistance box is nothing
but the single-mode bosonic amplifier discussed in Sec.
V.B; an explicit realization of this element would be the
parametric amplifier discussed in Sec. V.C. The “cold
load” is a semi-infinite transmission line which models
dissipation due to a resistor at zero temperature (i.e., its
noise is vacuum noise, cf. Appendix D).
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Note that within the scattering picture one would con-
clude that our amplifier is ideal: in the large-gain limit,

the noise added by the amplifier to I;out corresponds to a
single quantum at the input

{Fs 7 Gl = LG - /| GIK (Gl 0ib) — 1. (6.16)
This, however, is not the quantity which interests us: as
we want to use this system as a voltage op-amp, we want
to know if the noise temperature defined in the op-amp
picture is as small as possible. We are also usually inter-
ested in the case of a signal that is weakly coupled to our
amplifier; here weak coupling means that the input im-
pedance of the amplifier is much larger than the imped-
ance of the signal source (i.e., Z;,> Z,). In this limit, the
amplifier only slightly increases the total damping of the
signal source.

To address whether we can reach the op-amp quan-
tum limit in the weak-coupling regime, we can make use
of the results of the general theory presented in Sec. V.F.
In particular, we need to check whether the quantum
noise constraint of Eq. (5.88) is satisfied, as this is a pre-
requisite for reaching the (weak-coupling) quantum
limit. Thus, we need to calculate the symmetrized spec-
tral densities of the current and voltage noises, and their
cross correlation. It is easy to confirm from the defini-
tions of Egs. (6.1a) and (6.1b) that these quantities take
the form

Sylo] = (Vo] Vi (eWarsw - o), (6.17a)
Silw]= <{1C[w]j1'(w’)})/4775(w -w'), (6.17b)
Sylw]= VIl (o) irdo- o). (6.17¢)

The expectation values here are over the operating state
of the amplifier; we have chosen this state to be the
vacuum for the auxiliary mode operators i, and 0;, to
minimize the noise.

Taking |s,;|>1, and using Egs. (6.14) and (6.15), we
have

Svlw] = hoZ (0, + 0,,)/4 = hoZ,/2, (6.18a)

Sylw]=two, /Z,=holZ,, (6.18b)

Svilw] = hwo,, /2 =hol2, (6.18¢)
where we have defined

o, = (abt + b'a) (6.19)

and have used the fact that there cannot be any correla-
tions between the operators u and v in the vacuum state
(i.e., (@i6")=0).

It follows immediately from the above equations that
our minimal amplifier does not optimize the quantum
noise constraint of Eq. (5.88),
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SylolSlo] -[Im Sy, =2 X (hw/2)?. (6.20)
The noise product S-S, is precisely twice the quantum-
limited value. As a result, the general theory of Sec. V.F
tells us that if one couples an input signal weakly to this
amplifier (i.e., Z,<Z,,), it is impossible to reach the
quantum limit on the added noise. Thus, while our am-
plifier is ideal in the scattering mode of operation [cf.
Eq. (6.16)], it fails to reach the quantum limit when used
in the weak-coupling, op-amp mode of operation. Our
amplifier’s failure to have ideal quantum noise also
means that if we tried to use it to do QND qubit detec-
tion, the resulting back-action dephasing would be twice
as large as the minimum required by quantum mechan-
ics (cf. Sec. IV.B).

One might object to the above conclusions based on
the classical expression for the minimal noise tempera-
ture, Eq. (5.76). Unlike the quantum noise constraint of
Eq. (5.88), this equation also involves the real part of

Sy, and is optimized by our minimal amplifier. However,
this does not mean that one can achieve a noise tem-
perature of Aw/2 at weak coupling. Recall from Sec. V.F
that in the usual process of optimizing the noise tem-
perature one starts by assuming the weak-coupling con-
dition that the source impedance Z; is much smaller
than the amplifier input impedance Z;,. One then finds
that to minimize the noise temperature, |Z,| should be
tuned to match the noise impedance of the amplifier

Zy= VS‘VV/ S;;. However, in our minimal bosonic ampli-
fier, it follows from Egs. (6.18) that Zy=Z;,/\2~ Z;,: the
noise impedance is on the order of the input impedance.
Thus, it is impossible to match the source impedance to
the noise impedance while at the same time satisfying
the weak-coupling condition Z;<Z;,.

Despite its failings, our amplifier can indeed yield a
quantum-limited noise temperature in the op-amp mode
of operation if we no longer insist on a weak coupling to
the input signal. To see this explicitly, imagine we con-
nected our amplifier to a signal source with source im-
pedance Z,. The total output noise of the amplifier, re-
ferred back to the signal source, will now have the form

V== [ZZJZ,+ Z)+ V. (6.21)

Note that this classical-looking equation can be rigor-
ously justified within the full quantum theory if one
starts with a full description of the amplifier and the
signal source (e.g., a parallel LC oscillator attached in
parallel to the amplifier input). Plugging in the expres-

sions for ; and f/, we find

2 ho ZSZa 2 n =~ “
e 3| () Foe) - -0
/mz{(zs—za)A AT}
=\/— ||\ == im0, |-
2 |\z 4z, ) U

Thus, if one tunes Z, to Z,=Z7;,, the mode i;, does not
contribute to the total added noise, and one reaches the

(6.22)
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quantum limit. Physically speaking, by matching the sig-
nal source to the input line the back-action noise de-

scribed by ffa:ﬁin does not feed back into the input of
the amplifier. Note that to achieve this matching explic-
itly requires one to be far from weak coupling. Having
Z,=7, means that when we attach the amplifier to the
signal source, we dramatically increase the damping of
the signal source.

2. Why is the op-amp quantum limit not achieved?

Returning to the more interesting case of a weak
amplifier-signal coupling, one might still be puzzled as to
why our seemingly ideal amplifier misses the quantum
limit. While the mathematics behind Eq. (6.20) is fairly
transparent, it is also possible to understand this result
heuristically. To that end, note again that the amplifier

noise cross correlation S;,, does not vanish in the large-
gain limit [cf. Eq. (6.18¢c)]. Correlations between the two
amplifier noises represent a kind of information, as by
making use of them, we can improve the performance of
the amplifier. It is easy to take advantage of out-of-phase

correlations between I and V (i.e., Im Sy,;) by simply tun-
ing the phase of the source impedance [cf. Eq. (5.75)].
However, one cannot take advantage of in-phase noise

correlations (i.e., Re Sy;) as easily. To take advantage of
the information here, one needs to modify the amplifier
itself. By feeding back some of the output voltage to the
input, one could effectively cancel out some of the back-

action current noise I and thus reduce the overall mag-
nitude of S;;. Hence, the unused information in the cross

correlator Re Sy, represents a kind of wasted informa-
tion: had we made use of these correlations via a feed-
back loop, we could have reduced the noise temperature
and increased the information provided by our amplifier.

The presence of a nonzero Re Sy, thus corresponds to
wasted information, implying that we cannot reach the
quantum limit. Recall that within the linear-response ap-
proach we were able to prove rigorously that a large-
gain amplifier with ideal quantum noise must have

Re Sy,=0 [cf. the discussion following Eq. (5.57)]; thus, a

nonvanishing Re Sy, rigorously implies that one cannot
be at the quantum limit. In Appendix H, we give an
explicit demonstration of how feedback may be used to
utilize these cross correlations to reach the quantum
limit.

Finally, yet another way of seeing that our amplifier
does not reach the quantum limit (in the weak-coupling
regime) is to realize that this system does not have a
well-defined effective temperature. Recall from Sec. V.F
that a system with ideal quantum noise [i.e., one that
satisfies Eq. (5.88) as an equality] necessarily has the
same effective temperature at its input and output ports
[cf. Eq. (5.55)]. Here that implies the requirement
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NSVl Zow = ZinS 11 = 2k T . (6.23)

In contrast, our minimal bosonic amplifier has very dif-
ferent input and output effective temperatures

2k pTettin= ZinSpy = heol2, (6.24)

2k pTeti.on = NP - Syl Z oy = 2|Glhiw. (6.25)

This large difference in effective temperatures means
that it is impossible for the system to possess ideal quan-
tum noise, and thus it cannot reach the weak-coupling
quantum limit.

While it implies that one is not at the quantum limit,
the fact that Ty ;, < Tefp oy can nonetheless be viewed as
an asset. From a practical point of view, a large T, can
be dangerous. Even though the direct effect of the large
T 1s offset by an appropriately weak coupling to the
amplifier [see Eq. (5.70) and following discussion], this
large T.g;, can also heat up other degrees of freedom if
they couple strongly to the back-action noise of the am-
plifier. This can in turn lead to unwanted heating of the
input system. As Ty, is usually constant over a broad
range of frequencies, this unwanted heating effect can
be quite bad. In the minimal amplifier discussed here,
this problem is circumvented by having a small T ;.
The only price that is paid is that the added noise will be
V2 the quantum limit value. We discuss this issue further
in Sec. VIL

VII. REACHING THE QUANTUM LIMIT IN PRACTICE
A. Importance of QND measurements

The fact that QND measurements are repeatable is of
fundamental practical importance in overcoming detec-
tor inefficiencies (Gambetta et al., 2007). A prototypical
example is the electron shelving technique (Nagourney
et al., 1986; Sauter et al., 1986) used to measure trapped
ions. A related technique is used in present implemen-
tations of ion-trap-based quantum computation. Here
the (extremely long-lived) hyperfine state of an ion is
read out via state-dependent optical fluorescence. With
properly chosen circular polarization of the exciting la-
ser, only one hyperfine state fluoresces and the transition
is cycling; that is, after fluorescence the ion almost al-
ways returns to the same state it was in prior to absorb-
ing the exciting photon. Hence the measurement is
QND. Typical experimental parameters (Wineland ef al.,
1998) allow the cycling transition to produce N~ 10°
fluorescence photons. Given the photomultiplier quan-
tum efficiency and typically small solid angle coverage,
only a small number 71, will be detected on average. The
probability of getting zero detections (ignoring dark
counts for simplicity) and hence misidentifying the hy-
perfine state is P(0)=e"4. Even for a very poor overall
detection efficiency of only 107, we still have /7,=10 and
nearly perfect fidelity F=1-P(0)=0.999 955. It is impor-
tant to note that the total time available for measure-
ment is not limited by the phase coherence time (7,) of
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the qubit or by the measurement-induced dephasing
(Korotkov, 2001a; Makhlin er al., 2001; Schuster et al.,
2005; Gambetta et al., 2006), but rather only by the rate
at which the qubit makes real transitions between mea-
surement (J,) eigenstates. In a perfect QND measure-
ment there is no measurement-induced state mixing
(Makhlin et al., 2001) and the relaxation rate 1/T} is
unaffected by the measurement process.

B. Power matching versus noise matching

In Sec. V, we saw that an important part of reaching
the quantum limit on the added noise of an amplifier
(when used in the op-amp mode of operation) is to op-
timize the coupling strength to the amplifier. For a posi-
tion detector, this condition corresponds to tuning the
strength of the back-action damping vy to be much
smaller than the intrinsic oscillator damping [cf. Eq.
(5.69)]. For a voltage amplifier, this condition corre-
sponds to tuning the impedance of the signal source to
be equal to the noise impedance [cf. Eq. (5.77)], an im-
pedance that is much smaller than the amplifier’s input
impedance [cf. Eq. (5.90)].

In this section, we make the simple point that optimiz-
ing the coupling (i.e., source impedance) to reach the
quantum limit is not the same as what one would do to
optimize the power gain. To understand this, we need to
introduce another measure of power gain commonly
used in the engineering community, the available power
gain Gp ;. For simplicity, we discuss this quantity in
the context of a linear voltage amplifier, using the nota-
tions of Sec. V.F; it can be analogously defined for the
position detector of Sec. V.E. Gp ,, tells us how much
power we are providing to an optimally matched output
load relative to the maximum power we could in prin-
ciple have extracted from the source. This is in marked
contrast to the power gain Gp, which was calculated us-
ing the actual power drawn at the amplifier input.

For the available power gain, we first consider P;, ;i
This is the maximum possible power that could be deliv-
ered to the input of the amplifier, assuming we opti-
mized both the value of the input impedance Z;, and the
load impedance Z,,,q while keeping Z; fixed. For sim-
plicity, we take all impedances to be real in our discus-
sion. In general, the power drawn at the input of the
amplifier is Py,=v? Zin/(Z,+ Z;i,)?. Maximizing this over
Z;,, we obtain the available input power Py, oyail,

Pin,avail = Uizn/4ZS' (7.1)
The maximum occurs for Z;,=Z..

The output power supplied to the load Py
=0120ad/ Zad 18 calculated as before, keeping Z;, and Z;
distinct. One has

2 2
P o = Uout ( Zload )
out —
Zload Zout + Zload

(7.2)
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4 load/ Z out
(1 + Zload/Zout)2

_)\zvizn< Zin )2
Zout Zin + Zs

As a function of Z,,4, Py 1S maximized when Z, 4

=Zous
\2v? Z; 2
P — 11'1( m ) .
M AZ o\ Zin+ Z,
The available power gain is now defined as

Pout,max _ )\ZZS( Zin )2
Pin,avail Zout Zin + Zs

G 4Z )7,
TP+ zyz )

We see that Gp ., is strictly less than or equal to the
power gain Gp; equality is achieved only when Z,=7,,
(i.e., when the source impedance is “power matched” to
the input of the amplifier). The general situation where
G p avail < Gp indicates that we are not drawing as much
power from the source as we could, and hence the actual
power supplied to the load is not as large as it could be.

Consider now a situation where we have achieved the
quantum limit on the added noise. This necessarily
means that we have “noise matched,” i.e., taken Z to be
equal to the noise impedance Zy. The available power
gain in this case is

Gpavail = NZNIZ o = 2NGp < Gp. (7.5)

We have used Eq. (5.90), which tells us that the noise
impedance is smaller than the input impedance by a
large factor of 1/(2 VG p). Thus, as reaching the quantum
limit requires the use of a source impedance much
smaller than Z;,, it results in a dramatic drop in the
available power gain compared to the case where we
power match (i.e., take Z,=Z;,). In practice, one must
decide whether it is more important to minimize the
added noise or maximize the power provided at the out-
put of the amplifier: one cannot do both at the same
time.

(7.3)

GP,avail =

(7.4)

VIII. CONCLUSIONS

In this review, we have given an introduction to quan-
tum limits for position detection and amplification, lim-
its that are tied to fundamental constraints on quantum
noise correlators. We end by emphasizing notable cur-
rent developments and pointing out future perspectives
in the field.

As emphasized, much of our discussion has been di-
rectly relevant to the measurement of mechanical nan-
oresonators, a topic attracting considerable recent atten-
tion. These nanoresonators are typically studied by
coupling them either to electrical (often superconduct-
ing) circuits or to optical cavities. A key goal is to
achieve quantum-limited continuous position detection
(cf. Sec. V.E); current experiments are coming tantaliz-
ingly close to this limit (cf. Table III). Although the abil-
ity to follow the nanoresonator’s motion with a precision
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set by the quantum limit is in principle independent
from being at low temperatures, it becomes interesting
only when the systems are near their ground state; one
could then, e.g., monitor the oscillator’s zero-point fluc-
tuations (cf. Sec. II1.B.3). Given the comparatively small
values of mechanical frequencies (mostly less than 1
GHz), this often calls for the application of nonequilib-
rium cooling techniques which exploit back-action to re-
duce the effective temperature of the mechanical device,
a technique that has been demonstrated recently in both
superconducting circuits and optomechanical setups [see
Marquardt and Girvin (2009) for a review].

The ability to perform quantum-limited position de-
tection will in turn open up many new interesting av-
enues of research. Among the most significant is the
possibility of quantum feedback control (Wiseman and
Milburn, 1993, 1994), where one uses the continuously
obtained measurement output to tailor the state of the
mechanical resonator. The relevant theoretical frame-
work is that of quantum conditional evolution and quan-
tum trajectories (see, e.g., Brun, 2002; Jacobs and Steck,
2006), where one tracks the state of a measured quan-
tum system in a particular run of the experiment. Appli-
cation of these ideas has only recently been explored in
condensed matter contexts (Korotkov, 1999, 2001b;
Goan and Milburn, 2001; Goan et al., 2001; Oxtoby et al.,
2006, 2008; Bernad et al., 2008). Fully understanding the
potential of these techniques, as well as differences that
occur in condensed matter versus atomic physics con-
texts, remains an active area of research. Other impor-
tant directions in nanomechanics include the possibility
of detecting quantum jumps in the state of a mechanical
resonator via QND measurement of its energy (Santa-
more, Doherty, and Cross, 2004; Santamore, Goan, et al.,
2004; Jayich et al., 2008; Thompson et al., 2008), as well
as the possibility of making back-action-evading mea-
surements (cf. Sec. V.H). Back-action evasion using a
microwave cavity detector coupled to a nanomechanical
resonator was recently reported (Hertzberg et al., 2010).

Another area distinct from nanomechanics where
rapid progress is being made is the readout of solid state
qubits using microwave signals sent through cavities
whose transmission properties are controlled by the qu-
bit. At the moment, one is close to achieving good-
fidelity single-shot QND readout, which is a prerequisite
for a large number of applications in quantum informa-
tion processing. The gradually growing information
about the qubit state is extracted from the measured
noisy microwave signal trace, leading to a corresponding
collapse of the qubit state. This process can also be de-
scribed by conditional quantum evolution and quantum
trajectories.

A promising method for superconducting qubit read-
out currently employed is a so-called latching measure-
ment, where the hysteretic behavior of a strongly driven
anharmonic system (e.g., a Josephson junction) is ex-
ploited to toggle between two states depending on the
qubit state (Siddiqi et al, 2004; Lupascu et al., 2006).
Although this is then no longer a linear measurement
scheme and is therefore distinct from what was dis-
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cussed in this review, it can be turned into a linear am-
plifier for a sufficiently weak input signal. An interesting
and important open question is whether such a setup can
reach the quantum limit on linear amplification.

Both qubit detection and mechanical measurements
in electrical circuits would benefit from quantum-limited
on-chip amplifiers. Such amplifiers are now being devel-
oped using the tools of circuit quantum electrodynamics,
employing Josephson junctions or SQUIDs coupled to
microwave transmission line cavities (Bergeal et al.,
2008; Castellanos-Beltran et al., 2008). Such an amplifier
has already been used to perform continuous position
detection with a measurement imprecision below the
SQL level (Teufel et al., 2009).
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Appendix A: Basics of Classical and Quantum Noise
1. Classical noise correlators

Consider a classical random voltage signal V(). The
signal is characterized by zero mean (V(t)) = 0, and
autocorrelation function

Gyv(t—1t') = (V()V(H)) (A1)
whose sign and magnitude tells us whether the voltage
fluctuations at time ¢ and time ¢’ are correlated, anti-
correlated or statistically independent. We assume that
the noise process is stationary (i.e., the statistical proper-
ties are time translation invariant) so that Gyy depends
only on the time difference. If V(t) is Gaussian dis-
tributed, then the mean and autocorrelation completely
specify the statistical properties and the probability dis-
tribution. We will assume here that the noise is due to
the sum of a very large number of fluctuating charges
so that by the central limit theorem, it is Gaussian dis-
tributed. We also assume that Gy decays (sufficiently
rapidly) to zero on some characteristic correlation time
scale 7, which is finite.

The spectral density of the noise as measured by a
spectrum analyzer is a measure of the intensity of the
signal at different frequencies. In order to understand



the spectral density of a random signal, it is useful to
define its ‘windowed’ Fourier transform as follows:

+T/2
T w
=7 Lo

where T is the sampling time. In the limit 7" > 7. the
integral is a sum of a large number N =~ TZ of random
uncorrelated terms. We can think of the value of the
integral as the end point of a random walk in the complex
plane which starts at the origin. Because the distance
traveled will scale with v/T, our choice of normalization
makes the statistical properties of V]w] independent of
the sampling time T (for sufficiently large T). Notice
that Vp[w] has the peculiar units of volts\/secs which is
usually denoted volts/ VHz.

The spectral density (or ‘power spectrum’) of the noise
is defined to be the ensemble averaged quantity

Syylw] = Tim ([Vrlw]]*) = lim (Vr[w]Vr[-w])

zwt V ) (AQ)

(A3)

The second equality follows from the fact that V(¢) is
real valued. The Wiener-Khinchin theorem (derived in
Appendix A.2) tells us that the spectral density is equal
to the Fourier transform of the autocorrelation function

“+oo
Svylw] = / dt eithV\/(t). (A4)

— 00

The inverse transform relates the autocorrelation func-
tion to the power spectrum

Gyy(t) = /+°° o

oo 2m

e Syy[wl. (A5)

We thus see that a short auto-correlation time implies
a spectral density which is non-zero over a wide range of
frequencies. In the limit of ‘white noise’

Gy (t) = a26(1) (A6)
the spectrum is flat (independent of frequency)
Svvlw] = o® (A7)

In the opposite limit of a long autocorrelation time, the
signal is changing slowly so it can only be made up out
of a narrow range of frequencies (not necessarily centered
on zero).

Because V(t) is a real-valued classical variable, it natu-
rally follows that Gy (t) is always real. Since V (¢) is not
a quantum operator, it commutes with its value at other
times and thus, (V(6)V(¢')) = (V(¢)V(¢)). From this it
follows that Gy (t) is always symmetric in time and the
power spectrum is always symmetric in frequency

SVV [w] = SVV [—w] .

As a prototypical example of these ideas, let us con-
sider a simple harmonic oscillator of mass M and fre-
quency €. The oscillator is maintained in equilibrium

(A8)

with a large heat bath at temperature T via some in-
finitesimal coupling which we will ignore in considering
the dynamics. The solution of Hamilton’s equations of

motion are
z(t) = x(0) cos(Q2t) + p(0) ]le sin(t)
p(t) = p(0)cos(Qt) — z(0)MQsin(2t),  (A9)

where 2(0) and p(0) are the (random) values of the po-
sition and momentum at time ¢t = 0. It follows that the
position autocorrelation function is

Gua(t) = (z(t)z(0))
= (2(0)z(0)) cos(t) +

(A10)

(p(0)(0)) 75 5 (2.

Classically in equilibrium there are no correlations be-
tween position and momentum. Hence the second term
vanishes. Using the equipartition theorem %M 0% (2% =
1kpT, we arrive at

kT

Gga(t) = WVisH] cos(€2t) (A11)
which leads to the spectral density
kT
Sez[w] = TV [0(w— Q)+ 6w+ Q)] (A12)

which is indeed symmetric in frequency.

2. The Wiener-Khinchin Theorem

From the definition of the spectral density in Eqs.(A2-

A3) we have
/ dt/ dt’ 0= (V () V ()

+2B(t)
f/ / STV (t 1 7/2V (- 7/2))
2B(t)

(A13)
where

Syviw

B(t) = tift <T/2
T—tif t >T)2.

If T greatly exceeds the noise autocorrelation time 7,
then it is a good approximation to extend the bound B(t)
in the second integral to infinity, since the dominant con-
tribution is from small 7. Using time translation invari-
ance gives

T +oo
Syv[w] = %/O dt/_ dr ™7 (V(T)V(0))

“+o0
_ [ dr 7 (V(1)V(0)) . (Al4)



This proves the Wiener-Khinchin theorem stated in
Eq. (A4).

A wuseful application of these ideas is the following.
Suppose that we have a noisy signal V(t) = V + n(t)
which we begin monitoring at time ¢ = 0. The integrated
signal up to time t is given by

I(T) = /O " V(t) (A15)

and has mean

(I(T)) =VT. (A16)

Provided that the integration time greatly exceeds the
autocorrelation time of the noise, I(T') is a sum of a large
number of uncorrelated random variables. The central
limit theorem tells us in this case that I(t) is gaussian
distributed even if the signal itself is not. Hence the
probability distribution for I is fully specified by its mean
and its variance

T
(@1p) = [t aiom(e)). (A
0
From the definition of spectral density above we have the
simple result that the variance of the integrated signal
grows linearly in time with proportionality constant given
by the noise spectral density at zero frequency

(AD)?) = Syv[0] T. (A18)

As a simple application, consider the photon shot noise
of a coherent laser beam. The total number of photons
detected in time T is

T
N(T) = / dt N(t). (A19)
0

The photo-detection signal N (t) is not gaussian, but
rather is a point process, that is, a sequence of delta func-
tions with random Poisson distributed arrival times and
mean photon arrival rate V. Nevertheless at long times
the mean number of detected photons

(N(T)) = NT (A20)

will be large and the photon number distribution will be
gaussian with variance

((AN)?) = SyxT. (A21)

Since we know that for a Poisson process the variance is
equal to the mean

((AN)?) = (N(T)), (A22)

it follows that the shot noise power spectral density is

Sy (0) = N (A23)
Since the noise is white this result happens to be valid at
all frequencies, but the noise is gaussian distributed only

at low frequencies.

3. Square law detectors and classical spectrum analyzers

Now that we understand the basics of classical noise,
we can consider how one experimentally measures a clas-
sical noise spectral density. With modern high speed
digital sampling techniques it is perfectly feasible to di-
rectly measure the random noise signal as a function of
time and then directly compute the autocorrelation func-
tion in Eq. (Al). This is typically done by first per-
forming an analog-to-digital conversion of the noise sig-
nal, and then numerically computing the autocorrelation
function. One can then use Eq. (A4) to calculate the
noise spectral density via a numerical Fourier transform.
Note that while Eq. (A4) seems to require an ensemble
average, in practice this is not explicitly done. Instead,
one uses a sufficiently long averaging time T (i.e. much
longer than the correlation time of the noise) such that
a single time-average is equivalent to an ensemble aver-
age. This approach of measuring a noise spectral density
directly from its autocorrelation function is most appro-
priate for signals at RF frequencies well below 1 MHz.

For microwave signals with frequencies well above 1
GHz, a very different approach is usually taken. Here, the
standard route to obtain a noise spectral density involves
first shifting the signal to a lower intermediate frequency
via a technique known as heterodyning (we discuss this
more in Sec. B.3.c). This intermediate-frequency signal
is then sent to a filter which selects a narrow frequency
range of interest, the so-called ‘resolution bandwidth’.
Finally, this filtered signal is sent to a square-law detector
(e.g. a diode), and the resulting output is averaged over
a certain time-interval (the inverse of the so-called ‘video
bandwidth’). It is this final output which is then taken
to be a measure of the noise spectral density.

It helps to put the above into equations. Ignoring for
simplicity the initial heterodyning step, let

Vilw] = flwlVw] (A24)

be the voltage at the output of the filter and the input
of the square law detector. Here, f[w] is the (ampli-
tude) transmission coefficient of the filter and V[w] is the
Fourier transform of the noisy signal we are measuring.
From Eq. (A5) it follows that the output of the square
law detector is proportional to

“+oo B
(1) = / & P Sy ]

% (A25)

Approximating the narrow band filter centered on fre-
quency Fwq as'

[flw]? = 8(w — wo) + 8(w + wo) (A26)

1 A linear passive filter performs a convolution Vout(t) =
fjs: dt' F(t — t')Vin(t') where F is a real-valued (and causal)
function. Hence it follows that f[w], which is the Fourier trans-
form of F, obeys f[—w] = f*[w] and hence |f[w]|? is symmetric
in frequency.



we obtain

(I) = Syv(~wo) + Svv(wo)

showing as expected that the classical square law detector
measures the symmetrized noise power.

We thus have two very different basic approaches for
the measurement of classical noise spectral densities: for
low RF frequencies, one can directly measure the noise
autocorrelation, whereas for high microwave frequencies,
one uses a filter and a square law detector. For noise
signals in intermediate frequency ranges, a combination
of different methods is generally used. The whole story
becomes even more complicated, as at very high frequen-
cies (e.g. in the far infrared), devices such as the so-
called ‘Fourier Transform spectrometer’ are in fact based
on a direct measurement of the equivalent of an auto-
correlation function of the signal. In the infrared, visible
and ultraviolet, noise spectrometers use gratings followed
by a slit acting as a filter.

(A27)

Appendix B: Quantum Spectrum Analyzers: Further Details
1. Two-level system as a spectrum analyzer

In this sub-appendix, we derive the Golden Rule tran-
sition rates Egs. (2.6) describing a quantum two-level sys-
tem coupled to a noise source (cf. Sec. IL.B). Our deriva-
tion is somewhat unusual, in that the role of the contin-
uum as a noise source is emphasized from the outset. We
start by treating the noise F'(t) in Eq. (2.5) as being a
classically noisy variable. We assume that the coupling
A is under our control and can be made small enough
that the noise can be treated in lowest order perturba-
tion theory. We take the state of the two-level system to

be
ag(t)
t)) = g .
won = (208
In the interaction representation,
dependent perturbation theory gives

(B1)

first-order time-

i

i) = [6O) = 3 [ ar Vo). (@2)

If we initially prepare the two-level system in its ground
state, the amplitude to find it in its excited state at time
t is from Eq. (B2)
iA [
hJo

iA t )
= —Z—/ dr "' TF (7).
hJo

dr (e|6.(7)|g) F(7),

(B3)

Since the integrand in Eq. (B3) is random, «. is a sum
of a large number of random terms; i.e. its value is the
endpoint of a random walk in the complex plane (as dis-
cussed above in defining the spectral density of classical

noise). As a result, for times exceeding the autocorre-
lation time 7. of the noise, the integral will not grow
linearly with time but rather only as the square root of
time, as expected for a random walk. We can now com-
pute the probability

A2 t t .
pe(t) = |O‘e|2 = ﬁA A dridm e_ZMOI(Tl_TZ)F(Tl)F(TZ)

(B4)
which we expect to grow quadratically for short times
t < 7., but linearly for long times ¢ > 7.. Ensemble
averaging the probability over the random noise yields

A2 t t )
Pet) =5 / / drydry =0 (=) (F(7) B (7))
0 0

(B5)
Introducing the noise spectral density
+oo )
Spr(w) = / dr T (F(r)F(0)),  (B6)

and utilizing the Fourier transform defined in Eq. (A2)
and the Wiener-Khinchin theorem from Appendix A.2,
we find that the probability to be in the excited state

indeed increases linearly with time at long times,?
A2
pe(t) = tﬁSFF(*wm) (B7)

The time derivative of the probability gives the transition
rate from ground to excited states
A2

Iy = ﬁSFF(*wm)
Note that we are taking in this last expression the spec-
tral density on the negative frequency side. If F' were a
strictly classical noise source, (F(7)F(0)) would be real,
and Spp(—wo1) = Srr(+wo1). However, because as we
discuss below F' is actually an operator acting on the en-

vironmental degrees of freedom, [F(T),F(O)] # 0 and

Srr(—wot) # Srr(+wor).-

Another possible experiment is to prepare the two-level
system in its excited state and look at the rate of decay
into the ground state. The algebra is identical to that
above except that the sign of the frequency is reversed:

A2
r = ﬁSFF(-&-WOl)-
We now see that our two-level system does indeed act as a
quantum spectrum analyzer for the noise. Operationally,

(B8)

(B9)

2 Note that for very long times, where there is a significant de-
pletion of the probability of being in the initial state, first-order
perturbation theory becomes invalid. However, for sufficiently
small A, there is a wide range of times 7. < t < 1/T" for which
Eq. B7 is valid. Egs. (2.6a) and (2.6b) then yield well-defined
rates which can be used in a master equation to describe the full
dynamics including long times.



we prepare the system either in its ground state or in its
excited state, weakly couple it to the noise source, and
after an appropriate interval of time (satisfying the above
inequalities) simply measure whether the system is now
in its excited state or ground state. Repeating this pro-
tocol over and over again, we can find the probability
of making a transition, and thereby infer the rate and
hence the noise spectral density at positive and nega-
tive frequencies. Naively one imagines that a spectrom-
eters measures the noise spectrum by extracting a small
amount of the signal energy from the noise source and
analyzes it. This is not the case however. There must
be energy flowing in both directions if the noise is to be
fully characterized.

We now rigorously treat the quantity 13'(7) as a quan-
tum Heisenberg operator which acts in the Hilbert space
of the noise source. The previous derivation is unchanged
(the ordering of F(71)F(m2) having been chosen cor-
rectly in anticipation of the quantum treatment), and
Egs. (2.6a,2.6b) are still valid provided that we interpret
the angular brackets in Eq. (B5,B6) as representing a
quantum expectation value (evaluated in the absence of
the coupling to the spectrometer):

+oo
See@) = [ dren Y pon @lP(0)P) GIFO)]a).
o o

(B10)
Here, we have assumed a stationary situation, where
the density matrix p of the noise source is diagonal in
the energy eigenbasis (in the absence of the coupling to
the spectrometer). However, we do not necessarily as-
sume that it is given by the equilibrium expression. This
yields the standard quantum mechanical expression for
the spectral density:

+o0 . ~
Srr(w) = / A7 Y pan k=7 (a| Fly)

- o,y

QWthaa |<a|F|7>|26(€’7 — €a — hw)(B11)

o,y

Substituting this expression into Egs. (2.6a,2.6b), we de-
rive the familiar Fermi Golden Rule expressions for the
two transition rates.

In standard courses, one is not normally taught that
the transition rate of a discrete state into a continuum
as described by Fermi’s Golden Rule can (and indeed
should!) be viewed as resulting from the continuum act-
ing as a quantum noise source which causes the am-
plitudes of the different components of the wave func-
tion to undergo random walks. The derivation presented
here hopefully provides a motivation for this interpreta-
tion. In particular, thinking of the perturbation (i.e. the
coupling to the continuum) as quantum noise with a
small but finite autocorrelation time (inversely related
to the bandwidth of the continuum) neatly explains why
the transition probability increases quadratically for very
short times, but linearly for very long times.

It it is important to keep in mind that our expressions
for the transition rates are only valid if the autocorrela-
tion time of our noise is much shorter that the typical
time we are interested in; this typical time is simply the
inverse of the transition rate. The requirement of a short
autocorrelation time in turn implies that our noise source
must have a large bandwidth (i.e. there must be large
number of available photon frequencies in the vacuum)
and must not be coupled too strongly to our system. This
is true despite the fact that our final expressions for the
transition rates only depend on the spectral density at
the transition frequency (a consequence of energy con-
servation).

One standard model for the continuum is an infinite
collection of harmonic oscillators. The electromagnetic
continuum in the hydrogen atom case mentioned above is
a prototypical example. The vacuum electric field noise
coupling to the hydrogen atom has an extremely short
autocorrelation time because the range of mode frequen-
cies w, (over which the dipole matrix element coupling
the atom to the mode electric field E, is significant) is
extremely large, ranging from many times smaller than
the transition frequency to many times larger. Thus, the
autocorrelation time of the vacuum electric field noise is
considerably less than 1071%s, whereas the decay time of
the hydrogen 2p state is about 10~%s. Hence the inequal-
ities needed for the validity of our expressions are very
easily satisfied.

2. Harmonic oscillator as a spectrum analyzer

We now provide more details on the system described
in Sec. II.B, where a harmonic oscillator acts as a spec-
trometer of quantum noise. We start with the coupling
Hamiltonian givein in Eq. (2.9). In analogy to the TLS
spectrometer, noise in F at the oscillator frequency (2
can cause transitions between its eigenstates. We as-
sume both that A is small, and that our noise source
has a short autocorrelation time, so we may again use
perturbation theory to derive rates for these transitions.
There is a rate for increasing the number of quanta in
the oscillator by one, taking a state |n) to |n + 1):

2
Lpongr = 2z [(n + l)x%PF] SFF[_Q] = (n + 1)PT
(B12)
As expected, this rate involves the noise at —{2, as en-
ergy is being absorbed from the noise source. Similarly,
there is a rate for decreasing the number of quanta in the
oscillator by one:

2
Tnon1 =37 (nagpy) SrrlQ) = nl'| (B13)
This rate involves the noise at +{2, as energy is being
emitted to the noise source.

Given these transition rates, we may immediately write
a simple master equation for the probability p,(t) that



there are n quanta in the oscillator:

d
7 Pn = [nFTpn—l + (n + 1)Flpn+1]

dt
— [nl + (n+ 1Dy p, (B14)

The first two terms describe transitions into the state |n)
from the states |n + 1) and |n — 1), and hence increase
Pn- In contrast, the last two terms describe transitions
out of the state |n) to the states |n+ 1) and |n — 1), and
hence decrease p,,. The stationary state of the oscillator
is given by solving Eq. (B14) for %pn = 0, yielding;:

(B15)

Py = e~/ (kpTerr) (1 _ 67552/(kBTeff))

where the effective temperature Tog[Q)] is defined in
Eq. (2.8). Eq. (B15) describes a thermal equilibrium
distribution of the oscillator, with an effective oscillator
temperature Tog[Q2] determined by the quantum noise
spectrum of F. This is the same effective temperature
that emerged in our discussion of the TLS spectrum an-
alyzer. As we have seen, if the noise source is in thermal
equilibrium at a temperature Toq, then Teg[Q] = Teq.
In the more general case where the noise source is not
in thermal equilibrium, Teg only serves to characterize
the asymmetry of the quantum noise, and will vary with
frequency 2.

We can learn more about the quantum noise spectrum
of F' by also looking at the dynamics of the oscillator.
In particular, as the average energy (E) of the oscillator
is just given by (E(t)) = Yo7 (A (n + 1) p,(t), we can
use the master equation Eq. (B14) to derive an equa-
tion for its time dependence. One thus finds Eq. (2.10).
By demanding d(E)/dt = 0 in this equation, we find
that the combination of damping and heating effects
causes the energy to reach a steady state mean value
of (E) = P/~. This implies that the finite ground state
energy (E) = hQ)/2 of the oscillator is determined via the
balance between the ‘heating’ by the zero-point fluctua-
tions of the environment (described by the symmetrized
correlator at 7' = 0) and the dissipation. It is possible to
take an alternative but equally correct viewpoint, where
only the deviation (0E) = (E) — h2/2 from the ground
state energy is considered. Its evolution equation

d

Z(0B) = (SE)(T} —T) +T1hQ

only contains a decay term at T' = 0, leading to (0 E) — 0.

(B16)

3. Practical quantum spectrum analyzers

As we have seen, a ‘quantum spectrum analyzer’ can
in principle be constructed from a two level system (or

3 Note that the effective temperature can become negative if the
noise source prefers emitting energy versus absorbing it; in the
present case, that would lead to an instability.

a harmonic oscillator) in which we can separately mea-
sure the up and down transition rates between states
differing by some precise energy hw > 0 given by the
frequency of interest. The down transition rate tells us
the noise spectral density at frequency +w and the up
transition rate tells us the noise spectral density at —w.
While we have already discussed experimental implemen-
tation of these ideas using two-level systems and oscilla-
tors, similar schemes have been implemented in other sys-
tems. A number of recent experiments have made use of
superconductor-insulator-superconductor junctions (Bil-
langeon et al., 2006; Deblock et al., 2003; Onac et al.,
2006) to measure quantum noise, as the current-voltage
characteristics of such junctions are very sensitive to
the absorption or emission of energy (so-called photon-
assisted transport processes). It has also been suggested
that tunneling of flux in a SQUID can be used to measure
quantum noise (Amin and Averin, 2008).

In this subsection, we discuss additional methods for
the detection of quantum noise. Recall from Sec. A.3 that
one of the most basic classical noise spectrum analyzers
consists of a linear narrow band filter and a square law
detector such as a diode. In what follows, we will consider
a simplified quantum treatment of such a device where we
do not explicitly model a diode, but instead focus on the
energy of the filter circuit. We then turn to various noise
detection schemes making use of a photomultiplier. We
will show that depending on the detection scheme used,
one can measure either the symmetrized quantum noise
spectral density S[w], or the non-symmetrized spectral
density S[w].

a. Filter plus diode

Using the simple treatment we gave of a harmonic os-
cillator as a quantum spectrum analyzer in Sec. B.2, one
can attempt to provide a quantum treatment of the clas-
sical ‘filter plus diode’ spectrum analyzer discussed in
Sec. A.3. This approach is due to Lesovik and Loosen
(1997) and Gavish et al. (2000). The analysis starts by
modeling the spectrum analyzer’s resonant filter circuit
as a harmonic oscillator of frequency 2 weakly coupled
to some equilibrium dissipative bath. The oscillator thus
has an intrinsic damping rate vy < €2, and is initially at
a finite temperature T,q. One then drives this damped
oscillator (i.e. the filter circuit) with the noisy quantum
force ﬁ'(t) whose spectrum at frequency € is to be mea-
sured.

In the classical ‘filter plus diode’ spectrum analyzer,
the output of the filter circuit was sent to a square law
detector, whose time-averaged output was then taken as
the measured spectral density. To simplify the analy-
sis, we can instead consider how the noise changes the
average energy of the resonant filter circuit, taking this
quantity as a proxy for the output of the diode. Sure
enough, if we subject the filter circuit to purely classical
noise, it would cause the average energy of the circuit



(E) to increase an amount directly proportional to the
classical spectrum Spp[Q2]. We now consider (E) in the
case of a quantum noise source, and ask how it relates to
the quantum noise spectral density Srr(Q].

The quantum case is straightforward to analyze using
the approach of Sec. B.2. Unlike the classical case, the
noise will both lead to additional fluctuations of the filter
circuit and increase its damping rate by an amount -y
(c.f. Eq. (2.12)). To make things quantitative, we let neq
denote the average number of quanta in the filter circuit
prior to coupling to F(t), i.e.

1

neq = N
hQ

exp (kBch) -1

and let neg represent the Bose-Einstein factor associated
with the effective temperature Tog[Q2] of the noise source
E(t),

(B17)

1
hQ '
exp (k’BTeff[Q]) -1

One then finds (Gavish et al., 2000; Lesovik and Loosen,
1997):

Neff = (B18)

A(E) = hQ-

(Mot — neq) (B19)

Yo+

This equation has an extremely simple interpretation:
the first term results from the expected heating effect
of the noise, while the second term results from the
noise source having increased the circuit’s damping by
an amount . Re-expressing this result in terms of the
symmetric and anti-symmetric in frequency parts of the
quantum noise spectral density Spr[€2], we have:

Srr(Q) = (neq + 3) (Skr[Q] = Srr[—Q)

Al = 2m (o +7)

(B20)

We see that A(FE) is in general not simply proportional
to the symmetrized noise Spp[€2]. Thus, the ‘filter plus
diode’ spectrum analyzer does not simply measure the
symmetrized quantum noise spectral density. We stress
that there is nothing particularly quantum about this re-
sult. The extra term on the RHS of Eq. (B20) simply
reflects the fact that coupling the noise source to the fil-
ter circuit could change the damping of this circuit; this
could easily happen in a completely classical setting. As
long as this additional damping effect is minimal, the
second term in Eq. (B20) will be minimal, and our spec-
trum analyzer will (to a good approximation) measure
the symmetrized noise. Quantitatively, this requires:
Neff > Neq- (B21)
We now see where quantum mechanics enters: if the noise
to be measured is close to being zero point noise (i.e.

neg — 0), the above condition can never be satisfied, and
thus it is impossible to ignore the damping effect of the
noise source on the filter circuit. In the zero point limit,
this damping effect (i.e. second term in Eq. (B20)) will
always be greater than or equal to the expected heating
effect of the noise (i.e. first term in Eq. (B20)).

b. Filter plus photomultiplier

We now turn to quantum spectrum analyzers involving
a square law detector we can accurately model— a photo-
multiplier. As a first example of such a system, consider a
photomultiplier with a narrow band filter placed in front
of it. The mean photocurrent is then given by

+oo
(1) = / do [l PriwlSwele],  (B22)

— 00

where f is the filter (amplitude) transmission function
defined previously and r[w] is the response of the pho-
todetector at frequency w, and Syv represents the elec-
tric field spectral density incident upon the photodetec-
tor. Naively one thinks of the photomultiplier as a square
law detector with the square of the electric field repre-
senting the optical power. However, according to the
Glauber theory of (ideal) photo-detection (Gardiner and
Zoller, 2000; Glauber, 2006; Walls and Milburn, 1994),
photocurrent is produced if, and only if, a photon is
absorbed by the detector, liberating the initial photo-
electron. Glauber describes this in terms of normal or-
dering of the photon operators in the electric field auto-
correlation function. In our language of noise power at
positive and negative frequencies, this requirement be-
comes simply that r[w] vanishes for w > 0. Approximat-
ing the narrow band filter centered on frequency +wq as
in Eq. (A26), we obtain

<I> = T[_WO]SVV[_WO]

which shows that this particular realization of a quantum
spectrometer only measures electric field spectral density
at negative frequencies since the photomultiplier never
emits energy into the noise source. Also one does not
see in the output any ‘vacuum noise’ and so the output
(ideally) vanishes as it should at zero temperature. Of
course real photomultipliers suffer from imperfect quan-
tum efficiencies and have non-zero dark current. Note
that we have assumed here that there are no additional
fluctuations associated with the filter circuit. Our re-
sult thus coincides with what we found in the previous
subsection for the ‘filter plus diode’ spectrum analyzer
(c.f. Eq. (B20), in the limit where the filter circuit is ini-
tially at zero temperature (i.e. neq = 0).

(B23)

c. Double sideband heterodyne power spectrum

At RF and microwave frequencies, practical spectrome-
ters often contain heterodyne stages which mix the initial



frequency down to a lower frequency wip (possibly in the
classical regime). Consider a system with a mixer and lo-
cal oscillator at frequency wr,o that mixes both the upper
sideband input at w, = wro+wrr and the lower sideband
input at w; = wr,o — wir down to frequency wip. This
can be achieved by having a Hamiltonian with a 3-wave
mixing term which (in the rotating wave approximation)
is given by

V = Maraid] o + alpalaro] + Najpawal o + aralaro]
(B24)
The interpretation of this term is that of a Raman pro-
cess. Notice that there are two energy conserving pro-
cesses that can create an IF photon which could then
activate the photodetector. First, one can absorb an LO
photon and emit two photons, one at the IF and one at
the lower sideband. The second possibility is to absorb
an upper sideband photon and create IF and LO photons.
Thus we expect from this that the power in the IF chan-
nel detected by a photomultiplier would be proportional
to the noise power in the following way
I < S[+w)] + S[—wy] (B25)
since creation of an IF photon involves the signal source
either absorbing a lower sideband photon from the mixer
or the signal source emitting an upper sideband photon
into the mixer. In the limit of small IF frequency this
expression would reduce to the symmetrized noise power
I x S[+wLo] + S[—wLo] = QS[wLo] (B26)
which is the same as for a ‘classical’ spectrum analyzer
with a square law detector (c.f. Appendix A.3). For equi-
librium noise spectral density from a resistance Ry de-
rived in Appendix D we would then have
va[w] + va[—w} = 2R0h|w\[2nB(h|w|) + 1], (B27)
Assuming our spectrum analyzer has high input
impedance so that it does not load the noise source, this
voltage spectrum will determine the output signal of the
analyzer. This symmetrized quantity does not vanish at
zero temperature and the output contains the vacuum
noise from the input. This vacuum noise has been seen
in experiment. (Schoelkopf et al., 1997)

Appendix C: Modes, Transmission Lines and Classical
Input/Output Theory

In this appendix we introduce a number of important
classical concepts about electromagnetic signals which
are essential to understand before moving on to the study
of their quantum analogs. A signal at carrier frequency
w can be described in terms of its amplitude and phase
or equivalently in terms of its two quadrature amplitudes

s(t) = X cos(wt) + Y sin(wt). (C1)

We will see in the following that the physical oscillations
of this signal in a transmission line are precisely the sinu-
soidal oscillations of a simple harmonic oscillator. Com-
parison of Eq. (C1) with 2(t) = ¢ cos wt+(po/Mw) sinwt
shows that we can identify the quadrature amplitude X
with the coordinate of this oscillator and thus the quadra-
ture amplitude Y is proportional to the momentum con-
jugate to X. Quantum mechanically, X and Y become
operators X and Y which do not commute. Thus their
quantum fluctuations obey the Heisenberg uncertainty
relation.

Ordinarily (e.g., in the absence of squeezing), the phase
choice defining the two quadratures is arbitrary and so
their vacuum (i.e. zero-point) fluctuations are equal

Xzpr = YzpF. (C2)
Thus the canonical commutation relation becomes
[X,Y] =iX7pp. (C3)

We will see that the fact that X and Y are canoni-
cally conjugate has profound implications both classically
and quantum mechanically. In particular, the action of
any circuit element (beam splitter, attenuator, amplifier,
etc.) must preserve the Poisson bracket (or in the quan-
tum case, the commutator) between the signal quadra-
tures. This places strong constraints on the properties
of these circuit elements and in particular, forces every
amplifier to add noise to the signal.

1. Transmission lines and classical input-output theory

We begin by considering a coaxial transmission line
modeled as a perfectly conducting wire with inductance
per unit length of ¢ and capacitance to ground per unit
length ¢ as shown in Fig. 1. If the voltage at position z
at time ¢ is V(z,t), then the charge density is ¢(z,t) =
cV(x,t). By charge conservation the current I and the
charge density are related by the continuity equation

8hq + 0,1 = 0. (C4)

The constitutive relation (essentially Newton’s law) gives
the acceleration of the charges

00,1 = —d,V. (C5)

We can decouple Egs. (C4) and (C5) by introducing left
and right propagating modes

Vint) = V= 4+ V] (C6)
I(a,t) = %ﬂv*-v*] (1)

where Z. = \/{/c is called the characteristic impedance
of the line. In terms of the left and right propagating
modes, Egs. (C4) and C5 become

00V 4OV = 0
00V = OV =



where v, = 1/V/{c is the wave phase velocity. These
equations have solutions which propagate by uniform
translation without changing shape since the line is dis-
persionless

V_)(l',t) =

Vout (t — ” ) (C10)

x
P
- x

V= (z,t) = Vin(t+ —), (C11)

Up

where Vi, and Vyy are arbitrary functions of their argu-

ments. For an infinite transmission line, V and V5, are

completely independent. However for the case of a semi-

infinite line terminated at x = 0 (say) by some system .S,

these two solutions are not independent, but rather re-

lated by the boundary condition imposed by the system.

We have

Viz=0,t) = [Vous(t) + Vin(t)] (C12)
1
I(x=0,t) = 7[Vout(t) —Vin(®)], (C13)
from which we may derive
Vout (t) = Vin(t) + ZoI(z = 0,1). (C14)
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FIG. 1 a) Coaxial transmission line, indicating voltages and
currents as defined in the main text. b) Lumped element
representation of a transmission line with capacitance per unit
length ¢ = C'/a and inductance per unit length £ = L/a. c)
Discrete LC resonator terminating a transmission line.

If the system under study is just an open circuit so
that I(x = 0,t) = 0, then V54 = Vin, meaning that the
outgoing wave is simply the result of the incoming wave
reflecting from the open circuit termination. In general
however, there is an additional outgoing wave radiated
by the current I that is injected by the system dynamics
into the line. In the absence of an incoming wave we have

V(z=0,t)=ZJI(z=0,1), (C15)

indicating that the transmission line acts as a simple re-
sistor which, instead of dissipating energy by Joule heat-
ing, carries the energy away from the system as propa-
gating waves. The fact that the line can dissipate energy
despite containing only purely reactive elements is a con-
sequence of its infinite extent. One must be careful with
the order of limits, taking the length to infinity before
allowing time to go to infinity. In this way the outgoing
waves never reach the far end of the transmission line and
reflect back. Since this is a conservative Hamiltonian sys-
tem, we will be able to quantize these waves and make a
quantum theory of resistors (Caldeira and Leggett, 1983)
in Appendix D. The net power flow carried to the right
by the line is

_

P
Ze

[Voue () = Vi (0)]. (C16)

The fact that the transmission line presents a dissipa-
tive impedance to the system means that it causes damp-
ing of the system. It also however opens up the possibility
of controlling the system via the input field which par-
tially determines the voltage driving the system. From
this point of view it is convenient to eliminate the output
field by writing the voltage as

V(e =0,t) =2Viu(t) + ZI(z = 0,1). (C17)
As we will discuss in more detail below, the first term
drives the system and the second damps it. From
Eq. (C14) we see that measurement of the outgoing field
can be used to determine the current I(x = 0,t) injected
by the system into the line and hence to infer the system
dynamics that results from the input drive field.

As a simple example, consider the system consisting of
an LC resonator shown in Fig. (1 ¢). This can be viewed
as a simple harmonic oscillator whose coordinate @ is the
charge on the capacitor plate (on the side connected to
Lo). The current I(z = 0,t) = Q plays the role of the
velocity of the oscillator. The equation of motion for the
oscillator is readily obtained from

Q= Co[-V(x=0%1)— Lol(x =0%,t).  (C18)
Using Eq. (C17) we obtain a harmonic oscillator damped
by the transmission line and driven by the incoming
waves

O=-02Q () Liovm(w, (C19)

where the resonant frequency is Q3 = 1//LoCy. Note
that the term Z.I(z = 0,t) in Eq. (C17) results in the
linear viscous damping rate v = Z./Ly.

If we solve the equation of motion of the oscillator, we
can predict the outgoing field. In the present instance of
a simple oscillator we have a particular example of the
general case where the system responds linearly to the
input field. We can characterize any such system by a



complex, frequency dependent impedance Z[w] defined
by

V(z=0,w)

48 T Iz =0,w)

(C20)

Note the peculiar minus sign which results from our def-
inition of positive current flowing to the right (out of the
system and into the transmission line). Using Egs. (C12,
C13) and Eq. (C20) we have

Vout [w] = r[w]‘/in [w]7 (021)
where the reflection coefficient r is determined by the
impedance mismatch between the system and the line
and is given by the well known result

Zw| — Z,

EESA (€22)

rlw] =

If the system is constructed from purely reactive (i.e.
lossless) components, then Z[w] is purely imaginary and
the reflection coefficient obeys |r| = 1 which is consistent
with Eq. (C16) and the energy conservation requirement
of no net power flow into the lossless system. For exam-
ple, for the series LC' oscillator we have been considering,
we have

_ 1
~ jwCo

Z[w] + jwLo, (C23)

where, to make contact with the usual electrical engi-
neering sign conventions, we have used j = —i. If the
damping v of the oscillator induced by coupling it to the
transmission line is small, the quality factor of the reso-
nance will be high and we need only consider frequencies

near the resonance frequency Qo = 1/v/LoCy where the
impedance has a zero. In this case we may approximate

2
~——|[Qy—w] =2jLo(w— C24
which yields for the reflection coefficient
w — Qo + jv/2
rw = ——————— C25
] w— Qo — jv/2 (025)

showing that indeed |r| = 1 and that the phase of the
reflected signal winds by 27 upon passing through the
resonance. *

Turning to the more general case where the system
also contains lossy elements, one finds that Z[w] is no
longer purely imaginary, but has a real part satisfying
Re Z[w] > 0. This in turn implies via Eq. (C22) that
|r] < 1. In the special case of impedance matching
Zw] = Z., all the incident power is dissipated in the

4 For the case of resonant transmission through a symmetric cav-
ity, the phase shift only winds by .
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system and none is reflected. The other two limits of in-
terest are open circuit termination with Z = oo for which
r = 41 and short circuit termination Z = 0 for which
r=—1.

Finally, if the system also contains an active device
which has energy being pumped into it from a separate
external source, it may under the right conditions be de-
scribed by an effective negative resistance Re Zjw] < 0
over a certain frequency range. Eq. (C22) then gives
|r| > 1, implying |Vout| > |Vin|. Our system will thus act
like the one-port amplifier discussed in Sec. V.D: it am-
plifies signals incident upon it. We will discuss this idea
of negative resistance further in Sec. C.4; a physical real-
ization is provided by the two-port reflection parametric
amplifier discussed in Appendix V.C.

2. Lagrangian, Hamiltonian, and wave modes for a
transmission line

Prior to moving on to the case of quantum noise it
is useful to review the classical statistical mechanics of
transmission lines. To do this we need to write down
the Lagrangian and then determine the canonical mo-
menta and the Hamiltonian. Very conveniently, the sys-
tem is simply a large collection of harmonic oscillators
(the normal modes) and hence can be readily quantized.
This representation of a physical resistor is essentially the
one used by Caldeira and Leggett (Caldeira and Leggett,
1983) in their seminal studies of the effects of dissipation
on tunneling. The only difference between this model
and the vacuum fluctuations in free space is that the rel-
ativistic bosons travel in one dimension and do not carry
a polarization label. This changes the density of states as
a function of frequency, but has no other essential effect.

Tt is convenient to define a flux variable (Devoret, 1997)

oz, t) = / drV(z,T), (C26)

where V(z,t) = :p(x, t) is the local voltage on the trans-
mission line at position z and time ¢. Each segment of
the line of length dx has inductance £ dx and the voltage
drop along it is —dxz 9, 0rp(x,t). The flux through this
inductance is thus —dx d,¢(x,t) and the local value of
the current is given by the constitutive equation

I(2,1) = — ol 1), (C27)

The Lagrangian for the system is

L= / dx L{z, 1) = / dx (C(at<p)2 - L (axcp)2> ,
0 0 2 20
(C28)
The Euler-Lagrange equation for this Lagrangian is sim-
ply the wave equation

02020 — Ofp = 0. (C29)



The momentum conjugate to ¢(z) is simply the charge
density

oL
q(z,t) = 00 cOrp = cV(x,t) (C30)
and so the Hamiltonian is given by
H—/dx 1 2+i(a )2 (C31)
B 26q 20 s '

We know from our previous results that the charge
density consists of left and right moving solutions of ar-
bitrary fixed shape. For example we might have for the
right moving case

q(t—z/vp) = ay cos[k(x—vpt)]+ Bk sin[k(z—vpt)]. (C32)

A confusing point is that since ¢ is real valued, we see
that it necessarily contains both e*** and e~** terms
even if it is only right moving. Note however that for
k > 0 and a right mover, the e**® is associated with the
positive frequency term e+t while the e~ *** term is
associated with the negative frequency term et®*! where
wy, = vp|k|. For left movers the opposite holds. We can
appreciate this better if we define

kQ

1 —ikx 1 .
A = ﬁ/dfﬂe g {\/%Q(l’vt) —1 %W(T/at)}
(C33)

J

- L +i(kz—wgt) * —i(kz—wgt)
Vo o= ,/2LCZ[Ak(0)e + AL (0)e ]

k>0

1 ; ,
- _ - +i(kr—wit) * —i(kz—wit)
v \/;Z [A’“(O)e + A5 (0)e }

k<0

11

where for simplicity we have taken the fields to obey pe-
riodic boundary conditions on a length L. Thus we have
(in a form which anticipates the full quantum theory)

1
H=2> (Aj A+ AAy).

. (C34)
k

The classical equation of motion (C29) yields the simple
result
6tAk = —ikak. (035)

Thus

(z,t)
- \/526“” [Ag(0)e "kt 4+ A% (0)et™+!] (C36)
%

_ /i Z {Ak(0)6+i(kz7wkt) + AZ(())efi(szwkt)} )
k
(C37)

We see that for k& > 0 (k < 0) the wave is right (left)
moving, and that for right movers the e*** term is asso-
ciated with positive frequency and the e~"*® term is as-
sociated with negative frequency. We will return to this
in the quantum case where positive (negative) frequency
will refer to the destruction (creation) of a photon. Note
that the right and left moving voltages are given by

(C38)

(C39)

The voltage spectral density for the right moving waves is thus

Siylw] = 2% S {{ARAR)S(w — wi) + (AL AR)S(w + wi)}

k>0

(C40)

The left moving spectral density has the same expression but k < 0.
Using Eq. (C16), the above results lead to a net power flow (averaged over one cycle) within a frequency band

defined by a pass filter G[w] of

P=P"—P~ =L Z sgn(k) [Glur] (ApAL) + Gl-wil{ALAL)]

3. Classical statistical mechanics of a transmission line

Now that we have the Hamiltonian, we can consider
the classical statistical mechanics of a transmission line in

(C41)

(

thermal equilibrium at temperature 7T'. Since each mode
k is a simple harmonic oscillator we have from Eq. (C34)
and the equipartition theorem

(ArAy) = kpT. (C42)



Using this, we see from Eq. (C40) that the right moving
voltage signal has a simple white noise power spectrum.
Using Eq. (C41) we have for the right moving power in
a bandwidth B (in Hz rather than radians/sec) the very
simple result
— v * *
P = ﬁ (Glwk] ApAx + Gl—wi] AR AL)
k>0
kgT
2
= kgTB.

T dw

o Gw]

— 00

(C43)

where we have used the fact mentioned in connection
with Eq. (A26) and the discussion of square law detec-
tors that all passive filter functions are symmetric in fre-
quency.

One of the basic laws of statistical mechanics is Kirch-
hoff’s law stating that the ability of a hot object to emit
radiation is proportional to its ability to absorb. This
follows from very general thermodynamic arguments con-
cerning the thermal equilibrium of an object with its ra-
diation environment and it means that the best possible
emitter is the black body. In electrical circuits this princi-
ple is simply a form of the fluctuation dissipation theorem
which states that the electrical thermal noise produced
by a circuit element is proportional to the dissipation it
introduces into the circuit. Consider the example of a ter-
minating resistor at the end of a transmission line. If the
resistance R is matched to the characteristic impedance
Z. of a transmission line, the terminating resistor acts
as a black body because it absorbs 100% of the power
incident upon it. If the resistor is held at temperature T’
it will bring the transmission line modes into equilibrium
at the same temperature (at least for the case where the
transmission line has finite length). The rate at which the
equilibrium is established will depend on the impedance
mismatch between the resistor and the line, but the final
temperature will not.

A good way to understand the fluctuation-dissipation
theorem is to represent the resistor R which is terminat-
ing the Z. line in terms of a second semi-infinite trans-
mission line of impedance R as shown in Fig. (2). First
consider the case when the R line is not yet connected to
the Z. line. Then according to Eq. (C22), the open termi-
nation at the end of the Z. line has reflectivity |r|? = 1
so that it does not dissipate any energy. Additionally
of course, this termination does not transmit any sig-
nals from the R line into the Z,. However when the
two lines are connected the reflectivity becomes less than
unity meaning that incoming signals on the Z. line see
a source of dissipation R which partially absorbs them.
The absorbed signals are not turned into heat as in a
true resistor but are partially transmitted into the R line
which is entirely equivalent. Having opened up this port
for energy to escape from the Z. system, we have also
allowed noise energy (thermal or quantum) from the R
line to be transmitted into the Z. line. This is com-
pletely equivalent to the effective circuit shown in Fig. (3
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a) in which a real resistor has in parallel a random cur-
rent generator representing thermal noise fluctuations of
the electrons in the resistor. This is the essence of the
fluctuation dissipation theorem.

In order to make a quantitative analysis in terms of
the power flowing in the two lines, voltage is not the best
variable to use since we are dealing with more than one
value of line impedance. Rather we define incoming and
outgoing fields via

1

A = —V~ C44
VZ. (©4)

1
Agt = —V~ C45
t \/Z ( )

1
By = ——Vi© C46
\/E R ( )

1
Bow = —=Vii (C47)

VR

Normalizing by the square root of the impedance allows
us to write the power flowing to the right in each line in
the simple form

P = (Aout>2 - (Ain)2
PR == (Bin)2 - (Bout)2

(C48)
(C49)

The out fields are related to the in fields by the s matrix

Aout _ Ain
Bout =8 Bin

Requiring continuity of the voltage and current at the
interface between the two transmission lines, we can solve
for the scattering matrix s:

(C50)

Tt
5= ( . —r) (C51)
where
R—Z.
"7 R+ Ze (C52)
2V RZ.
t = Rt Zc (C53)

Note that |r|? + [t|2 = 1 as required by energy conserva-
tion and that s is unitary with det (s) = —1. By moving
the point at which the phase of the B;j, and By, fields
are determined one-quarter wavelength to the left, we
can put s into different standard form

;o Tt
S\ it 4

which has det (s') = +1.

As mentioned above, the energy absorbed from the Z,
line by the resistor R is not turned into heat as in a
true resistor but is is simply transmitted into the R line,
which is entirely equivalent. Kirchhoff’s law is now easy

(C54)



— VT 7

® ‘ -

R Ve —

- -
e ~—
4 R V(
FIG. 2 (Color online) Semi-infinite transmission line of

impedance Z. terminated by a resistor R which is represented
as a second semi-infinite transmission line.

to understand. The energy absorbed from the Z. line by
R, and the energy transmitted into it by thermal fluctua-
tions in the R line are both proportional to the absorption
coefficient

4RZ,
In,

FIG. 3 Equivalent circuits for noisy resistors.

The requirement that the transmission line Z. come to
equilibrium with the resistor allows us to readily compute
the spectral density of current fluctuations of the random
current source shown in Fig. (3 a). The power dissipated
in Z. by the current source attached to R is

-‘rOOd
P :/ ﬂS}[[w]

oo 2T

R?Z,
(R+ Z.)?
(C56)

For the special case R = Z. we can equate this to the
right moving power P~ in Eq. (C43) because left moving
waves in the Z. line are not reflected and hence cannot
contribute to the right moving power. Requiring P =
P~ yields the classical Nyquist result for the current
noise of a resistor

2
S]][w} = kaT (057)
R
or in the electrical engineering convention
4
Srrlw] + Spi[-w] = SksT. (C58)

R

We can derive the equivalent expression for the volt-
age noise of a resistor (see Fig. 3 b) by considering the
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voltage noise at the open termination of a semi-infinite
transmission line with Z. = R. For an open termination
V= =V so that the voltage at the end is given by

V=2v- =2V (C59)
and thus using Egs. (C40) and (C42) we find
Syy = 487, = 2RkpT (C60)

which is equivalent to Eq. (C57).

4. Amplification with a transmission line and a negative
resistance

We close our discussion of transmission lines by fur-
ther expanding upon the idea mentioned at the end of
App. C.1 that one can view a one-port amplifier as a
transmission line terminated by an effective negative re-
sistance. The discussion here will be very general: we will
explore what can be learned about amplification by sim-
ply extending the results we have obtained on transmis-
sion lines to the case of an effective negative resistance.
Our general discussion will not address the important is-
sues of how one achieves an effective negative resistance
over some appreciable frequency range: for such ques-
tions, one must focus on a specific physical realization,
such as the parametric amplifier discussed in Sec. V.C.

We start by noting that for the case —Z. < R < 0 the
power gain G is given by

G=|r]*>1, (C61)

and the s’ matrix introduced in Eq. (C54) becomes

()
+/G-1 VG

where the sign choice depends on the branch cut chosen
in the analytic continuation of the off-diagonal elements.
This transformation is clearly no longer unitary (because
there is no energy conservation since we are ignoring the
work done by the amplifier power supply). Note however
that we still have det (s') = +1. It turns out that this
naive analytic continuation of the results from positive to
negative resistance is not strictly correct. As we will show
in the following, we must be more careful than we have
been so far in order to insure that the transformation
from the in fields to the out fields must be canonical.

In order to understand the canonical nature of the
transformation between input and output modes, it is
necessary to delve more deeply into the fact that the
two quadrature amplitudes of a mode are canonically
conjugate. Following the complex amplitudes defined
in Egs. (C44-C4T), let us define a vector of real-valued
quadrature amplitudes for the incoming and outgoing
fields

(C62)

Xip X
—in __ Xgl —out __ X%ut
q - Yén ) - YEut . (063)

1 out
vy 8



The Poisson brackets amongst the different quadrature
amplitudes is given by

{@" 4"} o Ty, (C64)
or equivalently the quantum commutators are
4", "] = iX%PFJijv (C65)
where
0 0 0 +1
_ 0 0 41 0
J= 0 -1 0 0 (C66)
-1 0 0 O

In order for the transformation to be canonical, the same
Poisson bracket or commutator relations must hold for
the outgoing field amplitudes

[(I?uta q;'mt] = iX%PFJij‘ (C67)
In the case of a non-linear device these relations would
apply to the small fluctuations in the input and output
fields around the steady state solution. Assuming a linear
device (or linearization around the steady state solution)
we can define a 4 x 4 real-valued scattering matrix § in
analogy to the 2 x 2 complex-valued scattering matrix s
in Eq. (C51) which relates the output fields to the input
fields

q?Ut = §1jq;n (068)
Eq. (C67) puts a powerful constraint on on the § matrix,
namely that it must be symplectic. That is, § and its
transpose must obey

5J5T = J. (C69)
From this it follows that
dets = +1. (C70)

This in turn immediately implies Liouville’s theorem
that Hamiltonian evolution preserves phase space volume
(since det § is the Jacobian of the transformation which
propagates the amplitudes forward in time).

Let us further assume that the device is phase preserv-
ing, that is that the gain or attenuation is the same for
both quadratures. One form for the s matrix consistent
with all of the above requirements is

+cosf sinf 0 0
- sinf —cosf 0 0
5= 0 0 —cosf sinf ’ (€11)
0 0 sinf +cosf

This simply corresponds to a beam splitter and is the
equivalent of Eq. (C51) with r = cosf. As mentioned in
connection with Eq. (C51), the precise form of the scat-
tering matrix depends on the choice of planes at which
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the phases of the various input and output waves are
measured.

Another allowed form of the scattering matrix is:

+coshf +sinh6 0 0
o _ | +sinhé +cosh6 0 0
5= 0 0 +coshf —sinhé

0 0 —sinh# +coshé

(C72)
If one takes cosh® = +/G, this scattering matrix is
essentially the canonically correct formulation of the
negative-resistance scattering matrix we tried to write in
Eq. (C62). Note that the off-diagonal terms have changed
sign for the Y quadrature relative to the naive expression
in Eq. (C62) (corresponding to the other possible an-
alytic continuation choice). This is necessary to satisfy
the symplecticity condition and hence make the transfor-
mation canonical. The scattering matrix § can describe
amplification. Unlike the beam splitter scattering ma-
trix § above, § is not unitary (even though det§’ = 1).
Unitarity would correspond to power conservation. Here,
power is not conserved, as we are not explicitly tracking
the power source supplying our active system.

The form of the negative-resistance amplifier scattering
matrix § confirms many of the general statements we
made about phase-preserving amplification in Sec. V.B.
First, note that the requirement of finite gain G > 1 and
phase preservation makes all the diagonal elements of 3’
(i.e. coshf ) equal. We see that to amplify the A mode,
it is impossible to avoid coupling to the B mode (via the
sinh # term) because of the requirement of symplecticity.
We thus see that it is impossible classically or quantum
mechanically to build a linear phase-preserving amplifier
whose only effect is to amplify the desired signal. The
presence of the sinh 6 term above means that the output
signal is always contaminated by amplified noise from
at least one other degree of freedom (in this case the B
mode). If the thermal or quantum noise in A and B
are equal in magnitude (and uncorrelated), then in the
limit of large gain where cosh 6 = sinh 6, the output noise
(referred to the input) will be doubled. This is true for
both classical thermal noise and quantum vacuum noise.

The negative resistance model of an amplifier here
gives us another way to think about the noise added by
an amplifier: crudely speaking, we can view it as being
directly analogous to the fluctuation-dissipation theorem
simply continued to the case of negative dissipation. Just
as dissipation can occur only when we open up a new
channel and thus we bring in new fluctuations, so ampli-
fication can occur only when there is coupling to an ad-
ditional channel. Without this it is impossible to satisfy
the requirement that the amplifier perform a canonical
transformation.



Appendix D: Quantum Modes and Noise of a Transmission
Line

1. Quantization of a transmission line

Recall from Eq. (C30) and the discussion in Appendix
C that the momentum conjugate to the transmission line
flux variable (z,t) is the local charge density ¢(z,t).
Hence in order to quantize the transmission line modes
we simply promote these two physical quantities to quan-
tum operators obeying the commutation relation

[4(x), ¢(a")] = —ihd(x — 2')

from which it follows that the mode amplitudes defined
in Eq. (C33) become quantum operators obeying

[Ak’a A/U =

(D1)

Fewye S (D2)

and we may identify the usual raising and lowering oper-
ators by

Ak = \/ﬁwki)k

where by, destroys a photon in mode k. The quantum
form of the Hamiltonian in Eq. (C34) is thus

e 1
H=Y"hw {bzkarQ].
k

For the quantum case the thermal equilibrium expression
then becomes

(D3)
(D4)

<A£Ak> = hwinp (fwy), (D5)

which reduces to Eq. (C42) in the classical limit hwy, <
kpT.

We have seen previously in Egs. (C6) that the volt-
age fluctuations on a transmission line can be resolved
into right and left moving waves which are functions of a
combined space-time argument

V- D) V(4 ),

Up Up

V(z,t) (D6)
Thus in an infinite transmission line, specifying V'~ ev-
erywhere in space at ¢t = 0 determines its value for all
times. Conversely specifying V™ at x = 0 for all times
fully specifies the field at all spatial points. In prepa-
ration for our study of the quantum version of input-
output theory in Appendix E, it is convenient to extend
Egs. (C38-C39) to the quantum case (x = 0):

. 1 —_—
Vo) = ﬂ/ﬁgx/hwk [bke i ’“t+h.c.}

[ e e on

In the second line, we have defined:

b= [w] \/>Zbk w — W)

k>0

(D8)
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In a similar fashion, we have:
~ Cdw [hwZ 1. it
- = — g .c.| (D
et} /O e b e 4 he] (D9)
~ v ~
b w] = ZWQIZPZka(wfwk)

k<0

(D10)

One can easily verify that among the b~ [w], b~ [w] opera-
tors and their conjugates, the only non-zero commutators
are given by:

[é*m, (iﬁ[w/]” - [ir[w], (l}_[w/])q = 216w — o)

(D11)
We have taken the continuum limit L — oo here, allowing
us to change sums on k to integrals. We have thus ob-
tained the description of a quantum transmission line in
terms of left and right-moving frequency resolved modes,
as used in our discussion of amplifiers in Sec. VI (see
Egs. 6.2). Note that if the right-moving modes are fur-
ther taken to be in thermal equilibrium, one finds (again,
in the continuum limit):

(1) 511) = 2m00 — & yun ()

(i (1))

We are typically interested in a relatively narrow band
of frequencies centered on some characteristic drive or
resonance frequency €2g. In this case, it is useful to work
in the time-domain, in a frame rotating at €)y. Fourier
transforming ® Eqgs. (D8) and (D10), one finds:

b= (1) = \/@ 3 e, (0),  (D13a)

k>0

b () = \/@ 3 i), (). (D13b)

k<0

(D12a)

2710 (w — W) [1 4 np(fw)]

(D12b)

These represent temporal right and left moving modes.
Note that the normalization factor in Egs. (D13) has been
chosen so that the right moving photon flux at = 0 and
time t is given by

(N) = (B ()b (1))

In the same rotating frame, and within the approxima-
tion that all relevant frequencies are near gy, Eq. (D7)
becomes simply:

(D14)

N Q7.
V7(t) =~ ﬁ;c

[3"(1&) +it~m]  (D1y)

5 As in the main text, we use in this appendix a convention which
differs from the one commonly used in quantum optics: alw] =
[T dtetita(t) and af[w] = [a[-w]]T = [T dtetital(t).



We have already seen that using classical statistical
mechanics, the voltage noise in equilibrium is white.
The corresponding analysis of the temporal modes using
Egs. (D13) shows that the quantum commutator obeys

[~ (6),6" ()] = o6(t =) (D16)
In deriving this result, we have converted summations
over mode index to integrals over frequency. Further,
because (for finite time resolution at least) the integral is
dominated by frequencies near +{2y we can, within the
Markov (Wigner Weisskopf) approximation, extend the
lower limit of frequency integration to minus infinity and
thus arrive at a delta function in time. If we further take
the right moving modes to be in thermal equilibrium,
then we may similarly approximate:

BF(#)h (1) = np(hQ0)d(t —t') (D17a)
B~ (Ob () = [14 ns(hQ0)]8(t —t'). (D17D)

Equations (D15) to (D17b) indicate that V= (¢) can be
treated as the quantum operator equivalent of white
noise; a similar line of reasoning applies mutatis mutan-
dis to the left moving modes. We stress that these re-
sults rely crucially on our assumption that we are dealing
with a relatively narrow band of frequencies in the vicin-
ity of Qg; the resulting approximations we have made
are known as the Markov approximation. As one can al-
ready see from the form of Egs. (D7,D9), and as will be
discussed further, the actual spectral density of vacuum
noise on a transmission line is not white, but is linear in
frequency. The approximation made in Eq. (D16) treats
it as a constant within the narrow band of frequencies
of interest. If the range of frequencies of importance is
large then the Markov approximation is not applicable.

2. Modes and the windowed Fourier transform

While delta function correlations can make the quan-
tum noise relatively easy to deal with in both the time
and frequency domain, it is sometimes the case that it
is easier to deal with a ‘smoothed’ noise variable. The
introduction of an ultraviolet cutoff regulates the math-
ematical singularities in the noise operators evaluated at
equal times and is physically sensible because every real
measurement apparatus has finite time resolution. A sec-
ond motivation is that real spectrum analyzers output a
time varying signal which represents the noise power in
a certain frequency interval (the ‘resolution bandwidth’)
averaged over a certain time interval (the inverse ‘video
bandwidth’). The mathematical tool of choice for dealing
with such situations in which time and frequency both
appear is the ‘windowed Fourier transform’. The win-
dowed transform uses a kernel which is centered on some
frequency window and some time interval. By summa-
tion over all frequency and time windows it is possible
to invert the transformation. The reader is directed to
(Mallat, 1999) for the mathematical details.
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For our present purposes where we are interested in
just a single narrow frequency range centered on g, a
convenient windowed transform kernel for smoothing the
quantum noise is simply a box of width At representing
the finite integration time of our detector. In the frame
rotating at Qg we can define

(D18)

where t; = j(At) denotes the time of arrival of the jth

temporal mode at the point # = 0. Recall that b~ has
a photon flux normalization and so B;” is dimensionless.
From Eq. (D16) we see that these smoothed operators
obey the usual bosonic commutation relations
1B, BI7] = 0. (D19)
The state B;|O> has a single photon occupying basis
mode j, which 1s centered in frequency space at €2y and in
time space on the interval jAt <t < (§ + 1)At (i.e. this
temporal mode passes the point x = 0 during the jth
time interval.) This basis mode is much like a note in a
musical score: it has a certain specified pitch and occurs
at a specified time for a specified duration. Just as we
can play notes of different frequencies simultaneously, we
can define other temporal modes on the same time in-
terval and they will be mutually orthogonal provided the
angular frequency spacing is a multiple of 2r/At. The
result is a set of modes B,, , labeled by both a frequency
index m and a time index p. p labels the time interval as
before, while m labels the angular frequency:

wm = Qo+ m—

X (D20)

The result is, as illustrated in Fig. (4), a complete lat-
tice of possible modes tiling the frequency-time phase
space, each occupying area 27 corresponding to the time-
frequency uncertainty principle.

We can form other modes of arbitrary shapes centered
on frequency €2y by means of linear superposition of our
basis modes (as long as they are smooth on the time scale
At). Let us define

U= Zq,zzjf};. (D21)
J

This is also a canonical bosonic mode operator obeying
VAU (D22)
provided that the coefficients obey the normalization con-

dition
> =1

J

(D23)

We might for example want to describe a mode which is
centered at a slightly higher frequency Qg + 62 (obeying
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FIG. 4 (Color online) Schematic figure indicating how the
various modes defined by the windowed Fourier transform tile
the time-frequency plane. Each individual cell corresponds to
a different mode, and has an area 27.

(69)(At) << 1) and spread out over a large time interval
T centered at time Ty. This could be given for example
by

(jat—Tg)?

vy = Ne™ i

where N is the appropriate normalization constant.
The state having n photons in the mode is simply

1 W\
7 (2 0)-

The concept of ‘wave function of the photon’ is fraught
with dangers. In the very special case where we re-
strict attention solely to the subspace of single photon
Fock states, we can usefully think of the amplitudes {1; }
as the ‘wave function of the photon’ (Cohen-Tannoudji
et al., 1989) since it tells us about the spatial mode which
is excited. In the general case however it is essential to
keep in mind that the transmission line is a collection of
coupled LC oscillators with an infinite number of degrees
of freedom. Let us simplify the argument by considering
a single LC oscillator. We can perfectly well write a wave
function for the system as a function of the coordinate
(say the charge ¢ on the capacitor). The ground state
wave function xo(¢) is a gaussian function of the coor-
dinate. The one photon state created by ¥ has a wave
function x1(g) ~ ¢xo(g) proportional to the coordinate
times the same gaussian. In the general case x is a wave
functional of the charge distribution ¢(z) over the entire
transmission line.

Using Eq. (D17a) we have

(D25)

(BI7By) = np(h€0) ;5 (D26)
independent of our choice of the coarse-graining time win-
dow At. This result allows us to give meaning to the
phrase one often hears bandied about in descriptions of
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amplifiers that ‘the noise temperature corresponds to a
mode occupancy of X photons’. This simply means that
the photon flux per unit bandwidth is X. Equivalently
the flux in bandwidth B is

- X

N = At(BAt) = XB.
The interpretation of this is that X photons in a tempo-
ral mode of duration At pass the origin in time At. Each
mode has bandwidth ~ ﬁ and so there are BAt inde-
pendent temporal modes in bandwidth B all occupying
the same time interval At. The longer is At the longer it
takes a given mode to pass the origin, but the more such
modes fit into the frequency window.

As an illustration of these ideas, consider the following
elementary question: What is the mode occupancy of a
laser beam of power P and hence photon flux N = h—go?
We cannot answer this without knowing the coherence
time or equivalently the bandwidth. The output of a
good laser is like that of a radio frequency oscillator—it
has essentially no amplitude fluctuations. The frequency
is nominally set by the physical properties of the oscilla-
tor, but there is nothing to pin the phase which conse-
quently undergoes slow diffusion due to unavoidable noise
perturbations. This leads to a finite phase coherence time
7 and corresponding frequency spread 1/7 of the laser
spectrum. (A laser beam differs from a thermal source
that has been filtered to have the same spectrum in that
it has smaller amplitude fluctuations.) Thus we expect

(D27)

that the mode occupancy is X = N7. A convenient ap-
proximate description in terms of temporal modes is to
take the window interval to be At = 7. Within the jth
interval we take the phase to be a (random) constant ¢,
so that (up to an unimportant normalization constant)
we have the coherent state

[Te "% o) (D28)
J
which obeys
(By") = VXei#r (D29)
and
(Bl7By) = X. (D30)

3. Quantum noise from a resistor

Let us consider the quantum equivalent to Eq. (C60),
Syv = 2RkgT, for the case of a semi-infinite transmis-
sion line with open termination, representing a resistor.
From Eq. (C27) we see that the proper boundary con-
dition for the ¢ field is 9,¢(0,t) = dp(L,t) = 0. (We
have temporarily made the transmission line have a large
but finite length L.) The normal mode expansion that
satisfies these boundary conditions is

oz, t) = \/zz ©n(t) cos(knx),

(D31)



where ¢,, is the normal coordinate and k, = % Sub-
stitution of this form into the Lagrangian and carrying
out the spatial integration yields a set of independent
harmonic oscillators representing the normal modes.

(D32)

From this we can find the momentum operator p,, canon-
ically conjugate to the coordinate operator ¢,, and quan-
tize the system to obtain an expression for the operator
representing the voltage at the end of the transmission
line in terms of the mode creation and destruction oper-

ators
. T TN R
_ n.pt
1% 7?:1“ o i(b —by).

The spectral density of voltage fluctuations is then found
to be

(D33)

Syvlw] = 2% 3 MZ" [ (A2)5(w + Q)

n=1

+ns (A + 1]6(w — ) },

(D34)

where np(hw) is the Bose occupancy factor for a photon
with energy fw. Taking the limit L — oo and converting
the summation to an integral yields

Svv(w) = 2Zchfw] {np (hlw])© (—w)+np (hlw])+110(w)},
(D35)
where © is the step function. We see immediately that
at zero temperature there is no noise at negative frequen-
cies because energy can not be extracted from zero-point
motion. However there remains noise at positive frequen-
cies indicating that the vacuum is capable of absorbing
energy from another quantum system. The voltage spec-
tral density at both zero and non-zero temperature is
plotted in Fig. (1).
Eq. (D35) for this ‘two-sided’ spectral density of a re-
sistor can be rewritten in a more compact form

27 hw
Syvw] = T o fw/koT’ (D36)
which reduces to the more familiar expressions in various
limits. For example, in the classical limit kg7 > hw the
spectral density is equal to the Johnson noise result®

Syvw] = 2Z:ksT, (D37)

in agreement with Eq. (C60). In the quantum limit it
reduces to

Svvw] = 2Z.wO(w). (D38)

6 Note again that in the engineering convention this would be
Svyvw] =4ZcksT.
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Again, the step function tells us that the resistor can only
absorb energy, not emit it, at zero temperature.

If we use the engineering convention and add the noise
at positive and negative frequencies we obtain

hw
Syv|w] + Syv|[—w] = 2Z hiw coth ——

T (D39)

for the symmetric part of the noise, which appears in the
quantum fluctuation-dissipation theorem (cf. Eq. (2.16)).
The antisymmetric part of the noise is simply

SVV [w] — va[—w] = 2Zcﬁw, (D40)
yielding
SVV [w] — va[—w] hw
= tanh D41
Svv [w] + S\/v[—w] a 2kgT ( )

This quantum treatment can also be applied to any
arbitrary dissipative network (Burkhard et al., 2004; De-
voret, 1997). If we have a more complex circuit con-
taining capacitors and inductors, then in all of the above
expressions, Z. should be replaced by Re Z[w] where Z[w]
is the complex impedance presented by the circuit.

In the above we have explicitly quantized the stand-
ing wave modes of a finite length transmission line. We
could instead have used the running waves of an infinite
line and recognized that, as the in classical treatment in
Eq. (C59), the left and right movers are not independent.
The open boundary condition at the termination requires
V= =V~ and hence b— = b~. We then obtain

Svvlw] =45y [w] (D42)

and from the quantum analog of Eq. (C40) we have

Suvlu] = Gocl 1Ow)(mn + 1) + O}
= 2Z:Mh|w|{0(w)(ng + 1) + O(—w)np}

(D43)

in agreement with Eq. (D35).

Appendix E: Back Action and Input-Output Theory for
Driven Damped Cavities

A high @ cavity whose resonance frequency can be
parametrically controlled by an external source can act
as a very simple quantum amplifier, encoding informa-
tion about the external source in the phase and ampli-
tude of the output of the driven cavity. For example,
in an optical cavity, one of the mirrors could be move-
able and the external source could be a force acting on
that mirror. This defines the very active field of optome-
chanics, which also deals with microwave cavities cou-
pled to nanomechanical systems and other related setups
(Arcizet et al., 2006; Brown et al., 2007; Gigan et al.,



2006; Harris et al., 2007; Hohberger-Metzger and Kar-
rai, 2004; Marquardt et al., 2007, 2006; Meystre et al.,
1985; Schliesser et al., 2006; Teufel et al., 2008; Thomp-
son et al., 2008; Wilson-Rae et al., 2007). In the case of a
microwave cavity containing a qubit, the state-dependent
polarizability of the qubit acts as a source which shifts
the frequency of the cavity (Blais et al., 2004; Schuster
et al., 2005; Wallraff et al., 2004).

The dephasing of a qubit in a microwave cavity and
the fluctuations in the radiation pressure in an optical
cavity both depend on the quantum noise in the number
of photons inside the cavity. We here use a simple equa-
tion of motion method to exactly solve for this quantum
noise in the perturbative limit where the dynamics of the
qubit or mirror degree of freedom has only a weak back
action effect on the cavity.

In the following, we first give a basic discussion of
the cavity field noise spectrum, deferring the detailed
microscopic derivation to subsequent subsections. We
then provide a review of the input-output theory for
driven cavities, and employ this theory to analyze the
important example of a dispersive position measurement,
where we demonstrate how the standard quantum limit
can be reached. Finally, we analyze an example where
a modified dispersive scheme is used to detect only one
quadrature of a harmonic oscillator’s motion, such that
this quadrature does not feel any back-action.

1. Photon shot noise inside a cavity and back action

Consider a degree of freedom Z coupled parametrically
with strength A to the cavity oscillator

Hine = hwo(1 + A2) [6Ta — (6Ta)] (E1)

where following Eq. (3.12), we have taken A to be dimen-
sionless, and use Z to denote the dimensionless system
variable that we wish to probe. For example, Z could
represent the dimensionless position of a mechanical os-
cillator

Z

z

pr— (E2)
We have subtracted the (a'a) term so that the mean
force on the degree of freedom is zero. To obtain the full
Hamiltonian, we would have to add the cavity damping
and driving terms, as well as the Hamiltonian governing
the intrinsic dynamics of the system 2. From Eq. (3.18)
we know that the back action noise force acting on % is
proportional to the quantum fluctuations in the number
of photons 7 = afa in the cavity,

Sun (1) = (@' (H)a(t)a’ (0)a(0)) — (@' (t)a(t))*.

For the case of continuous wave driving at frequency
wr, = we + A detuned by A from the resonance, the
cavity is in a coherent state |i) obeying

(E3)

a(t) = e Lt + d(t)] (E4)
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where the first term is the ‘classical part’ of the mode am-
plitude 9 (t) = ae~ ™! determined by the strength of the
drive field, the damping of the cavity and the detuning
A, and d is the quantum part. By definition,

aly) = vp) (E5)
so the coherent state is annihilated by d:
d[y) = 0. (E6)

That is, in terms of the operator d, the coherent state
looks like the undriven quantum ground state . The dis-
placement transformation in Eq. (E4) is canonical since

[a,a") =1 = [d,d"] =1. (E7)

Substituting the displacement transformation into
Eq. (E3) and using Eq. (E6) yields

Sun (1) = n{d(t)d" (0)),

where 71 = |a|? is the mean cavity photon number. If we
set the cavity energy damping rate to be k, such that the
amplitude damping rate is /2, then the undriven state
obeys

(E8)

(d(t)d(0)) = etiBte= 51, (E9)

This expression will be justified formally in the subse-
quent subsection, after introducing input-output theory.
We thus arrive at the very simple result

Sy (t) = RN EI, (E10)

The power spectrum of the noise is, via the Wiener-
Khinchin theorem (Appendix A.2), simply the Fourier
transform of the autocorrelation function given in

Eq. (E10)

+o0 ) K
Spn[w] = Lw dt €S, (t) = ﬁ(w A (2

(E11)
As can be seen in Fig. 5a, for positive detuning A =
wr, — we > 0, i.e. for a drive that is blue-detuned with
respect to the cavity, the noise peaks at negative w. This
means that the noise tends to pump energy into the de-
gree of freedom £ (i.e. it contributes negative damping).
For negative detuning the noise peaks at positive w cor-
responding to the cavity absorbing energy from %. Basi-
cally, the interaction with 2 (three wave mixing) tries to
Raman scatter the drive photons into the high density of
states at the cavity frequency. If this is uphill in energy,
then 2 is cooled.
As discussed in Sec. B.2 (c.f. Eq. (2.8)), at each fre-
quency w, we can use detailed balance to assign the noise
an effective temperature Tog|w]:

bl _ st
Sn [_w]
kpTeglw] = e (E12)

log [ S242L
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FIG. 5 (Color online) (a) Noise spectrum of the photon num-
ber in a driven cavity as a function of frequency when the
cavity drive frequency is detuned from the cavity resonance
by A = +3k (left peak) and A = —3k (right peak). (b) Ef-
fective temperature Teg of the low frequency noise, w — 0,
as a function of the detuning A of the drive from the cavity
resonance. (c) Frequency-dependence of the effective noise
temperature, for different values of the detuning.

or equivalently

Snn [w] — Sp [—w]
Spn|w] + Spn[—w]

= tanh(fhw/2). (E13)
If 2 is the coordinate of a harmonic oscillator of frequency
w (or some non-conserved observable of a qubit with level
splitting w), then that system will acquire a temperature
Tof[w] in the absence of coupling to any other environ-
ment. In particular, if the characteristic oscillation fre-
quency of the system Z is much smaller than x, then we
have the simple result

1 — lim 2 Snnlw] = Spn[—w]
ksTog  w—0+ hw Spnlw] + Spn|[—w]
B 2alln Spn W]
n dhw
1 —4A
= ATt (nj2)2 (B14)
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As can be seen in Fig. 5, the asymmetry in the noise
changes sign with detuning, which causes the effective
temperature to change sign.

First we discuss the case of a positive Tog, where this
mechanism can be used to laser cool an oscillating me-
chanical cantilever, provided T.g is lower than the in-
trinsic equilibrium temperature of the cantilever. (Ar-
cizet et al., 2006; Brown et al., 2007; Gigan et al., 2006;
Harris et al., 2007; Hohberger-Metzger and Karrai, 2004;
Marquardt et al., 2007; Schliesser et al., 2006; Thompson
et al., 2008; Wilson-Rae et al., 2007). A simple classical
argument helps us understand this cooling effect. Sup-
pose that the moveable mirror is at the right hand end
of a cavity being driven below the resonance frequency.
If the mirror moves to the right, the resonance frequency
will fall and the number of photons in the cavity will rise.
There will be a time delay however to fill the cavity and
so the extra radiation pressure will not be fully effective
in doing work on the mirror. During the return part of
the oscillation as the mirror moves back to the left, the
time delay in emptying the cavity will cause the mirror to
have to do extra work against the radiation pressure. At
the end of the cycle it ends up having done net positive
work on the light field and hence is cooled. The effect can
therefore be understood as being due to the introduction
of some extra optomechanical damping.

The signs reverse (and T,.g¢ becomes negative) if the
cavity is driven above resonance, and consequently the
cantilever motion is heated up. In the absence of in-
trinsic mechanical losses, negative values of the effective
temperature indicate a dynamical instability of the can-
tilever (or population inversion in the case of a qubit),
where the amplitude of motion grows until it is finally
stabilized by nonlinear effects. This can be interpreted
as negative damping introduced by the optomechanical
coupling and can be used to create parametric amplifica-
tion of mechanical forces acting on the oscillator.

Finally, we mention that cooling towards the quantum
ground state of a mechanical oscillator (where phonon
numbers become much less than one), is only possible
(Marquardt et al., 2007; Wilson-Rae et al., 2007) in the
“far-detuned regime”, where —A = w > & (in contrast
to the w < k regime discussed above).

2. Input-output theory for a driven cavity

The results from the previous section can be more for-
mally and rigorously derived in a full quantum theory
of a cavity driven by an external coherent source. The
theory relating the drive, the cavity and the outgoing
waves radiated by the cavity is known as input-output
theory and the classical description was presented in Ap-
pendix C. The present quantum discussion closely fol-
lows standard references on the subject (Walls and Mil-
burn, 1994; Yurke, 1984; Yurke and Denker, 1984). The
crucial feature that distinguishes such an approach from
many other treatments of quantum-dissipative systems



is the goal of keeping the bath modes instead of trac-
ing them out. This is obviously necessary for the situa-
tions we have in mind, where the output field emanating
from the cavity contains the information acquired during
a measurement of the system coupled to the cavity. As
we learned from the classical treatment, we can elimi-
nate the outgoing waves in favor of a damping term for
the system. However we can recover the solution for the
outgoing modes completely from the solution of the equa-
tion of motion of the damped system being driven by the
incoming waves.

In order to drive the cavity we must partially open one
of its ports which exposes the cavity both to the external
drive and to the vacuum noise outside which permits en-
ergy in the cavity to leak out into the surrounding bath.
We will formally separate the degrees of freedom into in-
ternal cavity modes and external bath modes. Strictly
speaking, once the port is open, these modes are not dis-
tinct and we only have ‘the modes of the universe’ (Gea-
Banacloche et al., 1990a,b; Lang et al., 1973). However
for high @ cavities, the distinction is well-defined and we
can model the decay of the cavity in terms of a spon-
taneous emission process in which an internal boson is
destroyed and an external bath boson is created. We
assume a single-sided cavity. For a high @ cavity, this
physics is accurately captured in the following Hamilto-
nian

f{ = ﬁsys + ﬁbath + ﬁint' (E15)
The bath Hamiltonian is
Hyarn = Z huwgblbg (E16)

q

where ¢ labels the quantum numbers of the independent
harmonic oscillator bath modes obeying

by, b1, = Og.q'-

9> Vq’

(E17)

Note that since the bath terminates at the system, there
is no translational invariance, the normal modes are
standing not running waves, and the quantum numbers
q are not necessarily wave vectors.

The coupling Hamiltonian is (within the rotating wave
approximation)

Hie = iy [ Failby — frblal . (E18)
q

For the moment we will leave the system (cavity) Hamil-
tonian to be completely general, specifying only that it
consists of a single degree of freedom (i.e. we concentrate
on only a single resonance of the cavity with frequency
w.) obeying the usual bosonic commutation relation
[a,a'] = 1. (E19)
(N.B. this does not imply that it is a harmonic oscilla-
tor. We will consider both linear and non-linear cavities.)
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Note that the most general linear coupling to the bath
modes would include terms of the form IA);&T and bya but
these are neglected within the rotating wave approxima-
tion because in the interaction representation they os-
cillate at high frequencies and have little effect on the
dynamics.

The Heisenberg equation of motion (EOM) for the
bath variables is

7 A A
ﬁ[H ) bq} =
We see that this is simply the EOM of a harmonic oscil-
lator driven by a forcing term due to the motion of the
cavity degree of freedom. Since this is a linear system,
the EOM can be solved exactly. Let tg < t be a time in
the distant past before any wave packet launched at the
cavity has reached it. The solution of Eq. (E20) is

by = —iwgby + fla (E20)

t
by(t) = e~ ™alt=to)p (1) + / dr ema(=T) (7).

t
’ (E21)
The first term is simply the free evolution of the bath
while the second represents the waves radiated by the
cavity into the bath.
The EOM for the cavity mode is

d sy57 Z fq
Substituting Eq. (E21) into the last term above yields
Z fql;q = Z fqe_wq(t_t‘))i)q(to)
q

P / dr o~ (o)D) [eHer—04(7)], (E23)

(E22)

where the last term in square brackets is a slowly varying
function of 7. To simplify our result, we note that if
the cavity system were a simple harmonic oscillator of
frequency w. then the decay rate from the n = 1 single
photon excited state to the n = 0 ground state would be
given by the following Fermi Golden Rule expression

Kwe) =21 > | fo*6(we — wq). (E24)

From this it follows that

o dv (t— 2 )(t=7)
7’”/ T 7’L Wq—We T
| st ve = Sl
(E25)
We now make the Markov approximation which assumes
that x(v) = k is a constant over the range of frequencies
relevant to the cavity so that Eq. (E25) may be repre-
sented as

3 | folPe @) = h(t ). (E26)
q



Using

/ dxé(x—xo):%

— 00

(E27)

we obtain for the cavity EOM

(i o K —iwq(t—to) 7,
ﬁ[Hsys,a] — 5= que alt tO)bq(to). (E28)
q

G =
The second term came from the part of the bath motion
representing the wave radiated by the cavity and, within
the Markov approximation, has become a simple linear
damping term for the cavity mode. Note the important
factor of 2. The amplitude decays at half the rate of the
intensity (the energy decay rate k).

Within the spirit of the Markov approximation it is
further convenient to treat f = +/|f,|? as a constant and
define the density of states (also taken to be a constant)
by

p=3" 0w —wq) (E29)
q
so that the Golden Rule rate becomes
k=2mf?p. (E30)
We can now define the so-called ‘input mode’
- 1
bin(t) = (E31)

—iwq(t—t0)], (4).
\/ﬁ Zq: € q( 0)
For the case of a transmission lipe treated in Appendix
D, this coincides with the field b~ moving towards the
cavity [see Eq. (D13a)]. We finally have for the cavity
EOM

7 A

&:{mw@—gmw@%m.

; (E32)

Note that when a wave packet is launched from the bath
towards the cavity, causality prevents it from knowing
about the cavity’s presence until it reaches the cavity.
Hence the input mode evolves freely as if the cavity were
not present until the time of the collision at which point
it begins to drive the cavity. Since bi,(t) evolves under
the free bath Hamiltonian and acts as the driving term in
the cavity EOM, we interpret it physically as the input
mode. Eq. (E32) is the quantum analog of the classi-
cal equation (C19), for our previous example of an LC-
oscillator driven by a transmission line. The latter would
also have been first order in time if as in Eq. (C35) we
had worked with the complex amplitude A instead of the
coordinate Q.

Eq. (E31) for the input mode contains a time label
just as in the interaction representation. However it is
best interpreted as simply labeling the particular linear
combination of the bath modes which is coupled to the
system at time t. Some authors even like to think of
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the bath modes as non-propagating while the cavity flies
along the bath (taken to be 1D) at a velocity v. The
system then only interacts briefly with the local mode
positioned at x = vt before moving on and interacting
with the next local bath mode. We will elaborate on this
view further at the end of this subsection.

The expression for the power P, (energy per time)
impinging on the cavity depends on the normalization
chosen in our definition of Z)in. It can be obtained, for
example, by imagining the bath modes i)q to live on a one-
dimensional waveguide with propagation velocity v and
length L (using periodic boundary conditions). In that
case we have to sum over all photons to get the average
power flowing through a cross-section of the waveguide,
Py =3, hwy(vp/L) <l§jll;q>. Inserting the definition for

bin, Eq. (E31), the expression for the input power carried
by a monochromatic beam at frequency w is

Pan(t) = o (b, (0B (1)) (E33)
Note that this has the correct dimensions due to our
choice of normalization for by, (with dimensions v/w). In
the general case, an integration over frequencies is needed
(as will be discussed further below). An analogous for-
mula holds for the power radiated by the cavity, to be
discussed now. R

The output mode byyt (t) is radiated into the bath and

evolves freely after the system interacts with by, (). If
the cavity did not respond at all, then the output mode
would simply be the input mode reflected off the cav-
ity mirror. If the mirror is partially transparent then
the output mode will also contain waves radiated by the
cavity (which is itself being driven by the input mode
partially transmitted into the cavity through the mirror)
and hence contains information about the internal dy-
namics of the cavity. To analyze this output field, let
ty > t be a time in the distant future after the input
field has interacted with the cavity. Then we can write
an alternative solution to Eq. (E20) in terms of the final
rather than the initial condition of the bath

. ~ h i
_ efzwq(t*tl)bq(tl) —/ dr eiqu(tiT)f;d(T)'

' (E34)

Note the important minus sign in the second term as-

sociated with the fact that the time ¢ is now the lower

limit of integration rather than the upper as it was in
Eq. (E21).
Defining

b(1)

1
2mp

bout (t) = Z e~ wat=t)p (1)),

q

(E35)

7

we see that this is simply the free evolution of the bath
modes from the distant future (after they have interacted
with the cavity) back to the present, indicating that it is
indeed appropriate to interpret this as the outgoing field.



Proceeding as before we obtain

I
a = h[Hsyba ] + Cl — fbout( ) (E36)
Subtracting Eq. (E36) from Eq. (E32) yields
bout (£) = bin(t) + VR alt) (E37)

which is consistent with our interpretation of the out-
going field as the reflected incoming field plus the field
radiated by the cavity out through the partially reflecting
mirror.

The above results are valid for any general cavity
Hamiltonian. The general procedure is to solve Eq. (E32)
for a(t) for a given input field, and then solve Eq. (E37)
to obtain the output field. For the case of an empty cav-
ity we can make further progress because the cavity mode
is a harmonic oscillator

Hyye = hweala. (E38)
In this simple case, the cavity EOM becomes
b = —iwed — ga — VEbin(2). (E39)

Eq. (E39) can be solved by Fourier transformation, yield-
ing

il = - V5
aw] = (=) T rf2 bin [w] (E40)
= —Vixelw — welbin [w] (EA1)
and
bl = ST ] (B4

which is the result for the reflection coefficient quoted in
Eq. (3.13). For brevity, here and in the following, we will
sometimes use the susceptibility of the cavity, defined as

1

—i(w —we) + K/2 (E43)

Xelw —we] =

For the case of steady driving on resonance where w = we,
the above equations yield

; VR i),

bous[w] = ~—a[w (E44)
In steady state, the incoming power equals the outgoing
power, and both are related to the photon number inside
the single-sided cavity by

R

P =t (bl (Dbous (1) ) = o’y (@' (Ba())  (E45)

Note that this does not coincide with the naive expecta-
tion, which would be P = hwk <dT&>. The reason for this
discrepancy is the the interference between the part of the
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incoming wave which is promptly reflected from the cav-
ity and the field radiated by the cavity. The naive expres-
sion becomes correct after the drive has been switched off
(where ignoring the effect of the incoming vacuum noise,
we would have boy, = V/ka). We note in passing that for
a driven two-sided cavity with coupling constants x, and
kg (where k = Kk, + KkRr), the incoming power sent into
the left port is related to the photon number by

P = hwr?/(4ry) (a'a) . (E46)

Here for k;, = ki the interference effect completely elim-
inates the reflected beam and we have in contrast to
Eq. (E45)

P = hwg (ata). (EAT)

Eq. (E39) can also be solved in the time domain to
obtain

d(t) _ ef(iwc+n/2)(t7tg)d(to)
t
- VK / dr e~ (wetr/2(=T)hy (7). (BA8)
to

If we take the input field to be a coherent drive at fre-
quency wy, = w. + A so that its amplitude has a classical
and a quantum part

bin(t) = "M by + £(2)]

and if we take the limit ¢ty — oo so that the initial tran-
sient in the cavity amplitude has damped out, then the
solution of Eq. (E48) has the form postulated in Eq. (E4)
with

(E49)

JR

P LN E50
T T TA Y R)2 (ES0)
and (in the frame rotating at the drive frequency)
t
—VE / dr e GA=R/DE=T) ¢ (1), (E51)

Even in the absence of any classical drive, the input
field delivers vacuum fluctuation noise to the cavity. No-
tice that from Egs. (E31, E49)

[bin (£),B1,())] = [5( £),&1()]
— 27rp Z e—z(wq—wL)(t t')

. ), (E52)

which is similar to Eq. (D16) for a quantum transmission
line. This is the operator equivalent of white noise. Using
Eq. (E48) in the limit ¢t — —oo in Eqgs. (E4,E51) yields

[a(t),a’(6)] = [d(¢),d"(1)]

K/ dr/ dr! e (—iltR/2)(t-7)

_(+ZA+K/2 (t— T’)(s(

T—1')
—1 (E53)



as is required for the cavity bosonic quantum degree of
freedom. We can interpret this as saying that the cavity
zero-point fluctuations arise from the vacuum noise that
enters through the open port. We also now have a simple
physical interpretation of the quantum noise in the num-
ber of photons in the driven cavity in Eqs. (E3,E8,E11).
It is due to the vacuum noise which enters the cavity
through the same ports that bring in the classical drive.
The interference between the vacuum noise and the clas-
sical drive leads to the photon number fluctuations in the
cavity.

In thermal equilibrium, é also contains thermal radi-
ation. If the bath is being probed only over a narrow
range of frequencies centered on w,. (which we have as-
sumed in making the Markov approximation) then we
have to a good approximation (consistent with the above
commutation relation)

(ET0EW)) = Nt —t)
EDENE)) = (N +1)d(t 1)

where N = np(hw.) is the thermal equilibrium occupa-
tion number of the mode at the frequency of interest. We
can gain a better understanding of Eq. (E54) by Fourier
transforming it to obtain the spectral density

(E54)
(E55)

+oo R R ) ,
Sll= [ at@@éene =N (o)

As mentioned previously, this dimensionless quantity is
the spectral density that would be measured by a photo-
multiplier: it represents the number of thermal photons
passing a given point per unit time per unit bandwidth.
Equivalently the thermally radiated power in a narrow
bandwidth B is

P =hwNB. (E57)
One often hears the confusing statement that the noise
added by an amplifier is a certain number N of photons
(N = 20, say for a good cryogenic HEMT amplifier op-
erating at 5 GHz). This means that the excess output
noise (referred back to the input by dividing by the power
gain) produces a flux of N photons per second in a 1 Hz
bandwidth, or 10°/N photons per second in 1 MHz of
bandwidth (see also Eq. (D27)).

We can gain further insight into input-output theory
by using the following picture. The operator by, (t) repre-
sents the classical drive plus vacuum fluctuations which
are just about to arrive at the cavity. We will be able
to show that the output field is simply the input field
a short while later after it has interacted with the cav-
ity. Let us consider the time evolution over a short time
period At which is very long compared to the inverse
bandwidth of the vacuum noise (i.e., the frequency scale
beyond which the vacuum noise cannot be treated as con-
stant due to some property of the environment) but very
short compared to the cavity system’s slow dynamics. In
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this circumstance it is useful to introduce the quantum
Wiener increment related to Eq. (D18)

t+AL
AW = / e (E58)

which obeys

[dW,dWT] = At. (E59)

In the interaction picture (in a displaced frame in
which the classical drive has been removed) the Hamilto-
nian term that couples the cavity to the quantum noise
of the environment is from Eq. (E18)

V = —ih/k(a'¢ — al).

Thus the time evolution operator (in the interaction pic-
ture) on the jth short time interval [t;,¢; + At] is

(E60)

Uj — oVR(adw'—al aw) (E61)
Using this we can readily evolve the incoming temporal
mode forward in time by a small step At
AW = UtdWU ~ dW + kAt a. (E62)
Recall that in input-output theory we formally defined
the outgoing field as the bath field far in the future prop-
agated back (using the free field time evolution) to the
present, which yielded

l;out = lA)in + \/Ed

Eq. (E62) is completely equivalent to this. Thus we con-
firm our understanding that the incoming field is the bath
temporal mode just before it interacts with the cavity and
the outgoing field is the bath temporal mode just after it
interacts with the cavity.

This leads to the following picture which is especially
useful in the quantum trajectory approach to conditional
quantum evolution of a system subject to weak continu-
ous measurement (Gardiner et al., 1992; Walls and Mil-
burn, 1994). On top of the classical drive by (t), the bath
supplies to the system a continuous stream of “fresh” har-
monic oscillators, each in their ground state (if T = 0).

(E63)

Each oscillator with its quantum fluctuation dW inter-
acts briefly for a period At with the system and then
is disconnected to propagate freely thereafter, never in-
teracting with the system again. Within this picture it
is useful to think of the oscillators arrayed in an infinite
stationary line and the cavity flying over them at speed
vp and touching each one for a time At.

3. Quantum limited position measurement using a cavity
detector

We will now apply the input-output formalism intro-
duced in the previous section to the important example



of a dispersive position measurement, which employs a
cavity whose resonance frequency shifts in response to
the motion of a harmonic oscillator. This physical sys-
tem was considered heuristically in Sec. II1.B.3. Here we
will present a rigorous derivation using the (linearized)
equations of motion for the coupled cavity and oscillator
system.
Let the dimensionless position operator

2:

& =[e" +¢] (E64)

LZPF

be the coordinate of a harmonic oscillator whose energy
is

Hy = hwyéte (E65)

and whose position uncertainty in the quantum ground
state is xzpr = /(0|%2|0).

This Hamiltonian could be realized for example by
mounting one of the cavity mirrors on a flexible cantilever
(see the discussion above).

When the mirror moves, the cavity resonance fre-
quency shifts,

We = we[l + AZ(t)] (E66)
where for a cavity of length L, A = —xzpp/L.

Assuming that the mirror moves slowly enough for the
cavity to adiabatically follow its motion (i.e. < k), the
outgoing light field suffers a phase shift which follows the
changes in the mirror position. This phase shift can be
detected in the appropriate homodyne set up as discussed
in Sec. III.B, and from this phase shift we can determine
the position of the mechanical oscillator. In addition to
the actual zero-point fluctuations of the oscillator, our
measurement will suffer from shot noise in the homodyne
signal and from additional uncertainty due to the back
action noise of the measurement acting on the oscillator.
All of these effects will appear naturally in the derivation
below.

We begin by considering the optical cavity equation
of motion based on Eq. (E32) and the optomechanical
coupling Hamiltonian in Eq. (E1). These yield

b= —iwe(1+ A2)a — ga — Vrbin. (E67)
Let the cavity be driven by a laser at a frequency wy, =
we + A detuned from the cavity by A. Moving to a frame
rotating at wy, we have
a — /kbin.

a = +i(A — Aw.2)a — (E68)

| x

and we can write the incoming field as a constant plus
white noise vacuum fluctuations (again, in the rotating
frame)

bin = bin + € (E69)
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and similarly for the cavity field following Eq. (E4)
i=a+d. (E70)

Substituting these expressions into the equation of mo-
tion, we find that the constant classical fields obey

VE g

K2 —iA " (B71)

a=—

and the new quantum equation of motion is, after ne-
glecting a small term dz:

d = +iAd — iAwea’ — gd — JRE. (E72)
The quantum limit for position measurement will be
reached only at zero detuning, so we specialize to the

case A = 0. We also choose the incoming field amplitude
and phase to obey

(E73)

so that
(E74)

where N is the incoming photon number flux. The quan-
tum equation of motion for the cavity then becomes

d = +95 — 5d — Vi, (ET5)

where the opto-mechanical coupling constant is propor-
tional to the laser drive amplitude

IN
g = 2Aw, = Awc V7.

(E76)

and

N
n=la?=4—

. (E77)

is the mean cavity photon number. Eq. (E75) is easily
solved by Fourier transformation

] {g3lw) - Vréle] .

dw) = —="

(E78)

Let us assume that we are in the limit of low mechan-
ical frequency relative to the cavity damping, Q2 < x,
so that the cavity state adiabatically follows the motion
of the mechanical oscillator. Then we obtain to a good
approximation

dw] = (E79)

d'w] = (E80)



The mechanical oscillator equation of motion which is
identical in form to that of the optical cavity
N

8té — _[@ + Zﬂ]é — \/’Tﬁ(t) + ﬁ[Hintvé(t)]v

. (E81)

where ﬁint is the Hamiltonian in Eq. (E1) and 7 is
the mechanical vacuum noise from the (zero tempera-
ture) bath which is causing the mechanical damping at
rate 9. Using Eq. (E70) and expanding to first order
in small fluctuations yields the equation of motion lin-
earized about the steady state solution

Oré = =[5 +ie— Aot + 2= 60 - €1 (1). (Es2)
VE
It is useful to consider an equivalent formulation in
which we expand the Hamiltonian in Eq. (E1) to second
order in the quantum fluctuations about the classical so-
lution

Hipg ~ hwedtd + 2F, (E83)

where the force (including the coupling A) is (up to a
sign)

=i g .

E84
TZPF (E84)

Note that the radiation pressure fluctuations (photon
shot noise) inside the cavity provide a forcing term. The
state of the field inside the cavity in general depends on
the past history of the cantilever position. However for
this special case of driving the cavity on resonance, the
dependence of the cavity field on the cantilever history is
such that the latter drops out of the radiation pressure.
To see this explicitly, consider the equation of motion for
the force obtained from Eq. (E75)

hg

TZPF

F=—2F+i—rlg - €. (ES5)
Within our linearization approximation, the position of
the mechanical oscillator has no effect on the radiation
pressure (photon number in the cavity), but of course it
does affect the phase of the cavity field (and hence the
outgoing field) which is what we measure in the homo-
dyne detection.

Thus for this special case Z does not appear on the
RHS of either Eq. (E85) or Eq. (E82), which means that
there is no optical renormalization of the cantilever fre-
quency (‘optical spring’) or optical damping of the can-
tilever. The lack of back-action damping in turn implies
that the effective temperature Tog of the cavity detector
is infinite (cf. Eq. (2.8)). For this special case of zero
detuning the back action force noise is controlled by a
single quadrature of the incoming vacuum noise (which
interferes with the classical drive to produce photon num-
ber fluctuations). This is illustrated in the cavity ampli-
tude phasor diagram of Fig. (6). We see that the vac-

uum noise quadrature f + é T conjugate to F controls the
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FIG. 6 (Color online) Phasor diagram for the cavity ampli-
tude showing that (for our choice of parameters) the imag-
inary quadrature of the vacuum noise é interferes with the
classical drive to produce photon number fluctuations while
the real quadrature produces phase fluctuations which lead to
measurement imprecision. The quantum fluctuations are il-
lustrated in the usual fashion, depicting the Gaussian Wigner
density of the coherent state in terms of color intensity.

phase noise which determines the measurement impreci-
sion (shot noise in the homodyne signal). This will be
discussed further below.

The solution for the cantilever position can again be
obtained by Fourier transformation. For frequencies
small on the scale of x the solution of Eq. (E85) is

o = 0 el - €11}

and hence the back action force noise spectral density is
at low frequencies

(E86)

4h292
Srrlw] = s
ZPF

(E8T)

in agreement with Eq. (3.18).

Introducing a quantity proportional to the cantilever
(mechanical) susceptibility (within the rotating wave ap-
proximation we are using)

B 1
XM [W - Q] = —i(w——M’ (E88)
we find from Eq. (E82)
2] = folw] — Lazer (ol — Q) — xailw + Q) B,

h
(E89)



where the equilibrium fluctuations in position are given
by

Zolw] = —vA0 {xmlw — Qifw] + xalw + QAT W]} -
(E90)
We can now obtain the power spectrum S, describing
the total position fluctuations of the cantilever driven by
the mechanical vacuum noise plus the radiation pressure
shot noise. From Egs. (E89, E90) we find

Sya|w]

2
LZpF

= S,.[w]
= Yolxlw - QJI? (E91)
2
x
+ ZSF xmlw — Q] = xulw + Q) Sep.
Note that (assuming high mechanical @, i.e. y9 < Q) the
equilibrium part has support only at positive frequencies
while the back action induced position noise is symmetric
in frequency reflecting the effective infinite temperature
of the back action noise. Symmetrizing this result with
respect to frequency (and using o < ) we have

Sualil] ~ S0, 1] (1 n WSFF) L (E%)

B2
where SY_ [w] is the symmetrized spectral density for posi-
tion fluctuations in the ground state given by Eq. (3.54).
Now that we have obtained the effect of the back action
noise on the position fluctuations, we must turn our at-
tention to the imprecision of the measurement due to shot
noise in the output. The appropriate homodyne quadra-
ture variable to monitor to be sensitive to the output

phase shift caused by position fluctuations is
I = bou + b

out»

(E93)

which, using the input-output results above, can be writ-
ten

I=—(E+&)+ 2z (E94)
We see that the cavity homodyne detector system acts
as a position transducer with gain

4g
TzprVE

The first term in Eq. (E94) represents the vacuum noise
that mixes with the homodyne local oscillator to produce
the shot noise in the output. The resulting measurement
imprecision (symmetrized) spectral density referred back
to the position of the oscillator is

S

Tx A2 :

A= (E95)

(E96)

Comparing this to Eq. (E87) we see that we reach the
quantum limit relating the imprecision noise to the back
action noise

2

St Spp = % (E97)
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in agreement with Eq. (3.10).

Notice also from Eq. (E94) that the quadrature of the
vacuum noise which leads to the measurement impreci-
sion is conjugate to the one which produces the back
action force noise as illustrated previously in Fig. (6).
Recall that the two quadratures of motion of a harmonic
oscillator in its ground state have no classical (i.e., sym-
metrized) correlation. Hence the symmetrized cross cor-
relator

Siplw] =0 (E98)

vanishes. Because there is no correlation between the
output imprecision noise and the forces controlling the
position fluctuations, the total output noise referred back
to the position of the oscillator is simply

Sa:x,tot[w] = Sa:ﬂc[w} +S’;{cx

) 30 19 . 2
_ 0 T
= Sm[w] (]. + 12 SFF) + 4S'FF.

(E99)

This expression again clearly illustrates the competition
between the back action noise proportional to the drive
laser intensity and the measurement imprecision noise
which is inversely proportional. We again emphasize that
all of the above relations are particular to the case of zero
detuning of the cavity drive field from the cavity.

The total output noise at some particular frequency
will be a minimum at some optimal drive intensity. The
precise optimal value depends on the frequency chosen.
Typically this is taken to be the mechanical resonance
frequency where we find that the optimal coupling leads
to an optimal back action noise

n? "0

S = — = )
FRove ™ 950,19~ dadpp

(E100)

This makes sense because the higher the damping the less
susceptible the oscillator is to back action forces. At this
optimal coupling the total output noise spectral density
at frequency €2 referred to the position is simply twice
the vacuum value

Swz,tot [Q] - 25’2$ [Q]a (E101)

in agreement with Eq. (3.62). Evaluation of Eq. (E100)
at the optimal coupling yields the graph shown in
Fig. (6). The background noise floor is due to the
frequency independent imprecision noise with value
£59,[9Q]. The peak value at w = Q rises a factor of three
above this background.

We derived the gain A in Eq. (E95) by direct solution
of the equations of motion. With the results we have de-
rived above, it is straightforward to show that the Kubo
formula in Eq. (4.3) yields equivalent results. We have
already seen that the classical (i.e. symmetrized) correla-
tions between the output signal I and the force F which
couples to the position vanishes. However the Kubo for-
mula evaluates the quantum (i.e. antisymmetric) corre-
lations for the uncoupled system (A = g = 0). Hence we
have



Xir(t) =~

where 0t is a small (positive) time representing the delay
between the time when the vacuum noise impinges on
the cavity and when the resulting outgoing wave reaches
the homodyne detector. (More precisely it also compen-
sates for certain small retardation effects neglected in the
limit w < k used in several places in the above deriva-
tions.) Using the fact that the commutator between the
two quadratures of the vacuum noise is a delta function,
Fourier transformation of the above yields (in the limit
w dt < 1 the desired result

Xrrlw] = A (E103)
Similarly we readily find that the small retardation
causes the reverse gain to vanish. Hence all our results
are consistent with the requirements needed to reach the
standard quantum limit.

Thus with this study of the specific case of an oscillator
parametrically coupled to a cavity, we have reproduced
all of the key results in Sec. V.E derived from completely
general considerations of linear response theory.

4. Back-action free single-quadrature detection

We now provide details on the cavity single-quadrature
detection scheme discussed in Sec. V.H.2. We again con-
sider a high-@Q) cavity whose resonance frequency is mod-
ulated by a high-Q) mechanical oscillator with co-ordinate
Z (cf. Egs. (E1) and (E64)). To use this system for ampli-
fication of a single quadrature, we will consider the typi-
cal case of a fast cavity (w. > ), and take the “good cav-
ity” limit, where € > k. As explained in the main text,
the crucial ingredient for single-quadrature detection is
to take an amplitude-modulated cavity drive described
by the classical input field b;, given in Eq. (5.101). As
before (cf. Eq. (E4)), we may write the cavity annihila-
tion operator @ as the sum of a classical piece a(t) and a
quantum piece d only d is influenced by the mechanical
oscillator. a(t) is easily found from the classical (noise-
free) equations of motion for the isolated cavity; making
use of the conditions w. > Q > k, we have

a(t) ~ R cos (Qt + ) e~ et

N
E104

50 (E104)
To proceed with our analysis, we work in an interac-
tion picture with respect to the uncoupled cavity and

oscillator Hamiltonians. Making standard rotating-wave
approximations, the Hamiltonian in the interaction pic-

—0(t) < [— (€t — 1) +£7(t — 1)),
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ture takes the simple form corresponding to Eq. (5.102b):

Hip = hA(d+d') (¢ + e 96)

N X
= hA(d+d E105
( ) T7PF ( )
where
A=A w2l N (E106)

40 7

and in the second line, we have made use of the definition
of the quadrature operators Xs,Ys given in Egs. (5.92).
The form of Hi,; was discussed heuristically in the main
text in terms of Raman processes where photons are re-
moved from the classical drive b;, and either up or down
converted to the cavity frequency via absorption or emis-
sion of a mechanical phonon. Alternatively, we can think
of the drive yielding a time-dependent cavity-oscillator
coupling which “follows” the X5 quadrature. Note that
we made crucial of use of the good cavity limit (k < )
to drop terms in H,,,; which oscillate at frequencies +212.
These terms represent Raman sidebands which are away
from the cavity resonance by a distance £2€2. In the good
cavity limit, the density of photon states is negligible so
far off resonance and these processes are suppressed.

Similar to Egs. (E39) and (E81), the Heisenberg equa-
tions of motion (in the rotating frame) follow directly
from Hj,; and the dissipative terms in the total Hamil-
tonian:

Ord = —5d - VrE(H)e!
o = — D= VR -

—iA (e“sé +e7¢h) (E107a)

e A (d+d) - s
(E107b)

As before, é(t) represents the unavoidable noise in the
cavity drive, and 7(t), o are the noisy force and damp-
ing resulting from an equilibrium bath coupled to the
mechanical oscillator. Note from Eq. (E107a) that as an-
ticipated, the cavity is only driven by one quadrature of
the oscillator’s motion. We have also included a driving
force F'(t) on the mechanical oscillator which has some
narrow bandwidth centered on the oscillator frequency;
this force is parameterized as:

2h

F(t) =
() TZPF

Re [f(t)e_mte_i‘s] (E108)

where f(t) is a complex function which is slowly varying
on the scale of an oscillator period.



The equations of motion are easily solved upon Fourier
transformation, resulting in:

Xslw] = —azpp - xmWw]|i (f*[-w] = flw]) (E109a)

+v7 (ei‘sf](w +Q)+ e_i‘;ﬁt(w — Q))

Yslw] = dizzpr - xm(w] | (=) (flw] + f7[-w]) (E109D)

+v% (ei‘sﬁ(w +Q) - eii‘;ff’(w - Q))

—2iAx.|w]Vk <£(w +we) + ST(W - Wc)) ]

where the cavity and mechanical susceptibilities xc, xm
are defined in Egs. (E43) and (ES88).

As anticipated, the detected quadrature X5 is com-
pletely unaffected by the measurement: Eq. (E109a) is
identical to what we would have if there were no coupling
between the oscillator and the cavity. In contrast, the
conjugate quadrature Yy experiences an extra stochastic
force due to the cavity: this is the measurement back-
action. A

Turning now to the output field from the cavity boys,
we use the input-output relation Eq. (E37) to find in the
lab (i.e. non-rotating) frame:

_ —i(w—we) —K/2] -

bout[w] = boutf“—’] + —i(w _Wc) +I€/2 §[w]
—iA\/EXC[w — wel Xg(w — we)
TzpF

(E110)

The first term on the RHS simply represents the output
field from the cavity in the absence of the mechanical
oscillator and any fluctuations. It will yield sharp peaks
at the two sidebands associated with the drive, w = w. *
Q. The second term on the RHS of Eq. (E110) represents
the reflected noise of the incident cavity drive. This noise
will play the role of the “intrinsic ouput noise” of this
amplifier.

Finally, the last term on the RHS of Eq. (E110) is the
amplified signal: it is simply the amplified quadrature
X5 of the oscillator. This term will result in a peak in
the output spectrum at the resonance frequency of the
cavity, w.. As there is no back-action on the measured
Xs quadrature, the added noise can be made arbitrarily
small by simply increasing the drive strength N (and
hence fl)

Appendix F: Information Theory and Measurement Rate

Suppose that we are measuring the state of a qubit
via the phase shift +6y from a one-sided cavity. Let I(t)
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be the homodyne signal integrated up to time ¢ as in
Sec. ITI.B. We would like to understand the relationship
between the signal-to-noise ratio defined in Eq. (3.23),
and the rate at which information about the state of the
qubit is being gained. The probability distribution for I
conditioned on the state of the qubit o = +1 is

7([ - m‘)ot)2
2Spot

p(Ilo) = (F1)

1
€
V2w Spet P |:

Based on knowledge of this conditional distribution, we
now present two distinct but equivalent approaches to
giving an information theoretic basis for the definition of
the measurement rate.

1. Method |

Suppose we start with an initial qubit density matrix

()

After measuring for a time ¢, the new density matrix
conditioned on the results of the measurement is

n= (") (F3)

where it will be convenient to parameterize the two prob-
abilities by the polarization m = Tr(o,p1) by

1+m
bt = 9 (F4)
The information gained by the measurement is the en-

tropy loss” of the qubit
T =Tr(p1Inp; — polnpg). (F5)

We are interested in the initial rate of gain of information
at short times Hgt < Spg where m will be small. In this
limit we have

(F6)

We must now calculate m conditioned on the measure-
ment result

mr =Y op(oll). (F7)

From Bayes theorem we can express this in terms of
p(I|o), which is the quantity we know,

o)
Mo = & plio @) "

7 It is important to note that we use throughout here the physi-
cist’s entropy with the natural logarithm rather than the log base
2 which gives the information in units of bits.



Using Eq. (F1) the polarization is easily evaluated
16
my = tanh ( 0) . (F9)
Seo

The information gain is thus

L, 16 12 0 \*
7, = - tanh? 0 o
2! Soo PR
where the second equality is only valid for small |m].
Ensemble averaging this over all possible measurement
results yields the mean information gain at short times
1
T~1%,
2 Spe
which justifies the definition of the measurement rate
given in Eq. (3.24).

(F10)

(F11)

2. Method Il

An alternative information theoretic derivation is to
consider the qubit plus measurement device to be a sig-
naling channel. The two possible inputs to the channel
are the two states of the qubit. The output of the chan-
nel is the result of the measurement of I. By toggling
the qubit state back and forth, one can send information
through the signal channel to another party. The chan-
nel is noisy because even for a fixed state of the qubit,
the measured values of the signal I have intrinsic fluctu-
ations. Shannon’s noisy channel coding theorem (Cover
and Thomas, 1991) tells us the maximum rate at which
information can be reliably sent down the channel by tog-
gling the state of the qubit and making measurements of
I. Tt is natural to take this rate as defining the measure-
ment rate for our detector.

The reliable information gain by the receiver on a noisy
channel is a quantity known as the ‘mutual information’
of the communication channel (Clerk et al., 2003; Cover
and Thomas, 1991)

— 00

—+00
R = —/ dl{ )Inp(1 Zp p(I|o) 1np(]|0)]}

(F12)
The first term is the Shannon entropy in the signal I
when we do not know the input signal (the value of the
qubit). The second term represents the entropy given
that we do know the value of the qubit (averaged over
the two possible input values). Thus the first term is
signal plus noise, the second is just the noise. Subtracting
the two gives the net information gain. Expanding this
expression for short times yields

_ 1)+ —a®)-)?
R = 8 +Sggt
02
- 25?99t
= T'meast

(F13)
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exactly the same result as Eq. (F11). (Here (I(t)), is the
mean value of T given that the qubit is in state o.)

Appendix G: Number Phase Uncertainty

In this appendix, we briefly review the number-phase
uncertainty relation, and from it we derive the relation-
ship between the spectral densities describing the photon
number fluctuations and the phase fluctuations. Con-
sider a coherent state labeled by its classical amplitude
@

|of?

|y = exp {—2} exp{aa'}|0). (G1)
This is an eigenstate of the destruction operator
ala) = alay). (G2)

It is convenient to make the unitary displacement trans-
formation which maps the coherent state onto a new vac-
uum state and the destruction operator onto

a=a+d (G3)

where d annihilates the new vacuum. Then we have
N = (8) = (0l(a* +d"(a+d)o) = a2,  (G4)

and
(AN)? = (N = N)?) = [al?(0ldd |0y = N.  (G5)
Now define the two quadrature amplitudes
X = La+ah (G6)
V2

V= at—a) (G7)

V2

Each of these amplitudes can be measured in a homodyne
experiment. For convenience, let us take o to be real and
positive. Then

(G8)
and
Yy =o. (G9)

If the phase of this wave undergoes a small modulation
due for example to weak parametric coupling to a qubit
then one can estimate the phase by

(G10)

This result is of course only valid for small angles, § < 1.
For N > 1, the uncertainty will be
v?2 1(0|ddt|o 1
gy — 72 _ 300 1
(<X>)2 2N 4N

(G11)



Thus using Eq. (G5) we arrive at the fundamental quan-
tum uncertainty relation

1

AOAN = 3 (G12)

Using the input-output theory described in Ap-

pendix E we can restate the results above in terms of

noise spectral densities. Let the amplitude of the field

coming in to the homodyne detector be

bin = bin + £(t) (G13)

J

(NON©) = N = (015, +E1(0)) (i + E) B + €1(0)) Bin + EO)]0) - |bin

From this it follows that the shot noise spectral density
is
Suy = N. (G17)

Similarly the phase can be estimated from the quadra-
ture operator

R .
o= Ow=bu) _ 5 ;E 8 G18
B T, (G18)

which has noise correlator
(650(4)56(0)) = —3(1) (G19)

4N
corresponding to the phase imprecision spectral density

1

Sop = —- (G20)

We thus arrive at the fundamental quantum limit relation

1

VBuSis = 3

(G21)

Appendix H: Using feedback to reach the quantum limit

In Sec. (VI.B), we demonstrated that any two port am-
plifier whose scattering matrix has s1; = s93 = s12 = 0
will fail to reach quantum limit when used as a weakly
coupled op-amp; at best, it will miss optimizing the quan-
tum noise constraint of Eq. (5.88) by a factor of two.
Reaching the quantum limit thus requires at least one
of s11,822 and sz to be non-zero. In this subsection,
we demonstrate how this may be done. We show that
by introducing a form of negative feedback to the “min-
imal” amplifier of the previous subsection, one can take
advantage of noise correlations to reduce the back-action
current noise Sy; by a factor of two. As a result, one is
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where & (t) is the vacuum noise obeying
E(t), 7t = 6t — ). (G14)

We are using a flux normalization for the field operators
o)

N = (b bin) = bia? (G15)

and

| = N (). (G16)

(

able to reach the weak-coupling (i.e. op-amp) quantum
limit. Note that quantum amplifiers with feedback are
also treated in Courty et al. (1999); Grassia (1998).

On a heuristic level, we can understand the need for
either reflections or reverse gain to reach the quantum
limit. A problem with the “minimal” amplifier of the
last subsection was that its input impedance was too low
in comparison to its noise impedance Zy ~ Z,. From
general expression for the input impedance, Eq. (6.7d),
we see that having non-zero reverse gain (i.e. s;2 # 0)
and/or non-zero reflections (i.e. s11 # 0 and/or sg2 # 0)
could lead to Zj, > Z,. This is exactly what occurs
when feedback is used to reach the quantum limit. Keep
in mind that having non-vanishing reverse gain is danger-
ous: as we discussed earlier, an appreciable non-zero \;
can lead to the highly undesirable consequence that the
amplifier’s input impedance depends on the impedance
of the load connected to its output (cf. Eq. (6.6)).

1. Feedback using mirrors

To introduce reverse gain and reflections into the “min-
imal” two-port bosonic amplifier of the previous subsec-
tion, we will insert mirrors in three of the four arms lead-
ing from the circulator: the arm going to the input line,
the arm going to the output line, and the arm going
to the auxiliary “cold load” (Fig. 7). Equivalently, one
could imagine that each of these lines is not perfectly
impedance matched to the circulator. Each mirror will
be described by a 2 x 2 unitary scattering matrix:

C:7fj,out _ . lA)j,in
<bayout ) - (dj,in)
U — cosf; —sinb;
7\ sinf; cosb;

Here, the index j can take on three values: j = z for the
mirror in the input line, j = y for the mirror in the arm

(H1)

(H2)
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FIG. 7 Schematic of a modified minimal two-port amplifier,
where partially reflecting mirrors have been inserted in the
input and output transmission lines, as well as in the line
leading to the cold load. By tuning the reflection coefficient
of the mirror in the cold load arm (mirror Y), we can in-
duce negative feedback which takes advantage of correlations
between current and voltage noise. This then allows this sys-
tem to reach the quantum limit as a weakly coupled voltage
op amp. See text for further description

going to the cold load, and j = x for the mirror in the
output line. The mode a; describes the “internal” mode
which exists between the mirror and circulator, while the
mode b; describes the “external” mode on the other side
of the mirror. We have taken the U; to be real for con-
venience. Note that 6; = 0 corresponds to the case of no
mirror (i.e. perfect transmission).

It is now a straightforward though tedious exercise to
construct the scattering matrix for the entire system.
From this, one can identify the reduced scattering matrix
s appearing in Eq. (6.3), as well as the noise operators
F;. These may then in turn be used to obtain the op-amp
description of the amplifier, as well as the commutators
of the added noise operators. These latter commutators
determine the usual noise spectral densities of the ampli-
fier. Details and intermediate steps of these calculations
may be found in Appendix 1.6.

As usual, to see if our amplifier can reach the quantum
limit when used as a (weakly-coupled) op-amp , we need
to see if it optimizes the quantum noise constraint of
Eq. (5.88). We consider the optimal situation where both
the auxiliary modes of the amplifier (@, and o) are in
the vacuum state. The surprising upshot of our analysis
(see Appendix 1.6) is the following: if we include a small
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amount of reflection in the cold load line with the correct
phase, then we can reach the quantum limit, irrespective
of the mirrors in the input and output lines. In particular,
if sing, = -1/ VG, our amplifier optimizes the quantum
noise constraint of Eq. (5.88) in the large gain (i.e. large
G) limit, independently of the values of §, and 6,. Note
that tuning 6, to reach the quantum limit does not have
a catastrophic impact on other features of our amplifier.
One can verify that this tuning only causes the voltage
gain Ay and power gain Gp to decrease by a factor of
two compared to their §, = 0 values (cf. Egs. (I60) and
(I64)). This choice for 6, also leads to Zin > Z, ~ Zn
(cf. (162)), in keeping with our general expectations.

Physically, what does this precise tuning of 8, corre-
spond to? A strong hint is given by the behaviour of the
amplifier’s cross-correlation noise Sy r[w] (cf. Eq. (165¢)).
In general, we find that Sy[w] is real and non-zero.
However, the tuning sinf, = —1/ VG is exactly what is
needed to have Sy wvanish. Also note from Eq. (I65a)
that this special tuning of 6, decreases the back-action
current noise precisely by a factor of two compared to
its value at 8, = 0. A clear physical explanation now
emerges. Our original, reflection-free amplifier had cor-
relations between its back-action current noise and out-
put voltage noise (cf. Eq. (6.18c)). By introducing nega-
tive feedback of the output voltage to the input current
(i.e. via a mirror in the cold-load arm), we are able to
use these correlations to decrease the overall magnitude
of the current noise (i.e. the voltage fluctuations V par-
tially cancel the original current fluctuations I ). For an
optimal feedback (i.e. optimal choice of ,), the current
noise is reduced by a half, and the new current noise is
not correlated with the output voltage noise. Note that
this is indeed negative (as opposed to positive) feedback—
it results in a reduction of both the gain and the power
gain. To make this explicit, in the next section we will
map the amplifier described here onto a standard op-amp
with negative voltage feedback.

2. Explicit examples

To obtain a more complete insight, it is useful to go
back and consider what the reduced scattering matrix of
our system looks like when 6, has been tuned to reach
the quantum limit. From Eq. (I58), it is easy to see that
at the quantum limit, the matrix s satisfies:

(H3a)
(H3b)

S11 = —S22

1
S12 = 5821

The second equation also carries over to the op-amp pic-
ture; at the quantum limit, one has:

1
/\/I = a)\v

One particularly simple limit is the case where there
are no mirrors in the input and output line (6, = 6, = 0),

(H4)



only a mirror in the cold-load arm. When this mirror is
tuned to reach the quantum limit (i.e. sinf, = —1/vG),
the scattering matrix takes the simple form:

- (54

In this case, the principal effect of the weak mirror in
the cold-load line is to introduce a small amount of re-
verse gain. The amount of this reverse gain is exactly
what is needed to have the input impedance diverge
(cf. Eq. (6.7d)). It is also what is needed to achieve an
optimal, noise-canceling feedback in the amplifier. To
see this last point explicitly, we can re-write the ampli-
fier’s back-action current noise (I) in terms of its original
noises Iy and ¥ (i.e. what the noise operators would have
been in the absence of the mirror). Taking the relevant
limit of small reflection (i.e. 7 = sinf, goes to zero as
|G| — o), we find that the modification of the current
noise operator is given by:

(H5)

9 o~
I ~ ]O_i_ﬂvo

1 —VGF Za
As claimed, the presence of a small amount of reflection
7 = sin @, in the cold load arm “feeds-back” the original
voltage noise of the amplifier V into the current. The
choice 7 = —1/+v/G corresponds to a negative feedback,
and optimally makes use of the fact that I and Vp are
correlated to reduce the overall fluctuations in I.

While it is interesting to note that one can reach the
quantum limit with no reflections in the input and output
arms, this case is not really of practical interest. The
reverse current gain in this case may be small (i.e. A} x
1/+/G), but it is not small enough: one finds that because
of the non-zero A}, the amplifier’s input impedance is
strongly reduced in the presence of a load (cf. Eq. (6.6)).

There is a second simple limit we can consider which is
more practical. This is the limit where reflections in the
input-line mirror and output-line mirror are both strong.
Imagine we take 0, = —6, = 7/2 — §/GY/3. If again
we set sinf, = —1/+/G to reach the quantum limit, the
scattering matrix now takes the form (neglecting terms
which are order 1/v/G):

o 410
S = 52C§1/4 1

In this case, we see that at the quantum limit, the reflec-
tion coeflicients s1; and sgo are exactly what is needed
to have the input impedance diverge, while the reverse
gain coefficient s15 plays no role. For this case of strong
reflections in input and output arms, the voltage gain is
reduced compared to its zero-reflection value:

Zy (6\°
Ay — Z”(2> G4

The power gain however is independent of 6,,0,, and is
still given by G/2 when 6, is tuned to be at the quantum
limit.

(H6)

(H7)

(H8)
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FIG. 8 Schematic of a voltage op-amp with negative feedback.

3. Op-amp with negative voltage feedback

We now show that a conventional op-amp with feed-
back can be mapped onto the amplifier described in
the previous subsection. We will show that tuning the
strength of the feedback in the op-amp corresponds to
tuning the strength of the mirrors, and that an optimally
tuned feedback circuit lets one reach the quantum limit.
This is in complete correspondence to the previous sub-
section, where an optimal tuning of the mirrors also lets
one reach the quantum limit.

More precisely, we consider a scattering description of
a non-inverting op-amp amplifier having negative voltage
feedback. The circuit for this system is shown in Fig. 8.
A fraction B of the output voltage of the amplifier is fed
back to the negative input terminal of the op-amp. In
practice, B is determined by the two resistors R; and Rs
used to form a voltage divider at the op-amp output. The
op-amp with zero feedback is described by the “ideal”
amplifier of Sec. VI.B: at zero feedback, it is described
by Egs. (6.11a)- (6.11d). For simplicity, we consider the
relevant case where:

Zy < Ry, Ry < Z, (H9)

In this limit, Ry and Rs only play a role through the
feedback fraction B, which is given by:

R

B=—-"——
R+ Ry

(H10)

Letting Gy denote the voltage gain at zero feedback
(B = 0), an analysis of the circuit equations for our op-
amp system yields:

Gy

Ay = m (H11a)
N = 1+BB-Gf (H11b)
Zowt = H—gb-Gf (H11c)
Zw = (1+B-Gy)Z4 (H11d)
Gp = Gy/2 (Hlle)

B- Gf +22b/Za

Again, Gy represents the gain of the amplifier in the ab-
sence of any feedback, Z, is the input impedance at zero



feedback, and Z; is the output impedance at zero feed-
back.

Transforming this into the scattering picture yields a
scattering matrix s satisfying:

_BGf (Zo— (2+ BGf)Zb)

1= e BG 1 Za + (2+ BG )27y 2)
PAVIAYA 1+B
S21 = — aZoGy (1+ BGy) (H12b)
BGfZa +(2+ BGf)2Zb
B

Note the connection between these equations and the nec-
essary form of a quantum limited s-matrix found in the
previous subsection.

Now, given a scattering matrix, one can always find a
minimal representation of the noise operators F, and F
which have the necessary commutation relations. These
are given in general by:

Fo = VI=]sul> = [seal2 +[I[> - i +1- f;jn(H13)
]:'b \/|821|2 + |322|2 -1 ﬁ;rn (H14)

| — 511851 + 812859 (H15)

Visa1? + s> — 1

Applying this to the s matrix for our op-amp, and then
taking the auxiliary modes u;, and f)iTn to be in the vac-
uum state, we can calculate the minimum allowed Sy
and S for our non-inverting op-amp amplifier. One can
then calculate the product Sy S;; and compare against
the quantum-limited value (S7v is again real). In the
case of zero feedback (i.e. B = 0), one of course finds
that this product is twice as big as the quantum limited
value. However, if one takes the large Gy limit while

J
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keeping B non-zero but finite, one obtains:

SuvSi — (hw)? (1 - ij +0 (ijf) (H16)

Thus, for a fixed, non-zero feedback ratio B, it is possible
to reach the quantum limit. Note that if B does not tend
to zero as Gy tends to infinity, the voltage gain of this
amplifier will be finite. The power gain however will be
proportional to Gy and will be large. If one wants a
large voltage gain, one could set B to go to zero with
Gy ie. B x 1Gf In this case, one will still reach

the quantum limit in the large Gy limit, and the voltage
gain will also be large (i.e. o< y/Gy). Note that in all
these limits, the reflection coefficients s;; and soo tend
to —1 and 1 respectively, while the reverse gain tends
to 0. This is in complete analogy to the amplifier with
mirrors considered in the previous subsection, in the case
where we took the reflections to be strong at the input
and at the output (cf. Eq. (H7)). We thus see yet again
how the use of feedback allows the system to reach the
quantum limit.

Appendix I: Additional Technical Details

This appendix provides further details of calculations
presented in the main text.

1. Proof of quantum noise constraint

Note first that we may write the symmetrized [ and F
noise correlators defined in Egs. (4.4a) and (4.4b) as sums
over transitions between detector energy eigenstates:

Serlw] = mhy_(ilpoli) - {fIFID [6(Es — Ei+ hw) + 6(Ef — E; — hw)] (I1)
if

Surlw] = why (ilpoli) - [(fI11i) [8(Ey — E; + hw) + 6(Ey — Ei — hw)] (12)
if

Here, pg is the stationary density matrix describing the
state of the detector, and |i) (|f)) is a detector energy
eigenstate with energy E; (Ey). Eq. (I1) expresses the
noise at frequency w as a sum over transitions. Each
transition starts with an an initial detector eigenstate
i), occupied with a probability (i|pg|i), and ends with a
final detector eigenstate |f), where the energy difference
between the two states is either +Aw or —hw . Further,
each transition is weighted by an appropriate matrix el-
ement.

(

To proceed, we fix the frequency w > 0, and let the
index v label each transition |i) — |f) contributing to the
noise. More specifically, v indexes each ordered pair of
detector energy eigenstates states {|¢), |f)} which satisfy
E¢y — F; € +h|w,w + dw] and (i|po|i) # 0. We can now
consider the matrix elements of I and F' which contribute
to Srr[w] and Spr[w] to be complex vectors ¥ and 1.



Letting § be any real number, let us define:

[], = (fW)|Fli(v)) (13)
o, = e FWiW) if Eg) = Bi) = +ho,
v el6<f(V)|I|Z(I/)> if Ef(z/) — E’L(l/) = —hw.
(14)

Introducing an inner product (-, ), via:
(@ 8o =7 Y (i()lpoli(v)) - (an)" by, (I5)

we see that the noise correlators S;; and Spp may be
written as:

Su[w]dw = <’l7,’l7w (16)
Sprlwldw = (W,10),, (I7)

We may now employ the Cauchy-Schwartz inequality:
(8, 0) (8, @) 2 (7, 0) | (18)

A straightforward manipulation shows that the real
part of (v, ), is determined by the symmetrized cross-
correlator Syp[w] defined in Eq. (4.4c):

Re (7, W), = Re [e”Srpw]] dw (19)

In contrast, the imaginary part of (7, w),, is independent
of Syr; instead, it is directly related to the gain x;r and
reverse gain x gy of the detector:

PRe [ (urrle] — [xrrwl]")] do - (110)
Substituting Eqgs. (I10) and (I9) into Eq. (I8), one im-
mediately finds the quantum noise constraint given in
Eq. (4.16). As in the main text, we let X;p = X717 — X7
Maximizing the RHS of this inequality with respect to
the phase 0, one finds that the maximum is achieved for
§ = 6o = —arg(Xsr) + do with

|S7r|sin 2¢
(h/2)|X1r| + |S1F| cos2¢

where ¢ = arg(SrpXrr*). At § = &y, Eq. (4.16) becomes
the final noise constraint of Eq. (4.11).

The proof given here also allows one to see what must
be done in order to achieve the “ideal” noise condition
of Eq. (4.17): one must achieve equality in the Cauchy-
Schwartz inequality of Eq. (I8). This requires that the
vectors ¥ and @ be proportional to one another; there
must exist a complex factor « (having dimensions [I]/[F])
such that:

tan 280 = —

(111)

Ut=a- -0 (I12)
Equivalently, we have that
. ei‘safFi if B — E; = +hw
(flifiy = { VI BB )
e “a(f|F|i) if Ef — E; = —hw.
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for each pair of initial and final states i), | f) contributing
to Sprlw] and Syrw] (cf. Eq. (I1)). Note that this not
the same as requiring Eq. (I13) to hold for all possible
states |i) and |f). This proportionality condition in turn
implies a proportionality between the input and output
(unsymmetrized) quantum noise spectral densities:
S][[w] = |oz\2S'FF[w] (114)
It thus also follows that the imaginary parts of the input
and output susceptibilities are proportional:
Im x77[w] = |a|*Tm xprw], (115)
as well as the symmetrized input and output noise (i.e.
Eq. (4.18)). Finally, one can also use Eq. (I13) to relate
the unsymmetrized I-F quantum noise correlator Syp[w]
to Spr(w]: (cf. Bq. (4.7)):

e Pa*Spplw] if w>0,
Srrlw] :{ ; rrid]

116
ifw<0 (116)

e“;oz*SFF[w]

Note that Spp[w] is necessarily real and positive.
Finally, for a detector with quantum-ideal noise prop-

erties, the magnitude of the constant « can be found from

Eq. (4.18). The phase of « can also be determined from:

1/ .
hb_(IF_V cos 0o (117)

—Im « _

|a VS11Srr

For zero frequency or for a large detector effective tem-
perature, this simplifies to:

—Im a _ hx1r/2 (118)

|l V' S11Srr

Note importantly that to have a non-vanishing gain
and power gain, one needs Im « # 0. This in turn places
a very powerful constraint on a quantum-ideal detectors:
all transitions contributing to the noise must be to final
states |f) which are completely unoccupied. To see this,
imagine a transition taking an initial state |i) = |a) to
a final state |f) = |b) makes a contribution to the noise.
For a quantum-ideal detector, Eq. (I13) will be satisfied:

(b|Ia) = e a(b|F|a) (119)
where the plus sign corresponds to F, > FE,, the mi-
nus to E, > Ep. If now the final state |b) was also oc-
cupied (i.e. (b|po|b) # 0), then the reverse transition
|i =b) — |f = a)) would also contribute to the noise.
The proportionality condition of Eq. (I13) would now re-
quire:

(a|lI|b) = €T a(a|F|b) (120)
As I and F are both Hermitian operators, and as o must
have an imaginary part in order for there to be gain, we
have a contradiction: Eq. (I19) and (120) cannot both be
true. It thus follows that the final state of a transition



contributing to the noise must be unoccupied in order
for Eq. (I13) to be satisfied and for the detector to have
ideal noise properties. Note that this necessary asym-
metry in the occupation of detector energy eigenstates
immediately tells us that a detector or amplifier cannot
reach the quantum limit if it is in equilibrium.

2. Proof that a noiseless detector does not amplify

With the above results in hand, we can now prove as-
sertions made in Sec. IV.A.4 that detectors which evade
the quantum noise constraint of Eq. (4.11) and simply
satisfy

SprpSir = |Srrl? (121)
are at best transducers, as their power gain is limited to
being at most one.

The first way to make the RHS of Eq. (4.11) vanish is
to have xrr = X7;- We have already seen that when-
ever this relation holds, the detector power gain cannot
be any larger than one (c.f. Eq. (5.53)). Now, imagine
that the detector also has a minimal amount of noise,
i.e. Eq. (I21) also holds. This latter fact implies that the
proportionality condition of Eq. (I13) also must hold. In
this situation, the detector must have a power gain of
unity, and is thus a transducer. There are two possibil-
ities to consider here. First, Spp and S;; could both
be non-zero, but perfectly correlated: |Srr|? = SprpSi;.
In this case, the proportionality constant o must be real
(c.f. Eq. (I17)). Using this fact along with Eqgs. (I16) and
(4.8b), one immediately finds that Spr[w] = Sprp[—w].
This implies the back-action damping ~ associated with
the detector input vanishes (c.f. Eq. (2.12)). It thus fol-
lows immediately from Eq. (5.52) and Eq. (5.53) that the
power gain Gp ey (defined in a way that accounts for the
reverse gain) is exactly one. The detector is thus simply a
transducer. The other possibility here is that x;r = X7,
and one or both of S;;, Spr are equal zero. Note that if
the symmetrized noise vanishes, then so must the asym-
metric part of the noise. Thus, it follows that either the
damping induced by the detector input, v, or that in-
duced by the output, Yout (c.f. Eq. (5.48)) (or both) must
be zero. Egs. (5.52) and (5.53) then again yield a power
gain Gpyev = 1. We thus have shown that any detector
which has xp; = x5 and satisfies Spp Sy = |Srr|? must
necessarily be a transducer, with a power gain precisely
equal to one.

A second way to make the RHS of Eq. (4.11) vanish is
to have S;r/Xrr be purely imaginary and larger in mag-
nitude than %/2. Suppose this is the case, and that the
detector also satisfies the minimal noise requirement of
Eq. (121). Without loss of generality, we take Xrr to be
real, implying that S;p is purely imaginary. Egs. (I10)
and (I11) then imply that the phase factor e’ appear-
ing in the proportionality relation of Eq. (I16) is purely
imaginary, while the constant « is purely real. Using this

36

proportionality relation in Eq. (4.8b) for xr yields:

XIF = % (Srrlw] — Srr[—w])

= 2a[-Im xprw]] (122)
Using this result and the relation between xppr and xjr
in Eq. (I15), we can write the power gain in the absence
of reverse gain, Gp (c.f. Eq. (5.52)), as

Gp=1/1 = xrr/x1r|’ (123)
If the reverse gain vanishes (i.e. xpr = 0), we immedi-
ately find that Gp = 1: the detector has a power gain of
one, and is thus simply a transducer. If the reverse gain
is non-zero, we must take the expression for Gp above
and plug it into Eq. (5.53) for the power gain with re-
verse gain, Gpre.y. Some algebra again yields that the
full power gain is at most unity. We again have the con-
clusion that the detector does not amplify.

3. Simplifications for a quantum-limited detector

In this appendix, we derive the additional constraints
on the property of a detector that arise when it satisfies
the quantum noise constraint of Eq. (4.17). We focus on
the ideal case where the reverse gain xr; vanishes.

To start, we substitute Eq. (I16) into Eqgs. (4.8b)-
(4.8a); writing Spp[w] in terms of the detector effective
temperature T (cf. Eq. (2.8)) yields:

hA[w]

= —e Oh[—Im xprw]] (124)
{(Im «) coth (Qki]j;eff> +1i(Re a)}
Siplw] = e Oh[-Im xrrw]] (125)

[(Re a) coth <%Z’“;H) —i(Im a)}

To proceed, let us write:

)\ ~
—id —1id
= e (126)
A
The condition that |A| is real yields the condition:
= Rea hw
tand = —— tanh | ——— 127
MO Tma (2kBTeff> (127)

We now consider the relevant limit of a large detector
power gain Gp. Gp is determined by Eq. (5.56); the only
way this can become large is if kpTes/(hw) — oo while
Im « does not tend to zero. We will thus take the large
Teg limit in the above equations while keeping both av and
the phase of A fixed. Note that this means the parameter
0 must evolve; it tends to zero in the large Tug limit. In



this limit, we thus find for A and S;p:

%[W] _ _Qe—iSkBTefffy[w] (Ima) 140 (k:;eﬂ>
(128)
Sirlw] = 2 PkpTgy[w] (Re a) {1 +0 <k;13h;g>}
(129)

Thus, in the large power-gain limit (i.e. large Teg
limit), the gain A and the noise cross-correlator Syr have
the same phase: S7p /A is purely real.

4. Derivation of non-equilibrium Langevin equation

In this appendix, we prove that an oscillator weakly
coupled to an arbitrary out-of-equilibrium detector is de-
scribed by the Langevin equation given in Eq. (5.41), an
equation which associates an effective temperature and
damping kernel to the detector. The approach taken here
is directly related to the pioneering work of Schwinger
(Schwinger, 1961).

We start by defining the oscillator matrix Keldysh
green function:

4oy [ GR() GR(t)
G<t) - < GA(t) 0 )
where GE(t —t') = —if(t —t'){([&(¢), 2()]), GA(t —t') =
Ot —t)([2(t), 2(¢")]), and GF (¢t —t') = —i({@(t),2(¢')})-
At zero coupling to the detector (A = 0), the oscillator
is only coupled to the equilibrium bath, and thus Gy has
the standard equilibrium form:

Go[w] = E (

(130)

—2Im go[w] coth (721913@(:;m> golw]
m golw]” 0

(131)

1
w? — Q2 +iwyg/m

golw] = (132)
and where g is the intrinsic damping coefficient, and
Thatn is the bath temperature.

We next treat the effects of the coupling to the detector
in perturbation theory. Letting 3 denote the correspond-
ing self-energy, the Dyson equation for G has the form:

- -1 Alw
[GO[WH - ( El:?[w] gK[[w]} ) (I33)

To lowest order in A, ¥[w] is given by:

(Gl)] " =

Y[w] = A’D[u] (134)
A2 .
= - dt e (135)

( 0 ie<—t>g[ﬁ<t>lﬁ<o>]>>
—i0)(E(), FO))  —i({F(1), FO)})
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Using this lowest-order self energy, Eq. (I33) yields:

h
R[] _
GTw] = m(w? — Q2) — A2Re DEw] + iw(yo + y[w])
(136)
G4l = [GR]]” 137)
GElw] = —2iIm GRlw] x

o coth (Qth;]L:;ath) + IY[W] coth (2]@]2‘;;“)
Yo + Y[w]

(138)

where y[w] is given by Eq. (2.12), and Tog|w] is defined by
Eq. (2.8). The main effect of the real part of the retarded
F' Green function D¥[w] in Eq. (I36) is to renormalize the
oscillator frequency §2 and mass m; we simply incorporate
these shifts into the definition of © and m in what follows.

If Teg[w] is frequency independent, then Eqs. (I36)
- (138) for G corresponds exactly to an oscillator cou-
pled to two equilibrium baths with damping kernels ~q
and 7y[w]. The correspondence to the Langevin equa-
tion Eq. (5.41) is then immediate. In the more general
case where Tog|w] has a frequency dependence, the cor-
relators G®w] and GK|w] are in exact correspondence
to what is found from the Langevin equation Eq. (5.41):
G [w] corresponds to symmetrized noise calculated from
Eq. (5.41), while Gf[w] corresponds to the response co-
efficient of the oscillator calculated from Eq. (5.41). This
again proves the validity of using the Langevin equation
Eq. (5.41) to calculate the oscillator noise in the presence
of the detector to lowest order in A.

5. Linear-response formulas for a two-port bosonic amplifier

In this appendix, we use the standard linear-response
Kubo formulas of Sec. V.F to derive expressions for
the voltage gain Ay, reverse current gain A}, input
impedance Z;,, and output impedance Z,,; of a two-port
bosonic voltage amplifier (cf. Sec. VI). We recover the
same expressions for these quantities obtained in Sec. VI
from the scattering approach. We stress throughout this
appendix the important role played by the causal struc-
ture of the scattering matrix describing the amplifier.

In applying the general linear response formulas, we
must bear in mind that these expressions should be ap-
plied to the uncoupled detector, i.e. nothing attached to
the detector input or output. In our two-port bosonic
voltage amplifier, this means that we should have a
short circuit at the amplifier input (i.e. no input voltage,
V. = 0), and we should have open circuit at the out-
put (i.e. I, =0, no load at the output drawing current).
These two conditions define the uncoupled amplifier. Us-
ing the definitions of the voltage and current operators
(cf. Egs. (6.2a) and (6.2b)), they take the form:

(139a)
(139b)

! - A_dout [W]

= bout [w]



The scattering matrix equation Eq. (6.3) then allows us
to solve for a;, and Gyt in terms of the added noise
operators F, and Fp.

il = —T 2 F ] - 2R (140
Binlw] = —%f{ W]+ S (taob)

where D is given in Eq. (6.8), and we have omitted writ-
ing the frequency dependence of the scattering matrix.
Further, as we have already remarked, the commutators
of the added noise operators is completely determined by
the scattering matrix and the constraint that output op-
erators have canonical commutation relations. The non-
vanishing commutators are thus given by:

F 0, i) = 276(w—w') (1= |suf? = |s12]?)

» _ (I41a)
£y lw), B @] = 276w — o) (1 = |21 — |522]?)

_ ' (I41b)
:7:"@ [w], ,7:"bT (w’)_ = —276(w — ') (51185, + 512835)

» _ (141¢)

The above equations, used in conjunction with
Egs. (6.2a) and (6.2b), provide us with all all the infor-
mation needed to calculate commutators between current
and voltage operators. It is these commutators which en-
ter into the linear-response Kubo formulas. As we will
see, our calculation will crucially rely on the fact that
the scattering description obeys causality: disturbances
at the input of our system must take some time before
they propagate to the output. Causality manifests itself
in the energy dependence of the scattering matrix: as a
function of energy, it is an analytic function in the upper
half complex plane.

a. Input and output impedances

Eq. (5.84) is the linear response Kubo formula for
the input impedance of a voltage amplifier. Recall
that the input operator Q for a voltage amplifier is re-
lated to the input current operator I, via fdQ/dt
I, (cf. Eq. (5.83)). The Kubo formula for the input
impedance may thus be re-written in the more familiar
form:

Vsl = £ (=3 [ @l Lo @)

w

where Yi,|w] = 1/Zin[w],

Using the defining equation for I, (Eq. (6.1b)) and
Eq. (I39a) (which describes an uncoupled amplifier), we
obtain:

(143)

eiw’t)

anubo -
© dw' W' -,
7/ dte m;t/ lw*Aaa(W/) (e—zwt_
0

2T w
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where we have defined the real function Agq[w] for w > 0
via:

[ain W], &l (w’)] = 276(w — ') Agalw]

) n

(144)

It will be convenient to also define Agqfw] for w < 0
via Aggw] = Age[—w]. Eq. (I43) may then be written as:

)/in,Kubo[W} = 7/ dt/ dﬁwiAaa ) i(w—w')t
/
_ A ]+—7> dw,M
Za . -
(145)

Next, by making use of Eq. (I40a) and Egs. (I41) for
the commutators of the added noise operators, we can
explicitly evaluate the commutator in Eq. (I44) to cal-
culate Agqlw]. Comparing the result against the result
Eq. (6.7d) of the scattering calculation, we find:

Aga[w]
Zq

= Re Kn,scatt [w] (146)

where Yi, scatt[w] is the input admittance of the ampli-
fier obtained from the scattering approach. Returning to
Eq. (I45), we may now use the fact that Y, scoulw] is
an analytic function in the upper half plane to simplify
the second term on the RHS, as this term is simply a
Kramers-Kronig integral:

1 o dw,w’Aaa(w’)/Za

—Pp :
Tw  J_o w—w
s3] / /
_ 1 ,P dw’w Re Kn,scatt (W )
W  J_o w—w

= Im Yvin,scatt [W] (147)
It thus follows from Eq. (I45) that input impedance cal-
culated from the Kubo formula is equal to what we found
previously using the scattering approach.

The calculation for the output impedance proceeds in
the same fashion, starting from the Kubo formula given
in Eq. (5.85). As the steps are completely analogous to
the above calculation, we do not present it here. One
again recovers Eq. (6.7¢), as found previously within the
scattering approach.

b. Voltage gain and reverse current gain

Within linear response theory, the voltage gain of the
amplifier (Ay ) is determined by the commutator between
the “input operator” Q and Vj, (cf. Eq. (4.3); recall that
Q is defined by dQ/dt = —1I,. Similarly, the reverse
current gain (A}) is determined by the commutator be-
tween I, and ®, where ® is defined via d®/dt = —V}
(cf. Eq. (4.6)). Similar to the calculation of the input
impedance, to properly evaluate the Kubo formulas for



the gains, we must make use of the causal structure of
the scattering matrix describing our amplifier.

Using the defining equations of the current and volt-
age operators (cf. Egs. (6.1a) and (6.1b)), as well as
Egs. (I39a) and (I39b) which describe the uncoupled am-
plifier, the Kubo formulas for the voltage gain and reverse
current gain become:

4
)\V,Kubo[w] =4 ?b (148)
%) ) r poo d / o,
x/ dt e"'Re / lAba(w')e*W t}
0 lJo 2m
Zy
/I,Kubo[w] = —4 Z (149)
oo . r o0 d ! ,
x/ dt e™'Re / iAba( et t}
0 LJo 27

where we define the complex function Ap,[w] for w > 0
via:

[binlel al, )] = @ro(w =) Aal]  (150)
We can explicitly evaluate Apq[w] by using Eqgs. (I40a)-
(I41) to evaluate the commutator above. Comparing the
result against the scattering approach expressions for the
gain and reverse gain (cf. Egs. (6.7a) and (6.7b)), one
finds:

Aba[w] = )\V,scatt [W} - (151)

[ /I,scatt [WH*
Note crucially that the two terms above have different
analytic properties: the first is analytic in the upper half
plane, while the second is analytic in the lower half plane.
This follows directly from the fact that the scattering
matrix is causal.

At this stage, we can proceed much as we did in the
calculation of the input impedance. Defining Ay, [w] for
w < 0 via Apg[—w] = Af,[w], we can re-write Eqgs. (I48)
and (I49) in terms of principle part integrals.

Z Apa(
AV Kubol|w] = b (Aba[ + 73/ du 2 wl>

Za w—w
Z Apa (W'
II,Kubo[w] = ZZ (Aba[ + P/ dw ' wb—|—(w)>
(152)

Using the analytic properties of the two terms in Eq. (I51)
for Apglw], we can evaluate the principal part integrals
above as Kramers-Kronig relations. One then finds that
the Kubo formula expressions for the voltage and cur-
rent gain coincide precisely with those obtained from the
scattering approach.

While the above is completely general, it is useful to
go through a simpler, more specific case where the role of
causality is more transparent. Imagine that all the energy
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dependence in the scattering in our amplifier arises from
the fact that there are small transmission line “stubs” of
length a attached to both the input and output of the
amplifier (these stubs are matched to the input and out-
put lines). Because of these stubs, a wavepacket incident
on the amplifier will take a time 7 = 2a/v to be either
reflected or transmitted, where v is the characteristic ve-
locity of the transmission line. This situation is described
by a scattering matrix which has the form:

slw] = e?walv . 5 (153)
where 5 is frequency-independent and real. To further
simplify things, let us assume that §1; = 592 = 512 = 0.
Egs. (I51) then simplifies to

Apa [w] = = 521[(4)] = §21€iw‘r (154)

where the propagation time 7 = 2a/v We then have:

7
2/ 5 / dt e“ots(t — 1) (I55)
/Z ,
)\[[&)0] = =2 7821/ dt e“"ot(S(thT) (156)
0

If we now do the time integrals and then take the limit
7 — 0T, we recover the results of the scattering approach
(cf. Egs. (6.7a) and (6.7b)); in particular, Ay = 0. Note
that if we had set 7 = 0 from the outset of the calculation,
we would have found that both Ay and A; are non-zero!

)\v [WO]

6. Details for the two-port bosonic voltage amplifier with
feedback

In this appendix, we provide more details on the calcu-
lations for the bosonic-amplifier-plus-mirrors system dis-
cussed in Sec. H. Given that the scattering matrix for
each of the three mirrors is given by Eq. (H2), and that
we know the reduced scattering matrix for the mirror-free
system (cf. Eq. (6.10)), we can find the reduced scattering
matrix and noise operators for the system with mirrors.
One finds that the reduced scattering matrix s is now
given by:

s — % » (157)
sinf, + VG sin 0, sin 6, —cosf,cosl,sind,
VG cos b, cos b, sin 6, + v/G sin 0,sind,

where the denominator M describes multiple reflection
processes:
M = 1+ VGsinf,sinb,siné, (158)

Further, the noise operators are given by:



cos 6, cos B,

Fa) _ 1
(fb) M (—mcosﬁzcoseysinﬁz

The next step is to convert the above into the op-amp
representation, and find the gains and impedances of the
amplifier, along with the voltage and current noises. The
voltage gain is given by:

o [7E__2/C
v ZAl—\/ésinHy

while the reverse gain is related to the voltage gain by
the simple relation:

1+sinf, 1—sinf
cos 0,

1160
cosf, )

in 6
Vo _ sin v\

(161)

The input impedance is determined by the amount of
reflection in the input line and in the line going to the
cold load:

1—-+vVGsinfh, 1+sinb,
Z. = 7., G sin 0, . + s?n (162)
1++VGsing, 1-—sind,

Similarly, the output impedance only depends on the
amount of reflection in the output line and the in the
cold-load line:

1++Gsing, 1+ sinb,
1—+/Gsing, 1-sinf,

Zowe = Z (163)

Note that as siné, tends to —1/ VG , both the input
admittance and output impedance tend to zero.

Given that we now know the op-amp parameters of our
amplifier, we can use Eq. (6.5) to calculate the amplifier’s
power gain Gp. Amazingly, we find that the power gain
is completely independent of the mirrors in the input and
output lines:

G
Gp = ———— 164
r 1+ Gsin 6, (164)
Note that at the special value sinf, = —1vG (which

allows one to reach the quantum limit), the power gain
is reduced by a factor of two compared to the reflection
free case (i.e. 6, = 0).

Turning to the noise spectral densities, we assume the
optimal situation where both the auxiliary modes ;, and

@Tn are in the vacuum state. We then find that both I

(3

and V are independent of the amount of reflection in the
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VG —1cos@, sinf,sind, Uin (159)
\/(flCOS 0. sz'rn
[
output line (e.g. 0,):
g @ 1—sind,
m= Zs |1+sind,
. 2
Gsin® 0, + COS(ZQ;J) (1652)
(\/ésin 0, — 1)
_ 1+sinf,
v = e [1_ne}
3 + cos(26,) 1
( 1 e (I65b)
_ -1 i 2
Sy, — VG(1-1/G) sm'Hy + cos” 0, (165¢)
1 — /G sin 0y

As could be expected, introducing reflections in the input
line (i.e. @, # 0) has the opposite effect on S;; versus
Syy: if one is enhanced, the other is suppressed.

It thus follows that the product of noise spectral
densities appearing in the quantum noise constraint of
Eq. (5.88) is given by (taking the large-G limit):

SIISVV
(fw)?

1+ Gsin?0,
2
(1 —/Gsin 9y>

= (2—sin?6,) - (166)

Note that somewhat amazingly, this product (and hence
the amplifier noise temperature) is completely indepen-
dent of the mirrors in the input and output arms (i.e. 6,
and 6,). This is a result of both Sy and S;; having
no dependence on the output mirror (6, ), and their hav-
ing opposite dependencies on the input mirror (). Also
note that Eq. (I66) does indeed reduce to the result of
the last subsection: if 6, = 0 (i.e. no reflections in the
line going to the cold load), the product S;; Sy is equal
to precisely twice the quantum limit value of (Aw)?. For
sin(6,) = —1/v/G, the RHS above reduces to one, imply-
ing that we reach the quantum limit for this tuning of
the mirror in the cold-load arm.
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