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8.3 Applications of Squeezed Light

8.3.1 Interferometric Detection of Gravitational Radiation

Interest in the practical generation of squeezed states of light became significant
when Caves [8.14] suggested in 1981 that such light might be used to achieve
better sensitivity in the interferometric detection of gravitational radiation. The
result of Caves indicated that while squeezed light would not increase the
maximum sensitivity of the device, it would enable maximum sensitivity to be
achieved at lower laser power. Later analyses [8.15-18] demonstrated that by
an optimum choice of the phase of the squeezing it is possible to increase the
maximum sensitivity of the interferometer. This result was established by a full
nonlinear quantum theory of the entire interferometer, including the action of
the light pressure on the end mirrors. We shall demonstrate this following the
treatment of Pace et al. [8.18].

A schematic illustration of a laser interferometer for the detection of gravita-
tional radiation is shown in Fig. 8.16. To understand how the device works we
need to recall some properties of gravitational radiation. A gravitational wave
induces weak tidal forces, in a plane perpendicular to the direction of propaga-
tion. A gravitational wave passing normal to a circular arrangement of masscs
would periodically force the circle inte an ellipse [8.19]. In the case .of
the interferometer depicted in Fig. 8.16, the end mirrors of the two cavities
are constrained by a weak harmonic potential, and lie on a circular arc
separated by 90°. Thus, when a gravitational wave passes orthogonal to t‘hc
plane of the interferometer, one cavity will be shortened as the other cavity
is lengthened. If the intensity difference of the light leaving ecach arm
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. 8.16. Schematic representation of a laser interferometer for the detection of gravitational
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of the interferometer is monitored, the asymmetric detuning of each cavity
caused by the moving end mirrors causes this intensity to be modulated at the
frequency of the gravitational wave.

While this scheme sounds very promising it suffers from a big problem. Even
though gravitational radiation reaching terrestrial detectors is highly classical
{many quanta of excitation) it interacts very weakly with the end mirrors. The
relative change in the length of each cavity is then so small that it is easily lost
amid a multitude of noise sources, which must somehow be reduced if any
systernatic effect is to be observed. To begin with, it is necessary to isolate the
end mirrors from external vibrations and seismic forces. Then one must ensure
that the random thermal motion of the end mirrors is negligible. Ultimately as
each end mirror is essentially an oscillator, there is the zero-point motion to take
account of, Quite apart from the intrinsic noise in the motion of the end mirrors,
noise due to the light also limits the sensitivity of the device. The light noise can
be separated into two contributions. Firstly the measurement we ultimately
perform is an intensity measurement which is limited by shot-noise. In the case
of shot-noise, however, the signal-to-noise ratio scales as the square root of the
input power, thus one might attempt to avoid this noise source by simply raising
the input power. Unfortunately, increasing the input power increases the contri-
bution from another source — radiation pressure. Individual photons reflecting
from the end mirrors cause a random force large enough to mask the very small
movements due to gravitational radiation.

In the light of the above discussion it would seem that trying to detect
gravitational radiation in this manner will be hopeless. However, as we now
show, a careful study reveals that while the task is difficult it is achievable and
made more so by the careful use of squeezed light. In this calculation we treat
each end mirror as a damped simple harmonic oscillator subject to zero-point
fluctuations and the classical driving force of the gravitational wave. Thus we
assume the thermal motion has been eliminated. We also include the radiation
pressure force and associated fluctuations in the cavity fields.

To begin we first determine how the intracavity fields determine the intensity
difference signal. Denote the intracavities fields by the annihilation operators a;
(i=1,2) and the input and output fields for cach cavity are represented by
ai” and a?™, respectively. Let 5" and 59" denote the input and output fields for
each arm of the interferometer. The central beam-splitter (BS in Fig. 8.16)

connects the cavity inputs and outputs to the interferometer inputs and outputs
by

. 1 . .
ay = —(bF +ib%) , 8.67
1 ﬁ( 1 7) (8.67)

in 1 in T in
az :7;(171 —ih7') . (8.68)
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where ¢ is a controlled phase shift inserted in arm 2 of the interferometer to

enable the dc contribution to the output intensity difference to be eliminated.
The measured signal is then represented by the operator

I-(£) = (B3") b3 — (b3)" by
= —i[(ad)Ta™e" % — he] . (8.71)

Now the relationship between the cavity fields and the respective input and
output fields is given by

= yag;—al® (i=1,2), (8.72)

where we assume the damping rate for each cavity, v, is the same.

We now assume that arm one of the interferometer is driven by a classical
coherent source with amplitude E/\/; in units such that the intensity of the
input is measured in photons/second. The scaling y~"* is introduced, for
convenience. Then from (8.67 and 68), each cavity is driven with the same
amplitude 8/\/’;, where ¢ = E/\/E. That is

. . &
{ay' ) ={af)>=—=. (8.73)

Vg

As we show below, it is possible to operate the device in such a way that in the
absence of gravitational radiation, a stable deterministic steady state amplitude
% is established in each cavity. This steady state is then randomly modulated by
fluctuations in the cavity fields and deterministically modulated by the moving
end mirrors of each cavity. Both these effects are of similar magnitude. It thus
becomes possible to linearise the output fields around the stationary states. With
this in mind we now define the fluctuation operators da; and Sai® for each cavity
(i=1,2)

5ai =da; — g , . ’ (8.74)

dait = ain — ., (8.75)

N

Using these definitions, together with (8.67-70), in (8.71), the output signal is
then described by the operator

-0 ="203,0) = 53,01 ~ Y L3380 oy 01 (®.76

Apph sations of Squeezed Light 161

where
oy:(t) = ~i(6a; — da]) , (8.77)
8yi"(8) = —i[6a® — (5a")17] . (8.78)

We have chosen the arbitrary phase reference so that the input amplitude, and
thus the steady state amplitude o, is real. ‘

Equation (3.76) indicates that the signal is carried by the phase quadrature
not the amplitude quadrature. Thus we must determine vi(t).

We turn now to a description of the intracavity dynamics. The end mirror is
treated as a quantised simple harmonic oscillator with position and momentum
operators (Q, P). The radiation pressure force is proportional to the intracavity
photon number. The total Hamiltonian for the system may then be written
[8.18]

P MQ?

o — g+ -—

o = hda’a + M + 2
where M is the mass of the end mirror, Q is the oscillator frequency of the end
mirror, L is the cavity length, A is the cavity detuning, and F(t) is the driving
force on the end mirror due to the gravitational wave. If we assume the
acceleration produced by the gravitational wave is

0% — h%aTaQ +F()0 , (8.79)

g(2) = gcos(aw,t) , (8.80)
the force F(t) may be written as
F() = ~MhL02S(0) (8.81)

where f is defined to be the maximum fractional change in the cavity length, L,
produced by the gravitational wave in the absence of all other forces, and
5(t) = co(w,t).

It is convenient to define the dimensionless position ¢ and the momentum
variables p for the mirror, which are the analogue of the quadrature phase
operators for the field,

2n \"12
q= (IT/I_Q) 0, (8.82)
p=Q@rMQ)"2p (8.83)

The commutation relations for these new variables is [, p] = i/2. Thus in the
ground state, the variance in g and p are both equal to 1/4.

The quantum stochastic differential equations for this system may now be
written

da

= —iA +2xg)a - %a +fra® (8.84)
dg r . ‘
a:ﬂp—iqﬂ-ﬁq"‘ , (8.85)
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r .
% = —0g — kale— ks() — 5 + /T, (8.86)
where
_ 1/2
T (UL R (8.87) .
L \2ma
M 1/2 .
= _nier| M (8.88)
k hLew; (ZEQ) ,

and y/2 is the damping rate for the intracavity field, while I'/2 is thf: damping
rate for the end mirrors. Note that the form of the stochastic equation for the
mirror is that for a zero-temperature, under-damped oscillator and will thus
only be valid provided I” € Q. . .
Let us first consider the corresponding deterministic semi-classical equations

&=z —i(A + 2xq)a — %rx , (8.89)

i=0—tq, (890)
2

; 2 r 8.91)

p=—Qq — x|x! —ks(t)—ip . .

These equations represent a pair of nonlinearly coupled harmonically driven
oscillators, and as such are candidates for unstable, chaotic behaviour. Howew?:r,
the amplitude of the driving, &, is so small that one expects the system to remain
very close to the steady state in the absence of driving. The first step is thus to
determine the steady state values, &g, go and po. If we choose A such that
A = —2kq, (so the cavity is always on resonance), then

~= (8.92)
Ko == .
Ty

Of course, this steady state itself may be unstable. To check this we linearise the
undriven dynamics around the sieady state. Define the variables

6x(t) = Re{a(t) — o} , (8.93)
oy(r) = Im{a(t) — o0} , | (8.94)
oq(t) = q(t) — go » (8.95)

op(t) = p{t) — po . . (8.96)

8.3 Applications of Squeezed Light 163
Then @
b4
ox -3 0 0 0 ox
Y

d _5y 0 —5 —H 0 dy
417 . , (397)

dq 0 0 —3 Q %}

r
ép —u 0 -Q - 5 op

where y = 4ku, and we have assumed ¢ and thus oy are real. The eigenvalues of
the linear dynamics are then found to be (—9/2, —y/2, = T/2+iQ,
—I'/2 — i), so clearly the steady state is stable in the absence of the gravi-
tational wave.

We shall point out the interesting features of (8.97). First we note that the
quadrature carrying the coherent excitation (6x) is totally isolated from all other
variables. Thus dx(t) = dx(0)e ~7*/%, However, as fluctuations evolve from the
steady state 8x(0) = 0, one can completely neglect the variables 5x(z) for the
deterministic part of the motion. Secondly we note the mirror position fluctu-
ations dq feed directly into the field variable & y(t} and thus directly determine
the output intensity difference signal by (8.76). Finally, we note the fluctuations
of the in-phase field variable dx drive the fluctuating momentum of the mirror.
This is, of course, the radiation pressure contribution. However, for the deter-
ministic part of the dynamics dx(f) = 0, as discussed above, so the mirror
dynamics is especially simple —a damped harmonic oscillator. In the presence of
the gravitational wave the deterministic dynamics for the end mirrors is then

r
AT IR TCANA (8.98)
) | o _Li\ep) \ksr))’ '
2
with the initial conditions §¢(0) = dp(0) the solution for dq(t) is
0g(t) = Reos(w,t + ¢) , (8.99)
with

kQ

: (8.100)
lg + i — Q)Hg + i@, + Q)‘

-T :
¢ = arctan F—ﬁwg— . (8.101)
7 +QF — a}:
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Substituting this solution into the equation for §y({t) and solving, again with
Jy(0) = 0, we find

5y() = %R (gt + O+ &) (8.102)
’% + iw,
where
g = arctan(g%‘) . (8.103)

We have neglected an initial decaying transient. Apart from the phase shifts
# and ¢, the out-of-phase field quadrature follows the displacements of the end
mirror induced by the gravitatioad] wave.

Due to the tidal nature of the gravit4
experiences a force F(t), the other experidn
and the mean signal is

1 wave if one cavity end mirror
— F(t). Thus dy,(t) = — dy(t)

16xIR cos(wgt + ¢ + 6)

A= - ) (8.104)

%+icﬂg

where the output intensity I' is defined by

2
I=|{a?>|* = ych" . (8.105)

Using the definitions in (8.100, 87 and 88) we find

— 8hlwow?cos{w,t + 0 + ¢) (8.106)

=+ 1w,

2

A-(t)y =
‘ 5 +ilw,— Q)

r .
~2—+l(a)g+Q)’

and the signal is directly proportional to the mirror displacement h.
Before we consider a noise analysis of the interferometer it is instructive to
look at the frequency components of variable dy(t) by

o

dy(w) = j die™ 6y(t) . (8.107)
As 8y () is real we have that dy(t) = §y*{ — w). This relationship enables us to
write

o

Sy(t) = Jdw[éy(w)e'i“"+r5y(w)*ei""] - (8.108)

0
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thus distinguishing positive and negative frequency components. Inspection of
(8.104) immediately gives that

— 2K Re "1+

oy(w) = dw — ) . (8.109)
%-i— i,
Thus
[{I-(@))] = hS(wg)d(w — w,) , (8.110)
where
2
S(oe) = 8hlwowy = . (8.111)

We now analyse the noise response of the interferometer. As the gravitational
wave provides an entirely classical driving of the mirrors it can only effect the
deterministic part of the dynamics, which we have already described above. To
analyse the noise component we must consider the fluctuation operators
0x, 0y, 8q and dp defined by Ox = x(t) — x,(t), where x, is the semi-classical
solution. In this way the deterministic contribution is removed.

The quantum stochastic differential equations are then

d .

T = —Zox@ + Syt (8.112)
d .

G0V = =20y~ uoa(®) + \/roy" 1), 6.113)
d r :

G910 = -390+ Q0+ VTq"(©) , (8.114)
d r .

P = =520 = 2400 — ux(0) + /Tp"() , (8115)

with the only non-zero noise correlations being

(Ox™(e)8x™ (1)) = (Sy™ D)y (£)> = 8(e — 1) (8.116)
(8xM(2)8y™ () = <Oy (1) ox™(¢) p* = id(t — '), (8.117)
(g g™(t)) = PP O™ = st — 1) , (8.118)

@ p™ (> = MG =i — 1) | (8.119)
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From an experimental perspective the noise response in the frequency domain is
more useful. Thus we define

Sy(ew) = j dt ei' 5y (r) (8.120)

-~

and similar expressions for the other variables. As dy(t) is Hermitian we have
8y{w) = dy( — w)’. The two time correlation functions for the variables are then
determined by

o

{8y(t)oy(Q)) = j dwe ~* {éy(w) 6y (w)> (8.121)

—w

and similar expressions for the other guantities. Thus our objective is to
calculate the signal variance

Vi_(w)= (@) -(@)') . (8.122)

In order to reproduce the d-correlated noise terms of (8.116-119), the correlation
function in the frequency domain must be

{axi™ (@) dxi™(w)') = {5y (w)dy™ (') = (o — &) , - (8.123)
{ox*™(@)dy™ (@)1 = {dy™(w)x (') H)* = id(w — ') , (8.124)
(g7 (@)™ (@)D = M (@)p™(@)') = éo — '), (8.125)
(g" (@)p™(@)") = (P (@)™ () )* = 3w — o) , (8.126)

We now directy transform the equations of motion and solve the resulting
algebraic equations for the frequency components. The result for the crucial field
variable is

Sy (w) = Adx™(w) + Béy™(w) + Cq™(w) + Dp*(w) , (8.127)

where
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C =
A(cu)(z - iw) ’
2
D= ;“_1:9_ , ' © (8.128)
Alw) (% - iw)
Alw) = (g - im)2 + Q. (8.129)
Thus

l@)yHw)) = |AP8x™ (@)dx™ (@) + | B|* (3y™ (w) dy™ ()
+ 1€ g™ (w)g" (@) + D> {p™(w)p™(w') )
+ (AB* {5x™ (0)$y"™() ) + 0.c.)
+{CD*{g™(w)p™(w)) + cc.) . (8.130)

It is now constructive to consider the physical interpretation of each term. The
first term proportional to the in-phase field amplitude is the error in the output
intensity due to radiation pressure fluctuations. The second term is the error due
to the out-of-phase amplitude of the field, ie. the intrinsic phase fluctuations.
The second and third terms are the fluctuations in mirror position and mo-
mentum due to intrinsic mirror fluctuations and radiation pressure. The fourth
term represents correlations between the amplitude and the phase of the field
due to radiation pressure modulating the length of the cavity. In a similar way
the final term is the correlation between the position and momentum of the
mirror as the radiation pressure changes the momentum which is coupled back
to the position under free evolution.
Define the normalised variance by

Vi (w)

Niw) =2,

(8.131)

where I is the output intensity from each cavity. This quantity is given by

Fz
1612 IT | — + Q2 + ? ‘
K r(4+Q +a)) (16+21)2 0

Nw)=1+ ;. (8.132)

2

|A(w))?

! —iw A@)

%—im
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Fig. 8.17. The normalized variance for the fluctuations in the intensity difference versus [requency.
The solid line (a) represents the total noise, (b) represents the photon counting noise, () represents
the mirror noise and (d) represents the radiation pressure noise. The interferometer parameters used
are given in Table 8.1

Table 8.1. The values of the experimental parameters used in the

graphs
Quantity Symbol Value
Mass of mirror M 10 kg
Mirror characterstic angular

frequency Q 20mrads™!
Mirror damping Th 2nrads™!
Length of cavity L 4m
Reflectivity R 0.98
Laser power P 10W
Laser angular frequency Wy 3.66 % 10° rad s~*
Gravity-wave-angular frequency ¢, 2000m rad s~*

The first term in (8.132) is the shot-noise of the incident light on the detector,
the second term arises from the intrinsic (zero-point) fluctuations in the posi-
tions of the end mirrors, while the last term represents the radiation pressure
noise. :

In Fig. 8.17 we display the total noise N (w) as a function of frequency (a)
(solid line) together with the contributions to the noise from: (b) photon-
counting noise (dashed line); (c) mirror noise (dash-dot line) (d) radiation-
pressure noise (dotted line). Typical interferometer parameters, summarised in
Table 8.1 were used.
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From signal processing theory, a measurement at frequency w, of duration
T entails an error Ak in the displacement # given by

25(w,)

AR? = .
T VJ'_ (wg)

(8.133)

We may now substitute the expressions for the signal frequency components
S{w,) and the noise at this frequency to obtain an error which depends on the
input intensity I (or equivalently the input power P = 2heog [ ). The error may
then be minimised with respect to I to give minimum detectable displacement
Baia- In the limit w? » T + Q7 the appropriate limit for practical inter-
ferometers we find

h
2 . = —
e 32Mw§L2'cQ(ZQ ). (8.134)

The first term in this expression is due to the light fluctuations whereas the
second term is due to the intrinsic quantum noise in the end mirrors. If we
neglect the mirror-noise contribution we find the ‘standard quantum limit’

L 1 h 1/2
5QL —Z(W) . (8.135)

In Fig. 8.18 we plot the Ak as a function of input power (8.133), for a measure-
ment time of 1s, and typical values for the other parameters. Clearly the
optimum sensitivity is achieved at rather high input powers.
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Fig. 8.38. The error in the fractional fength change versus input power for a measurement time of
one second. Parameters are as in Tahle 8.1
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Can one do better than this, either in achieving the standard quantum linit
at lower powers or perhaps even beating the standard quantum limit? As we
now show both these results can be achieved by a careful use of squeezed states.

To see now how this might work return to (8.130) and the physical inter-
pretation of each term. Firstly, we note that one might reduce radiation pressure
fluctuations (the first term) by using input squeezed light with reduced am-
plitude fluctuations. Unfortunately, this would increase the overall intensity
fluctuations at the detector, ie. it would increase the photon counting noise.
However, as these two terms scale differently with intensity it is possible to apply
such a scheme to enable the standard quantum limit to be achieved at lower
input power. This is indeed the conclusion of Caves [8.14] in a calculation which
focussed entirely on these terms. However, one can actually do bett using
squeezed states to induce correlations between the in-phase ani‘@{;l:éﬁ
quadratures of the field. In fact, if one chooses the phase of the squegzing (wit
respect to the input laser) carefully the fifth term in (8.130) can be made negative
with a consequent improvement in the overall sensitivity of the device.

We will not present the details of this calculation [8.18], but summarise the
results with reference to Fig. 8.19. Firstly, if we simply squeeze the fluctuations in
#i® without changing the vacuum correlations between 2'* and p®, the standard
quantum limit (8.135) is the optimum sensitivity regardless of the degree of
squeezing and it is achieved for the input power

Py=e 2P, (8.136)

where r is the squeeze parameter, and P, is the optimum laser power for the
system with no squeezing.
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Fig. 8.19. The minimum possible detectable gravitational wave amplitude & as a function of power
using amplitude squeezed light at the input and for three different squeeze parameters; (a) r = 0; (b)
r=t{c)yr—2
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However, if one now optimises the phase of the squeezing thereby introduc-
ing correlations between 6% and 67 we find the optimum sensitivity is
achieved with the same input power P, as the unsqueezed state, but the optimum
sensitivity in the appropriate limit is

h
" 32MwlL?*:Q

2
h min

(2e 21Q 4+ 1) . (8137

Clearly this may be made much smaller than the standard quantum limit. For
highly squeezed input light the sensitivity is ultimately limited by the intrinsic
quantum fluctuations in the positions of the end mirrors. The optimum phase of
squeezing is /4 which is the angle at which maximum correlation between %™
and $" occurs, iec., the error ellipse has the same projection onto the in-phase
and out-of-phase directions. The exact results are shown in Fig. 8.20 for the
same parameters, as employed in Fig, 8.19. Shown is the minimum-possible
value of h detectable as a function of power at the optimum phase of squeezing,
for three different values of the squeeze parameter. Also exhibited is the noise
floor due to the intrinsic quantum fluctuations of the mirror positions.

In summary, the experimentalist can apply a squeezed input to a grav-
itational wave interferometer in two ways. Either the maximum sensitivity of the
device can be greatly increased but achieved at a rather high input power, or the
standard quantum limit can be achieved at input powers less threatening to the
life of the optical components of the interferometer.
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Fig. 8.20. The minimum possible detectable ampiitude / as a function of input power when the
phase of the input squeezed light is optimized, for three different values of the squeeze parameter
A r = 0By r=1;(c) r — 2. Alsa shown is the mirror noise contribution (Y



9. Nonlinear Quantum Dissipative Systems

In the preceding chapter we derived linearised solutions to the quantum fluctu-
ations occurring in some nonlinear systems in optical cavities. In these solutions
the quantum noise has been treated as a small perturbation to the solutions of
the corresponding nonlinear classical problem. It is not possible, in general, to
find exact solutions to the nonlinear quantum equations which arise in nonlin-
ear optical interactions. It has, however, been possible to find solutions to some
specific systems. These solutions provide a test of the region of validity of the
linearised solutions especially in the region of an instability, Furthermore they
allow us to consider the situation where the quantum noise is large and may no
longer be treated as a perturbation. In this case, manifestly quantum mechanical
states may be produced in a nonlinear dissipative system.

We shall give solutions to the nonlinear quantum equations for two of the
problems considered in Chap. 8, namely, the parametric oscillator and disper-
sive optical bistability.

9.1 Optical Parametric Oscillator: Complex P Function

We shall first solve for the steady state of the parametric oscillator using the
complex P function. Then, we show, using the positive P function, that the
steady state subharmonic field is in a superposition state. We go on to calculate
the tunnelling time between the two states in the superposition.

We consider the degenerate parametric oscillator described in Chap. &,
following the treatment of Drummond et al. [9.1]. The Hamiltonian is

X
I
M

I, (9.1)
i=0
where
Ho =hwala, + 2hwala, , (9.2)

#y =i >@ @ — atab) ©9.3)
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I, = ihig, ale” 2 — g a, ) | 9.4)
g%p3 = ay 1_"; -+ as l"; + h.c. (9.5)

where a, and a, are the boson operators for two cavity modes of frequency
@ and 2w, respectively. k is the coupling constant for the nonlinear coupling
between the modes. The cavity is drivenexternally by a coherent driving field
with frequency 2w and amplitude &,. I'y, T, are the bath operators describing
the cavity damping of the two modes.

We recall from Chap. 8 that there are two stable steady state solutions
depending on whether the driving field amplitude is above or below the thresh-
old amplitude &5 = 7, y»/x. In particular, the steady states for the low frequency
mode a, are

GC(]_)=0, £2<£;,

9 1/2
af = = [E (82 g§)i| , €3 = E5 . (9.6)
The master equation for the density operator of the two modes is

1
50 =5 o+ Hr+ Hapl + y1(2a, pal — alay p — pala,)

+ v2{2a; pal — alaz p — pa}az) ©.7)

where the irreversible part of the master equation follows from (6.44) for a zero-
temperature bath. y;,y, are the cavity damping rates.

This equation may be converted to a c-number Fokker-Planck equation
using the generalized P representation discussed in Chap. 6. Using the operator-
algebra rules described in Chap. 6, we arrive at the Fokker-Planck equation

%P(a) = {é‘i‘l(}’l wy — KBy o) + 55 (}’1 B1— roy B2)

B+

+%(']’20€2 &y + d’.l) 6,82 ('])2 ﬁz 5? +gﬁ%)
1[ é* i
+ El:-a?%(mz) + *éﬁ(ffﬁz):!}l’(ﬂ) (9.3)

where (@) = [a, B1, &2, 2]
An attempt to find the steady state solution of this equation by means of
a potential solution fails since the potential conditions {6.73) are not satisfied.
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We proc.eed by adiabatically eliminating the high-frequency mode. This may be
accomplished best in the Langevin equations equivalent to (9.8).

( )(Kﬁloﬂz — P18y K“z[h(t)})
ot \ B Koty B2 — vy By + kB2 [F: (O]

K

2(“2)_. 32‘“5“%*}’2“2 '
a\p,/) (9.9)
z 3;‘ _gﬁzz — 728

where #,(t), 7, (2) are delta correlated stochastic forces with zero mean
{m@)> = <)) = < ') = @A) =0, (9.10)
@A @)> =@ —1t) . (5.11)

Under the conditions y, 3y, we can adiabatically eliminate o, and B2 which
gives the resultant Langevin equation for «, and g,

N b
?_2(8; - Eﬁf)al —715: l:;;(af - gﬁf)} 71(t)
The Fokker—Planck equation corresponding to these equations is
P(“hﬁl) { 0 [}’1051 - %(32-— g“%)ﬁl]
A e GRS
e 34) < =500 [

(9.13)
é
We set EEP(ocl, B1} =0 and attempt to find a potential solution as given by

(6.72). It is found as
ICZ
Pzl 71 2, oy

2xe, — K 0

%2
2y, (’J’x - 2—)ﬁ1
Fo=—=2%Vu, — 72
2 1 21(8;‘ _ Kzﬁlz (915)

Fy=—=21§—

(9.14)
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1t follows that the potential conditions
oF, _2r,
Gty B éBy

are satisfied.
The potential is obtained on integrating (9.14, 15)

(9.16)

. 27172 2 2.2 Y172 \* ®2 202
Pla) = Nexp| 2u, 8, + > ln(c* — k?ag) + 2 > In(c** — x*f7)

(9.17)

where
2

- K
¢ =/ 2xe;, ?1”—“%—‘2%-

It is clear that this function diverges for the usual integration domain of the
complex plane with 8; = «¥. The observable moments may, however, be ob-
tained by use of the complex P representation. The calculations are described in
Appendix 9.A.

The semi-classical solution for the intensity exhibits a threshold behaviour at
£, = &5 = 7,72/k. This is compared in Fig. 9.1 with the mean intensity
I = {B,u,;) calculated from the solution (9.17), as shown in the Appendix S.A.
For comparison, the mean intensity when thermal fluctuations are dominant
(Exercise 9.4) is also plotted. The mean intensity with thermal fluctuations
displays the rounding of the transition familiar from classical fluctuation theory.
The quantum calculation shows a feature never observed in a classical system
where the mean intensity actually drops below the semi-classical intensity. This
deviation from the semi-classical behaviour is most significant for small thresh-
old photon numbers. As the parameter y;y,/k” is increased the quantum mean
approaches the semi-classical value.

The variance of fluctuations in the quadratures X, =a, +a! and
X, = (a; — al)/i is given by

AX? = [(loy + B)*y — (Ko + 0PI+ 1, (9.18)
AX = —[{(og — B1)*> — ({en — B0V ] + 1. (9.19)

The variance in the quadratures is plotted in Fig. 9.2a versus the scaled
driving field A. The variance in the phase quadrature X, reaches a minimum
at threshold. This minimum approaches 4 as the threshold intemsity is
increased. The value of one half in the variance of the intracavity field corres-
ponds to zero fluctuations found at the resonance frequency in the external
field. The fluctuations in the amplitude quadrature X, increase dramatically
as the threshold is approached. However, unlike the calculation where the
pump is treated classically the fluctuations do not diverge. This is because
(9.17) is an exact solution to the nonlinear interaction including pump depletion.

l

Il
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Fitg..9.1. A plot of the mean intensity for the degencrate parametric oscillator versus the scaled
nglT‘lg field 2. (a) The case of zero thermal fluctuations. The dashed curve represents the semi-
classical intensity, the solid curve is the exact quantum result. In both cases o= 25 = 5.0,
Nete that above threshold the exact quantum result is less than the semi-classical pzrcdictio‘n:

{bz) The case of dominant thermal fluctwations. The mean thermal photon number is 10.0 and
ut = 2e5/x = 100.0
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Fig. 9.2, The. log valjiancc of the squeezed (solid) and unsqueezed (dashed) quadrature in a degener-
ate parametric amplifier versus the scaled driving field with 4% = 2:8/% = 4.0
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As the threshold value increases and therefore the number of pump photons
required to reach threshold increases, the ﬂuctu.ations become larger. In .the
limit y,y2/x* ~ oo the fluctuations diverge, as thl.S corresponds to the classical
pump (infinite energy). The variance in the amplitude quadrature above thre~
shold continues to increase as the distribution is then double-peaked at the two
stable output amplitudes.

The above solution demonstrates the usefulness of the complex.P repres-
entation. Although the solution obtained for the steady state distribution has no
interpretation in terms of a probability distribu'tion, the moments calculated_ by
integrating the distribution on a suitable manifold correspond .to tl}e physu.:al
moments. We have demonstrated how exact moments of a quaatized intracavity
field undergoing a nonlinear interaction may be calculated.. To t.:alc.ulate the
moments of the external field however, we must resort to linearization tech-
niques.

9.2 Optical Parametric Oscillator: Positive P Function

As an alternative to the foregoing description we may consider the use {)f the
positive P representation, following the treatment of Wolinsky tar}d Carmch.tael
[9.3]. We can obtain an analytic solution for the steady state posmve.P funf:tlon.
This solution is a function of two phase space variables; one variable is the
classical field amplitude, the other is a non—clas;ical vgriable needed to represent
superpositions of coherent states. A three-dimensu_)r}a] pEO.t of the pos%tlve
P function allows one to distingnish between the limiting regions of essentially
classical behaviour and predominantly quantum behaviour.
We begin with the Langevin equations for the low frequency mode

? = —a— fd—a?)+ g(A —o®)Py, (9.20)

T

N R SRR O ©21)
T

where T is measured in cavity lifetimes (y; 1),

K 1

g=r =l ©22)
Cyiya ) p

and 2 is a dimensionless measure of the pump field amplitude scal'ed to give the
threshold condition 4 = 1, and we have scaled the c-number variables by

w=gou, f=gf . (5.23)

9.2 Optical Parametric Oscillator: Positive P Function ]

Equations (9.20, 21) describe trajectories in a four-dimensional phase space. T
region of phase space satisfying the conjugacy condition § = o* is called t
classical subspace. Two extra non-classical dimensions are required by t
quantum noise. If we neglect the fluctuating forces #y and 2 (9.20, 21) have 1l
stable steady state solution o= B=0 below threshold (i< 1), ar
a=p = =+ (1— 1)>above threshold (4 > 1). In the full phase space there a
additional steady states which do not satisfy the conjugacy condition: tw
steady states « = f = +i(1 — 4)2 below threshold and two steady stat:
#= — f= +(A+ 1)}? both below and above threshold.

The variables « and f are restricted to a bounded manifold & = x, f = y wil
x and y both real and |x|, |y| < \/E We denote this manifold by A(x, )
Trajectories are confined within this manifold by reflecting boundary cond
tions. If a trajectory starts within this manifold, then it is clear from (9.20 and 2.
that the drift and noise terms remain real, so a trajectory will remain on the re:
plane. Furthermore, at the boundary, the trajectory must follow the determini:
tic flow inwards, as the transverse noise component vanishes, If the initi
Quantum state is the vacuum state, the entire subsequent evolution will b
confined to this manifold,

The manifold A(x, y) is alternatively denoted by Alw,v) with u = 4(x + y
v=7%(x—y). Theliner=01is a one-dimensional classical subspace, the sub
space preserving « = . The variable v denotes a transverse, non-classica
dimension used by the noise to construct manifestly non-classical states.

We may now construct a pictorial representation of these states whicl
dramatically distinguishes between the quantum and classical regimes.

With @ = x, f = y both real, the solution to the Fokker-Planck equatior
(9-13) is of the form given by (9.17). With |x},{y| < \/Z

Pss(x,y) = N[(2 - x*) (2 — y?)JHie* =2 g2mie® (9.24

For weak noise (g < 1), Pgs(x, y} is illustrated in F ig- 9.3. Below threshold (4 < 1
Pys(u, v) may be written

1 — a%)2 — (1= Du? + (1 + Hp? .
Pgs(u,v) = (—mﬁ—exp ( ) Py ( ) . (9.25
2

The normally-ordered field quadrature variances are determined by the
quantities

CAXES = V("‘ “; A ) , (9.26)

CAXED = V(“ - s ) ©9.27)
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Fig- 93. A plot of the complex P representation of the steady state of the degenerate parametric
amplifier, below and above threshold: (a) A = 0.8 (b) 4 = 1.5. In both cascs g = (2e5/%) "1 = 025

where V{(z) refers to the variance over the stationary distribution function. As
u=(z+ B2 and v = i(x — B)/2, on the manifold A(x,v), the quadrature vari-
ances are given by

CAXEDY = Viwyg® , (9.28)
CAXED = — V{v)/g* . (9.29)

The variances g~ 2{Au*) and — g~ 2{Av?) correspond to the normally ordered
variances of the unsqueezed and squeezed quadratures, respectively, of the
subharmonic field.

The threshold distribution (g < 1, A = 1) is given by

Pss(u, v) = [4 ng*? F(%)]e“"”"”z’f”’ . (9.30)

Above threshold the distribution splits into two peaks. We note that in the
low-noise regime Pss(x, ) is a slightly broadened version of the classical steady
state with only a small excursion into the nonclassical space.

Figure 9.4 shows Pss(x, y) for the same values of 1 as Fig. 9.3 but for the noise
strength ¢ = 1. The quantum noise has become sufficicntly strong to explore
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Fig. 9.4. As in Fig. 9.3 but with quantum noise parameter g = 1.0.{a) A =03 (1) 2 = 1.5

thoroughly the non-classical dimension of the phase space. Pss(x, y) is strongly
influenced by the boundary A(x, y).

As the noise strength ¢ is increased beyond 1, the characteristic threshold
behaviour of the parametric oscillator disappears and squeezing is significantly
reduced (Fig. 9.5). In the large-g limit the stochastic trajectories are all driven to
the boundary of A(x, y), and then along this boundary to the corners, where
both noise terms in (9.20, 21) vanish. Pgs(x, y) approaches a sum of § functions

Pss(x, y) = (1 + &*¥") 2 [5(x — /) 6(y — /)
+ 8(x + /Ay + /1] + (1 + e*H)
X [8(x — /A6y + /) + 0(x + /DSy — /A - (9.31)

The two & functions that set x = — y= + ﬂ represent off-diagenal or inter-

ference terms e ~ 2\/5‘/9'|\/1/g>< — ﬂ/g1. Figure 9.6a—c illustrates the behaviour
of Pglx, ¥) as a function of 4 in the strong-noise limit. When 44/9% < 1 afl
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1

Fig. 9.5. Asin Fig. 9.3 but with 1 = 1.5 and g = 10,0

0 functions carry equal weight and the state of the subharmonic field is the
coherent state superposition % (| ﬁ/g} + |- ﬂ/g)). As Jj increases, this super-
position state is replaced by a classical mixture of coherent states |ﬂ/g> and
| — ﬁ/g} for 41/g% » 1. This is a consequence of the competition between the
creation of quantum coherence by the parametric process and the destruction of
this coherence by dissipation. It will be shown in Chap. 16, that the decay of
quantum coherence in a damped superposition state proceeds at a rate propor-
tional to the phase space separation of the states.

This example has illustrated how quantum dissipative systems can exhibit
manifestly quantum behaviour in the limit of large quantum noise. This is

outside the realm of linear noise theory where classical states are only slightly
perturbed.

9.3 Quantum Tunnelling Time

We proceed to calculate the quantum tunnelling time between the two stable
states. We shall follow the procedure of Drummond and Kinsler [9.4]. In order to
calculate the quantum tunnelling rate, we shall transform the variables o and
B to give constant diffusion, or additive stochastic noise.

— st (95 4 gn-t [ 9B
= sin (ﬂ)+sn (ﬁ) (9.32)

=sin~! (—gﬁ) —sin~? (%) . ' ’ (9.33)

Fig. 9.6. Asin Fig. 9.3 but demonstrati
(c} A = 10.0

e |

9.3 Quantum Tunnelling Time

ng the dependence on 4 with g=350.{a}A=L0(b)1=350

1
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These new variables are constrained to have a range such that 5%41 +ijr]| <=
Referring back to the variables « and f§, it can be seen that the u axis rfapresent_s
the classical subspace of the phase space where a« = . Thus the variable v is
a non-classical dimension which allows for the creation of quantum features.
The stochastic equations corresponding to these variables are

du = {lsin(u) - a[tan (” ; ”) + tan (?)]}dr +/2gdW, .  (9.34)
dv = {— Asin(w) — a[tau (u ; U) — tan (u ; U)]}dt + \/zgdWU .(9.35)

Here 0 = 1 — g?/2, dW,, dW, are Wicner processes. . .
These Ito equations have a corresponding Fokker—Planck equation and
a probability distribution in the limit as 7 — co of

P(u,t) = Nexp] — V(u,v)/g*] (9.36)

where the potential ¥{u,t) is
Viu,v) = — 2oin|cosu + cosvl + Acosu — Acosv . (9.37)

Above threshold the potential has two minima corresponding to t1‘1e stable
states of the oscillator. These minima have equal intensities and amplitudes of
opposite sign, and are at classical locations with « = o* :

(1o, 90} = ( & 2sin~ ' [(4 — 0)?/,/1]1,0) (9.38)
or
gro= *(A—1+g%)" . (9.39)

There is also a saddle point at {us,v5) = (0,0). o S

Along the u axis the second derivative of the potential in the_ v direction is
always positive. The classical subspace (v = 0) is ther'efore at 2 minimum of the
potential with respect to variations in the non—clgssmal variable v. This valley
along the u axis between the two potential wells is the most probable pj(nh _for
a stochastic trajectory in switching from one well to the ot}ler. 'Ijhe sw1tch1n_g
rate between them will be dominated by the rate due to trajectories along this
route, Using an extension of Kramer's method, developf-:d by Landauer and
Swanson [9.5], the mean time taken for the oscillator to switch from one state to
the other in the limit of g* < 1 is

nf dto YWt em 1(9]} (9.40)
Tp:ﬂ(ﬂ_@——a)z) exp{gz[l ¢ —oln{—

The switching time is increased as the pump amplitude A is increased or the
nonlinearity g2 is reduced.

9.3 Quantum Tunnelling Time 18!

Previous attempts to compute the tunnelling time for this problem have usec
the Wigner function [9.6]. Unfortunately the time-evolution equation for the
Wigner function contains third-order derivative terms and is thus not 2 Fokker-
Planck cquation. In the case of linear fluctuations around a steady state
truncating the evolution equation at second-order derivatives is often a good
approximation. However, it is not clear that this procedure will.give quantum
tunnelling times correctly.

In the limit of large damping in the fandamental mode the truncated Wigner
function of the sub-harmonic mode obeys with © = yit

d 5 o |
;Y= {@ (68— B (A-g*B)] + 3 [6* — B(A — g% B*2)]
&* 2 ppw

This truncated Wigner function equation does not have potential solutions,
however an approximate potential solution can be obtained that is valid near
threshold. Here, the noise contribution 242 BB* 1s small and is neglected leaving

only subharmonic noise. Writing § = x + ip, the solution in the near threshold
approximation is

Wyr = Nyrexpl[ — Vur(x, p}] (9.42)

where

2
Vir(x, p) = ?[gzx2 +9°P" + 3% + g p?)? — Mg?x — ¢*p?)]  (9.43)

and Nyr is the normalisation constant.

Above threshold this potential has two minima, at gx = =+ (1 — 1)2, In the
limit of large-threshold photon numbers, these minima are very close to those
obtained in (9.39). The tunneling time has been calculated from the Wigner
distribution by Graham [9.7], with the result

il A1 N2 1
= E(A(i - 1)2) GXP[;; - 1){’ : (9.44)

This result is compared with the expression derived using the P function in
Fig. 9.7 which shows the variation in the logarithm of the tunnelling rate with
the pump amplitude A. The Wigner function result predicts a slower switching
time above threshold. The difference in the two predictions can be many orders
of magnitude. The calculations from the exact positive P Fokker—Planck equa-
tion represent a true quantum tunnelling rate. Whereas the truncation of the
Wigner function equation involves dropping higher order derivatives dependent
on the interaction strength g. Thus nonlinear terms in the quantum noisc are
neglected and the only quantum noise terms included are due to the vacuum
fluctuations from the cavity losses. These give a diffusion term in the truncated
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Wigner Fokker-Planck equation which is identical to clas§i0a_1 therrpal noise,
with an occupation number of half a photon per mpde. {\lso m.dlcated in Fig. 9.7
are the tunnelling times computed by direct numerical s1m_u.1at10n of the stoch"as-
tic differential equations resulting from either the positive P representation

(a) LN I B B 0y BT

L
PB Approximation

10

Simulations
Number state

®

£

PB Approximation

Simulatiens I
Number state

I z

S =
< 13
£ i £
ol a0y o P W
1 12 t4 186 1.8 2 G4 0.6 0.8 1
Pump strength A Noise strength g
d) 6 . e
) e v ——
imati Approximation
I ;iﬂmﬁrorzg:;mutlon! * = 7 Simulations III
10 p-Number state - - - -, Number , atate .o
= 1=
= ] S
= c
£ 5 - -
i L po= 200 J
] - P SRR R
ob— b ) 0
T 1.2 i4 1.6 1.8 2 0.4 C.6 0.8 1

Pump strength A Noise strength g

ig. 97, A plot of the log of the tunnelling time for the degenerate parametric amplifier above
fl-:fes?l;d, ver-;sus pump strgngth or noise strength. In (a) a}nd {b) we show the rfasults computed by thhc
positive P Representation (PB approximation) while in (c) and (d) we give the res1:11ts forh tde
truncated Wigner function medel. In all cases we contrast the res:ul‘ts obtame.d bj_y potcn.nal met ods
with the results obtained by direct simulation of the corresponding stochastic differential equations
and number state sotution of the muster equation (dashed line) [9.4]
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(Fig. 9.7a, b) or the Wigner representation (Fig. 9.7¢, d) and by directly solving
the master equation in the number basis.

The differences between the two rates obtained reflect the difference between
classical thermal activation and true quantum tungelling. Classical thermal-
activation rates are slower than quantum tunnelling rates far above threshold
where the former are large since the thermal trajectory must go over the barrier.
A quantum process, on the other hand, can short cut this by tunnelling.

9.4 Dispersive Optical Bistability

We consider a single mode model for dispersive optical bistability. An optical
cavity is driven off resonance with a coherent field. The intracavity medium has
an intensity dependent refractive index. As the intensity of the driving field is
increased the cavity is tuned to resonance and becomes highly transmissive.
We shall mode] the intracavity medium as a Kerr type ¥ nonlinear
susceptibility treated in the rotating wave approximation. The Hamiltonian and

Fokker-Planck equation are given by (8.47 and 50), respectively. The Fokker—
Planck equation is

—= i(rcoc+2i a?f — Eq) —i a—zozz
at | da x oF T

i . .02
+5B‘(K*B_21X32“—E0) + 1;(%52]19(0(, B) (8.45)

where we choose the phase of the driving field such that E, is real and

k =7y + id. We shall seek a steady state solution using the potential conditions
(6.72). The calculation of F gives

Fi= “(}) (g 2P —%) Fo= (x—) ("— — 27 —g—) . 046

where we have defined # = x — 2iy. The cross derivatives
Ban = 5’ﬂF1 =2 (9'47)

so that the potential conditions are satisfied.
The steady state distribution is given by

x

Pss(o, f) = exp [j Fp(cf')dalr]

-4

_ 1(& E, 1/* Eo) "”
~exp{J[a(Z+leﬂl—E)d«xl——a( 1—21xfx1 7 aB
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E 1 1
= qcT2gi=2 — W=+ )+ 9.48
7 exP[(ix)(oc+B)+ B] 049
E
where ¢ =.£, d= (E) .
1 IX

It can be seen immediately that the usual integration domain of the complex
plane with a* = f is not possible since the potential diverges for aff — co.
However, the moments may be calculated using the complex P representation,
The calculations are described in Appendix 9.A. The resuits for the mean
amplitude {a) and correlation function g‘*(0) are plotted in Fig. 9.8 where they
are compared with the semi-classical value for the amplitude .

It is seen that, whereas the semi-classical equation predicts a bistability or
hysteresis, the exact steady state equation which includes quantum fluctuations
does not exhibit bistability or hysteresis. The extent to which bistability is
observed in practice will depend on the fluctuations, which in turn determine the
time for random switching from one branch to the other. The driving field must
be ramped in time intervals shorter than this random switching time in order for
bistability to be observed.

The variance of the fluctuations as displayed by g‘®(0) show an increase as
the fluctuations are enhanced near the transition point. The dip in the steady
state mean at the transition point is due to out-of-phase fluctuations between
the upper and lower branches.

SR Aot
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Exercises 19

9.5 Comment on the Use of the O and Wigner Representations

}\D‘Ve will compare _the above sc?lutiou we have obtained with the generalised
| fepresentation with the equation obtained using the @ and Wigner representa-
tions. With the Q representation we obtain the following equation

6Q ;] 2 2
—(e*, o =[_ - z v i & o
P ) aoc( &+ o + 2yodoa®) %30 o + K ovda T oc [0, a)

(9.49)
where & = k — 4iy + iAg.
This equation has a non-positive definite diffusion matrix, Furthermore, it

The equation for the Wigner function may be shown to be as in,
aW(oc*,oc)h(sé d k &2 . 0 1 &

ot %Jr"%’Liaa*aa“zq?ﬁ“ixiaa*z“
, ,

+ 2ix£~a*o¢2 + c.:c Wio*
30 C Wt ) (9.50)

ghl‘s equation i§ not of a Fokker-Planck form since it contains third-order
erivatives. Again a steady-state solution js not readily obtainable. It is clear

that for this problem the use of the co ion i
mplex P representation
other two representations, g’ o7 5 preforabl to the

Exercises

9.1 Derljve the-: Fokker—Planck equation for Ploy,
parametntf oscillation after adiabatically eliminati
the potential solution and derive the moments,

%2,1) for the non-degenerate
ng the pump mode. Solve for

9.2 Derive the evolutjon equations for the @ i i
! and Wigner functi
degenerate parametric oscillator described by (9.1). * Ftions for the

9.3 Derive the equation of motion for the @ function for optical bistability.

g 11

Qo) = exp( — |af?) i , (g'p!)™ (e )2 oo )P (g o+ o2

Fig. 9.8. The steady state amplitude, and second-order correlation function for optical bistability ot

versus the pump amplitude. The chain curve gives the semi-classical steady state amplitude, The full
curve gives the exact steady state amplitude, The broken curve presents the second-order correlation
function ¢‘*(0). The detuning is chosen so that Am ¥ < 0 with Aw = —10 and ¥ = 0.5

Xexp{_,%,z_[ﬂf_)fﬁll
{1 +i5) |
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where
d=(p—qlx, f)=expl—xv—ivp—ql  v=2u, K=3

94 Calculate the steady state distribution P(«) and the mean 111te_ns1tyd<4::lcIli 01?_
fc;r the parametric oscillator for the case where the thermal fluctuations do

ate the quantunm fluctuations.

9.A. Appendix

9.A.1 Evaluation of Moments for the Complex P function
for Parametric Oscillation (9.17)

It is necessary to integrate on a suitable manifold, chose:n 50 tha_t thf:I ;hstn?(u‘:zg
(9.17) and all its derivatives vanish at the boundary of 1nteg¥athn. we exp nd
th.e term exp{2; B1) in (9.17) in a power series, the expression for the mome

T = { [ "o P(o)dacdf . | ©9.A.1)

can be written as

o0 2m+2 —c m+n—1 7 __ ¢ m+n+1
Iow = NQ2[c])?V272 §° (_) ( K )

|
m=q M- K

x[§ 21— 2T = 22T (1 = 2z,

f A2
XZ‘_&X_I(I—Zz)JZdZI de (9A )
where
1 kB,
. mZYﬂ’z , 24?1}’2 2121 1+ﬂ, 22:§<1+F).
Ji= KZ > J2 Kz H 2 ¢

These integrals are identical to those defining thz Gauss’ hyt;l)lcr%{eizzz;r;cs{;r:tz;
i i i i h pole and traverses the .
tions. The integration path encircles eac . :

slo that the initial and final values of the mtegrapd are equal, allowing partial
integration operations to be defined. The result is [9.8].

© 2m —c m+n '—C* m+n’
Liw=N Zoﬁ(_'c) ( K )

i, ] f1.] 9.A3
XZFl(H (m+ n)s.}ls.]Zsz)ZFl(_" (m+ n),]1,J2,2) ( )

where ,F, are hypergeometric functions.

9.A Appendix

9.A.2 Evalvation of the Moments for the Complex P Function
for Optical Bistability (9.48)

The normalization integral is

2" ‘
I(c,d) = szax‘“"y“""exp[gxg(x + y)]dxdy (9.4

where we have made the variable change x = Va, y=1/8, and C is t
integration path. o* = B since the potential diverges for a2 — co . This mea
no Glauber—Sudarshan P function exists in the steady state {except as a gener:
ised function). Hence, we shall use the complex P function where the paths
Integration for & and B arc line integrals on the individual (x, §) complex plane
The integrand is now in a recognisable form as coriesponding to a sum

gamma function integrals, It is therefore appropriate to define each path

integration to be a Hankel path of integration, from {— co) on the real ax
around the origin in an anticlockwise direction and back to (— o0). With th

definition of the integration domain, the following gamma function identi
holds [9.9]:

1-c—n
M+ nm] = (t—ﬁ) fx“‘" exp(xt)dx . (S.A.

<

Hence, applying this result to both x and y integrations, one obtains with X =i

oo Zn(EO/f)c+d+2{n*I)
f = —4 2 R — . Wl
led) =)y Py B.AL

The series is a transcendental function which can be written in terms of th

generalised Gauss hypergeometric series. That is, there is a hypergeometri
series called oF, which is defined as [9.10]

ol ' I'(c)I'(d) .
oF3{c,d,z) = H;O Tl a7 C+ L@t - (AT

From now on, for simplicity, we will write Just F(), instead of oF2( ). Now the
normalisation integral can therefore be rewritten in the form

_ [ —A4n?|Eyfz|cre-2 .
Ic,d) = (W) F(c,d,2(Eo/7|?) . 9.A.8)

The moments of the distribution function divided by the normalisation factor
give all the observable one-time correlation functions. Luckily the moments
have exactly the same function form as the normalig

Aton factor Twith 1l
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replacement of (c,d) by (c+ i, d + 7)) so that no new integrals need to be
calculated. The ith-order correlation function is
[Eo/FI* T(c) C{)F (i + c,i + d,2IEo/JEI2)) _
I'i + oI + d)Fc, d,2|Eo/71%)

GY = (a'Y(a)> = ( (.A.9)

This is the general expression for the ith-order correlation function of a non-

linear dispersive cavity with a coherent driving field and zero
baths.

The results for the mean amplitude <a) and correlation function g*(0) are

¢a> = ME/TIF( + ¢, 4,2 Eo/7)%)

-temperature heat

E

(9.A.10)
¢ Fe,d, 2| Eq/7)?)

@y — (P, d 2 Eo/F1%) F(c + 2,d + 2,2 Eo/7]2)
g0 = ((c = D@+ DIFC+ L+ L2AE7 )T

9.A.11)

w

10. Interaction of Radiation with Atoms

ot = (L, )8 = B

(10.

where V is the Coulp

mb potential due to the n
© The interaction betw:

ucleus and inner core electron
¢en the electrons is neglec

ted. Thus

¥(x) = Zaj Fi(x) . (10.

By analogy with the quantization of the

light field the expansion coefficient
%; will become operators in the quantize

d electron field, and ¥(x) become
a field operator. The Hermitjan conjugate of Yix) is
YHx)=Yal W) . (10.3
i
The functions ¥* (x) obey the orthonormality relations
J'Tf‘(x)‘lﬂ-(x)d:"x =dy; . (10.4)

The energy in this representation is

Hy = [P gt



