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Introduction

On qualifie de processus stochastique tout phénomeéne d’évolution temporelle dont ’ana-
lyse peut étre soumise au calcul des probabilités. Du point de vue de I'observation, un
processus stochastique est constitué par 'ensemble de ses réalisations. Une réalisation est
obtenue par ’expérience qui consiste & enregistrer une suite d’événements au cours du temps.
Le caractére aléatoire de I’évolution se montre par le fait que la répétition de ’expérience
conduit & une autre séquence temporelle. Les exemples sont innombrables, en physique ou
ailleurs.

-Le processus "pile ou face" consiste & enregistrer la suite des "pile" ou "face" lorsqu’on
lance une piéce de monnaie.

-Le processus brownien consiste & suivre la position d’une particule en suspension dans
un fluide.

-Le processus de Poisson consiste & compter le nombre de personnes dans une file d’at-
tente lorsque ces personnes y arrivent au hasard.

-Un processus épidémiologique consiste 4 dénombrer les individus infectés par une ma-
ladie au cours du temps.

-Un processus météorologique peut consister a relever le nombre d’heure d’ensoleillement
par jour.

-Un processus boursier consiste a relever le cours des titres chaque jour.

La nature erratique et non reproductible des réalisations du processus tient au fait que
leur évolution est en général le résultat de ’action d’un grand nombre d’agents incontré-
lables, ou dont l'effet est méme inconnu. La particule brownienne se déplace sous 'effet
de ses collisions avec les particules du fluide : les lois dynamiques gouvernant ces derniéres
(classiques ou quantiques) sont connues. Dans ce cas on pourrait en principe établir le lien
entre le mouvement brownien et la dynamique microscopique sous-jacente, mais la com-
plexité de la description de ces mouvements microscopiques défie ’analyse. Dans le cas des
fluctuations boursiéres, on se rend bien compte qu’il est illusoire de faire remonter la théorie
a la description de I’état physico-chimique des cerveaux des opérateurs!

Le fait remarquable est qu’en dépit de ces multiples agents aléatoires, la statistique du
processus (valeur moyenne, écart quadratique etc...) obéit a de lois simples et reproduc-
tibles au cours du temps, pourvu qu’on I'analyse & des échelles de temps appropriées. La
théorie des processus stochastiques s’applique donc a formuler des modéles d’évolution ot le
mangque d’information est supplée par des hypothéses probabilistes adéquates. La situation,
bien que beaucoup plus riche dans son champ d’application, est analogue & celle de la mé-
canique statistique de 1’équilibre : ’hypothése des ensembles statistiques (microcanonique,
canonique etc...) permet de décrire les observations macroscopiques de la thermodynamique
qui sont, elles, parfaitement réguliéres et reproductibles.

Le cours s’attache & introduire les principales méthodes d’analyse des processus sto-
chastiques de facon que I'étudiant acquiére les outils conceptuels nécessaires, illustrés par
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un certain nombre d’applications. Il est clair que chaque chapitre pourrait faire 'objet de
beaucoup plus longs développements, ou méme de cours en soi. Bien que les méthodes
soient de nature trés générale et a vocations interdisciplinaires, on a utilisé le langage et les
exemples du physicien. Le niveau mathématique reste élémentaire, mais espérons-le suffi-
samment précis. On est cependant conscient que du point de vue mathématique, la théorie
des processus stochastique est un discipline a part entiére dont ’apprentissage requiert un
autre cours.

Ce cours (ou des variantes) a été donné comme option de quatriéme année du diplome de
physique a I’Ecole Polytechnique Fédérale de Lausanne sous le titre de "physique statistique
avancée" et au DEA de physique statistique et phénomeénes non linéaires de L’Ecole Normale
Supérieure de Lyon. Je remercie vivement Francois Coppex pour la saisie et la mise en forme
de mes notes ainsi que Sébastien Gyger pour son aide & diverses étapes de ’élaboration de
ce document.
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Chapitre 1

Mouvement brownien

1.1 Mouvement brownien au sens de Einstein

1.1.1 Eléments historiques

L’observation du mouvement brownien est bien antérieure & Brown lui-méme. Parmi
les précurseurs, on peut citer le hollandais Ingenhousz (1785) qui observa le mouvement
erratique de poussiéres de charbon dans de I’alcool. Des observations similaires faites par
Buffon et d’autres naturalistes montrent que des particules de toutes natures, organiques
et inorganiques, en suspension dans un fluide, montrent ce mouvement surprenant et désor-
donné dont on ignore 'origine. On parle alors de particules «irritables» et on avance des
théories vitalistes qui attribuent une autonomie propre a ces petites particules (la nature
moléculaire du fluide n’est pas connue a cette époque).

Le terme mouvement brownien provient du botaniste écossais Brown (1773-1858) qui
observe & son tour le mouvement imprévisible de grains de pollen en suspension dans ’eau.
Brown se livre a des observations systématiques de ce mouvement et ses conclusions, confir-
mées par d’autres expériences soigneuses & la fin du 19°™° siécle (en particulier par le
physicien lyonnais Gouy) sont les suivantes.

1. Le mouvement est trés irrégulier et imprévisible, il n’est pas possible d’assigner des
tangentes & la trajectoire.

2. Le mouvement est indépendant de la nature de la particule.

3. Le mouvement est d’autant plus erratique que la particule est petite, la température
élevée, la viscosité faible.

4. Le mouvement ne cesse jamais.

Il est alors admis que le mouvement n’est pas d’origine «vitaliste», mais bien mécanique.
Cependant, sa complexité et son caractére apparemment aléatoire montrent qu’il ne peut
étre sujet a une explication simple. Dans un siécle dominé par la mécanique de Newton et le
déterminisme Laplacien, ces déplacements browniens imprévisibles, et dont les vitesses ne
pouvaient étre déterminées, posaient des problémes d’interprétation tout & fait nouveaux.

Dans la méme période se pose la question de la validité de I’hypothése atomique et de
sa confirmation expérimentale. C’est cette question qui motive le travail d’Einstein : en
admettant que le mouvement d’une particule en suspension est dii aux collisions avec celles
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du fluide, est-il possible d’établir un lien entre ce mouvement et la nature moléculaire du
fluide ? Einstein déclare ne pas avoir eu connaissance des études antérieures du mouvement
brownien lors de la rédaction de son travail de 1905. Einstein adopte un point de vue pure-
ment probabiliste pour la description des trajectoires browniennes, renoncant a tout concept
faisant intervenir la vitesse et la mécanique. C’est 1a la clef de son succés. Dans un premier
temps, introduisant la densité de probabilité P(z,t) de trouver la particule brownienne en
x au temps t, il montre que cette probabilité obéit a I’équation de la diffusion (1.17)

0

5P (1) = DAP(x,t). (1.1)

Puis il relie la constante de diffusion D aux grandeurs physiques par la célébre formule (voir
I'Eq. (1.42))

_ kpT
=

D (1.2)
Comme y figure kg = R/N (R étant la constante des gaz et N le nombre d’Avogadro), le
lien désiré est établi : une mesure de D permet une détermination de A et une confron-
tation de cette valeur a celle obtenue par la stoechiométrie chimique. La mesure, effectué
par Perrin en 1910 donne un accord de 'ordre de 20%, cependant suffisant a I’époque pour
confirmer I'’hypothése atomique. Comme D est relié a 'écart quadratique moyen du dé-
placement brownien (voir (1.23)), Einstein inaugure et montre I'importance d’une science
nouvelle, la théorie des fluctuations. Il laisse cependant ouvert le probléme de la formulation
d’une théorie dynamique du mouvement brownien. Il faut rappeler les travaux paralléles
dans cette direction de Smoluchowski (indépendants de ceux d’Einstein), mais il revient a
Langevin d’avoir réconcilié le mouvement brownien avec la mécanique en introduisant la
notion de force aléatoire et ouvrant ainsi le chapitre de la théorie des équations différentielles
stochastiques.

Pour plus de détails, voir [Ne| et [Ei].

1.1.2 La marche aléatoire

Il est important de distinguer diverses échelles de temps, le temps moyen ¢. entre deux
collisions de la particule brownienne avec celles du fluide (temps microscopique de collision),
la résolution temporelle 7 de 'appareil de mesure, et t = n7 le temps d’observation, n € N,
n > 1. Dans les conditions d’observation habituelles on a

e <7<t =nr. (1.3)

Nous remplacons notre incapacité a décrire la trajectoire microscopique exactement par
une hypothése probabiliste :

Dans un milieu homogéne isotrope et a I’échelle 7, les déplacements successifs de la
particule sont indépendants et de directions équiprobables.

Pour simplifier, on peut supposer que la particule, a I’échelle 7, se meut sur un réseau
cubique. Cette version discrétisée du mouvement est appelée marche aléatoire en dimension
3 avec recoupement.

La figure 1.3 a la page 4 montre des simulations numériques de la trajectoire brownienne
et de son étude sur un réseau.
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F1G. 1.1 — Trajectoire brownienne aux différentes échelles de temps. La particule brownienne subit beau-
coup de collisions pendant 'intervalle de temps 7.

A

F1G. 1.2 — Marche aléatoire en dimension 2.

Marche aléatoire & une dimension

Pour simplifier le probléme, considérons une marche aléatoire & une dimension. Nous
désirons établir une équation pour la distribution de probabilité de présence d’une particule
en un point & un temps donné. La généralisation en 3 dimensions s’obtient facilement a
partir de ce résultat.

Considérons une particule qui se meut sur une ligne et occupe les sites 0, +A, £2A, ...
(voir la figure 1.4).

Supposons qu’a chaque intervalle de temps 7, la particule se déplace & droite avec
probabilité p, et & gauche avec probabilité ¢, p + ¢ = 1. Lorsque p = ¢ = 1/2, on dit que
la marche est symétrique (a chaque temps ¢t = k7 on lance une piéce de monnaie, et on va
a gauche ou a droite selon qu’on obtient pile ou face). Définissons P(0,0|nA, k) comme
étant la probabilité de trouver la particule en nA au temps k7, sachant qu’elle se trouvait
en 0 au temps 0. On omettra dans la suite de noter la condition initiale (0, 0).

Dans le cas général, soit #g et #d les nombres de sauts & gauche et a droite de 'origine
respectivement. Supposons que la particule parvienne & nA en k mouvements, alors ceci a
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F1c. 1.3 — Simulations numériques d’une trajectoire aléatoire sur un réseau bidimensionnel carré (image
du haut) et d’un mouvement brownien dans le plan (image du bas). Si la maille du réseau de la marche
aléatoire devinent suffisamment petite, il devient difficile de distinguer le modéle sur réseau d’une simulation
sans cette contrainte spatiale.

pu se produire de #;#dl fagons (voir la figure 1.5), et
#d++#g = k = Ftotal de déplacements (1.4)
#d—#g = n = position aprés k déplacements. (1.5)
Des deux derniéres équations, on tire que #g = k_T” et #d = HT”, par conséquent
P(nA, kr) = pdghs M pHankiTnk—! In| < k. (1.6)

ol (5! (B
Dans le cas de la marche symétrique on a p = ¢ = 1/2, donc

k!

1
P(nAkT) = ﬁw (1.7)

Il sera utile par la suite de considérer la représentation intégrale suivante de P(nA, kT)

1 [ , , .
P(nA k) = —/ de (pe'? + qe_“p)ke_m‘p. (1.8)

2 J_,
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F1G. 1.4 — Marche aléatoire en dimension 1.

nA
i A
2A " 7 —
A ; 2A——
p pq [p*q AL
° Yk
2
—A—1 Pagr —A+ T 2T 37
_9A ¢’ a’p —2A——
¢ I
— 3
B PEA27) _ P P(3A,37) = p
P(AT) = p P(A,37) = 3p%q
PLAT = ¢ k=1 P(0,27) = 2pq pk=2 PAs) — 3 k=3
7 P(—282r) = ¢ ’ = Uap
P(-3A37) = ¢

F1G. 1.5 — Valeurs de la probabilité conditionnelle P(nA, kr) (image de gauche) et une réalisation de la
marche aléatoire (image de droite).

Pour le voir, on insére le développement du bindéme

k
i —ip\k _ 1 k—I k! ip(20—Fk) 1
(pe'® + ge™ %) ;pq (e (1.9)
ainsi que l'identité
1 [m , .
% dQO eup(2l—k)e—m<p — 52l—k,n (110)

—Tr

dans I’équation (1.8), on vérifie aisément que I'on obtient (1.7).

1.1.3 Limite continue et équation de la diffusion

On désire a présent examiner le comportement de cette distribution de probabilité
P(nA, k7) aprés un grand nombre de sauts. Pour cela, réalise la limite du continu & partir
de I'équation (1.8). Posant z = nA, t = k7, on veut obtenir la limite de P(nA, kt) lorsque
A—0etT—0avecx, tet D= %—j fixés. D est appelée constante de diffusion, dont la
signification physique sera élucidée dans la section 1.1.4. Il faut rester conscient que la limite
du continu, qui simplifie la description mathématique, n’est pas un retour a la description
microscopique, mais représente toujours I’évolution de la particule a ’échelle de temps 7.

Remarquons d’abord que si f(nA) est une observable de la particule brownienne, alors
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sa valeur moyenne est

P(nA, kr) 24
D> PAET)f(nd) =Y ——"ZAf(nA) "= | dz P(a,t)f(x), (1.11)
A R
neZ neZ
avec la définition lima g P("§7k7) = P(xz,t). En fait, nous passons d’une probabilité absolue
T—0

P(nA,k7) a une densité de probabilité P(z,t) de dimension [z 1.

S 4 Lt _ _ 1 _ _ =z _ A2
Nous considérons le cas symétrique p = ¢ = 5 et posons k = -, n = X, D = 5,

)= % dans I'équation (1.8). En utilisant (3 (e + e_w))k = (cos )k = eknlcosel k pair,

1 on obtient

P(nA . 1 N e
lim PnA kr) = P(x,t) " Jim /f dye Va5 V7 Infeos(vTY)]| (1.12)
A0 A T~02mv2D J_ =

Le développement de Taylor de In|cos(y/7%)| au second ordre donne

sin(+/T T)2
infeostvF] = )+ SV O o] o ()
=0 ﬂj ﬁj
T:O T"l/)z
= T (1.13)

de sorte qu’ en insérant (1.13) dans (1.12) et en effectuant la limite 7 — 0 on obtient

1 LT qh _ty2
P;r,t:i/de@eﬂ. 1.14
(@, t) 3mv3D e (8 (1.14)
En utilisant la relation générale
1/2 sactb?
/dxe—az2+bz+cz (f) / 64 4?7 , (115)
R a

avec a, b, ¢c € C et Rea > 0, (1.14) devient finalement

1 2
e 4Dt, 1.16
vVar Dt ( )

On vérifie alors facilement que P(z,t) obéit a I’équation différentielle dite équation de dif-
fusion

P(z,t) =

gP(a;t) = Da—2P(x,t), (1.17)
ot D22
avec les propriétés
P(z,t) 2 0, (1.18)
/ dz P(z,t) =1, (1.19)
ﬁ% P(z,t) = 6(x). (1.20)

1 n’y a pas de restriction a la généralité a choisir les valeurs de 7 telles que k soit pair.
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En dimension 3, I’équation de diffusion est %P(X, t) = DAP(x,t), ot A = 23 o2

i=1 8_90?
est le laplacien, et admet pour solution

P(x,t) = ———5¢e 4Dt. (1.21)

Pour des raisons de symétries le premier moment est nul

(@(t)) = /Rd:r 2 P(x,1) =0, (1.22)

ce qui signifie que la particule reste a ’origine en moyenne. On a par contre

(Az(t))? = <:1:2(t)> — (z(t))* = <:1:2(t)> = /]Rda: 2% P(x,t) = 2Dt, (1.23)

ce qui montre que les fluctuations Az croissent selon /2. Une telle loi de puissance des

fluctuations est caractéristique d’un phénomeéne diffusif, tandis que lorsque Ax ~ ¢ on est
en présence d’un phénoméne balistique.

La généralisation de la densité de probabilité P(z,t) solution de I’équation (1.16) a des
conditions initiales zg # 0 et tg # 0 s’obtient immédiatement grace & ’homogénéité de
I’espace et du temps. Dans ce cas

1 _ (zfcco)z
P(xq,tolw,t) = me DGt P(xg,tolz,t)|,_y, = 0(x —x0),|  (1.24)
— b

qu’on appelle solution fondamentale de I’équation de diffusion.

La condition initiale donnée par xzg et ty peut elle-méme étre sujette a une distribution
statistique W (g, tg). Dans ce cas, la densité de probabilité de trouver la particule en x au
temps t sera

P(:Ii,t) :/ d:L’O W(.To,to) P(.To,t0|x,t), (1.25)
R

qui satisfait encore (1.17) en vertu de la linéarité de I’équation de diffusion, avec condition
initiale P(x,t)|t=t, = W(x,to) .

Il est instructif de comprendre comment réaliser dans la pratique les moyennes <a:2(t)>
et (z(t)), dites moyennes empiriques. Soit x;(t) la i®™° réalisation d’un chemin brownien
au temps t, soient N expériences ou réalisations du processus, 1 < ¢ < N. Bien entendu, le
nombre de mesures réalisées N est en pratique fini mais en principe aussi grand qu’on le
désire. Les valeurs moyennes considérées sont alors données par

L
(@(t1)) = lim — Zmi(tl) =0 (1.26)
1Z_}V
(2*(t1)) = m Zf’??(h) (1.27)
Z:ll N
(@(tr)a(tz)) = lim in(tl)mi(tg), (1.28)
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F1c. 1.6 — Reéalisations x;(t) du processus brownien et moyenne empirique aux temps 1 et ta.

ce qui justifie ainsi la notation (z(t1)), (z(t1)), ... adoptée en (1.22) et (1.23) pour les
moments de la distribution de probabilité P(x,t) (voir chapitre 2). L’expression (1.28) est
appelée corrélation du processus aux temps t1 et to.

Il existe une autre méthode, dite aux différences finies, pour déterminer la distribution
de probabilité P(z,t). En observant la réalisation du processus de la marche aléatoire de la
figure 1.5, on constate que P(nA, k) satisfait a ’équation aux différences finies

P(nA,(k+1)7) =pP((n —1)A k1) + ¢P((n+ 1)A, k7). (1.29)

En effet, si on observe une particule en nA au temps (k + 1)7, alors au pas de temps
précédent cette derniére était soit en (n — 1)A, soit en (n + 1)A. Dans le premier cas, la
particule s’est déplacée vers la droite avec probabilité p, tandis que pour le second cas elle
s’est déplacée vers la gauche avec probabilité ¢. Etant donné que nous considérons le cas
symétrique, alors p = ¢ = % et en soustrayant P(nA, k1) de chaque coté de I'égalité (1.29)
on obtient

P(nA, (k+1)7)—P(nA, kr) = %(P((n—l—l)A,kT)—QP(nA, k7)+P((n—1)A, /w)). (1.30)

En posant x = nA, t = k7 on a

P(x, T7) — P(z, A% [Pz + A,t) —2P(z, P(x — A,
(t7) = P t)zz_;< + 00 2PENTPEZA0)
=D

qui dans la limite 7 — 0 et A — 0 tend formellement vers I’équation de diffusion (1.17)

1.1.4 Relation de Einstein pour la constante de diffusion

Dans cette section on donne l'interprétation physique de la constante de diffusion D.
Supposons qu’on ait N particules browniennes indépendantes (ou en interaction suffisam-
ment faible pour pouvoir étre négligée) dont la densité n(z,t) est donnée par

n(x,t) = NP(x,t), (1.32)
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F1G. 1.7 — Simulation numérique d’un mouvement diffusif en une dimension pour D = % (courbe du haut)
et D =10 (courbe du bas).

avec la normalisation [p dzn(z,t) = N. Comme P(z,t) satisfait I'équation de diffusion
%P(w,t) =D g—;P(:r, t), alors il en est de méme pour n(z,t). Le courant de particules da
aux effets diffusifs est défini par la loi de Fick

jp(x,t) = —D%n(x,t}, (1.33)

de telle facon que I'équation de continuité soit vérifiée

(z,t) + %jp(%t) =0. (1.34)

—n
ot
Supposons & présent que les particules soient dans un champ constant, par exemple un
champ gravifique, et que ces particules se trouvent dans un fluide visqueux donc subissent
une friction proportionnelle & leur vitesse v. Soit + la constante d’amortissement de la
vitesse, m~y le coefficient de friction, alors I’équation de Newton donne

m%v(t) = —mg — myv(t). (1.35)

Le champ de force produit un courant de particules j4(z,t) défini par

Jg(z,t) = n(z, t)v(t). (1.36)

Remarquons que le recours a ’équation de Newton consiste en une description macrosco-
pique, déterministe et non aléatoire du phénoméne. Par contre, la loi de Fick traduit un
phénomeéne diffusif, donc & caractére non déterministe et aléatoire.
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Considérons a présent le régime stationnaire, caractérisé par [’équilibre thermique, dans
lequel %v = 0. Par conséquent, ’équation de Newton (1.35) permet d’obtenir 1’expression
v = —< pour la vitesse dans 1’état stationnaire. En substituant cette derniére expression
dans la définition (1.36) de j,4(z,t), on obtient

Jolw) = 228, (1.37)

D’autre part, a I’équilibre thermique dans le champ extérieur, la physique statistique de
Gibbs s’applique. Par conséquent, n(z) est donné par la formule barométrique

_V(zfcco) _mg(zfzo)
n(z) =n(zo)e 8T =mn(zg)e BT | (1.38)

avec kp la constante de Boltzmann et V(x) = mgx le potentiel gravifique. En insérant
(1.38) dans la définition (1.33) du courant de diffusion jp(z,t) on obtient

) mgn(x)
=D— 7, 1.
Jp() KT (1.39)
Le courant total
j(a;,t) :jg(m7t)+jD(x7t)' (1‘40)

a deux composantes, I'une due au champ de force g et 'autre due au gradient de densité.
Or, ’équilibre correspond & un courant total nul. Ainsi, en insérant (1.37) et (1.39) dans
(1.40), on obtient

_gnle) | mgn(x)

- o = (1.41)

j(x) =

ce qui meéne finalement & la relation de Einstein pour la constante de diffusion D

kT
=

D (1.42)

Remarques

(i) La constante de diffusion est indépendante du champ de gravitation g et plus géné-
ralement, comme on le vérifiera & plusieurs reprises, de la nature du champ de force
agissant sur la particule brownienne. L’équation (1.42) est un exemple d’une relation
fondamentale qui existe entre les fluctuations (représentées par le coefficient D) et la
dissipation (représentée par le coefficient ). C’est le germe de ce qu’on appelle une
relation de fluctuation-dissipation. De plus amples explications sont fournies dans la
section 7.4 a la page 150.

(i) Comme kp = f—v%-, avec N le nombre d’Avogadro et R la constante des gaz parfaits,
alors N peut-étre mesuré a partir du mouvement brownien. Le physicien francais J.
Perrin obtient en 1926 le prix Nobel de physique pour avoir déterminé le nombre
d’Avogadro de plusieurs maniéres différentes, dont celle se basant sur la relation de
Einstein, apportant ainsi une preuve de la nature atomique de la matiére (voir [Wal).

o
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1.1.5 Equation de Smoluchowski

Comment décrire le mouvement d’'une particule brownienne dans un champ de forces ?
Ce dernier exerce un effet de dérive que 'on peut simuler par une marche aléatoire asymé-

trique p # q.

Supposons pour commencer que le champ de force est constant et posons p = % + al,

q = % — a/\, avec « une constante indépendante de la position. Dérivons 1’équation &

laquelle satisfait la densité de probabilité P(z,t) dans la limite A — 0 et 7 — 0. Pour cela,
reprenons 1’équation (1.29) en remplagant les valeurs de p et ¢. En soustrayant P(nA, k7)
de chaque coté de 1’égalité, on obtient

P(nA, (k +1)7) — P(nA, kr) — %(P((n + 1A, kr) —2P(nA kr) + P((n — DA, k7))

N (P((n + 1A, kT) — P((n — DA, kT)). (1.43)

A nouveau, en divisant par 7 et en posant g—j = D pour ensuite faire la limite A — 0 et
7 — 0, on obtient ’équation cherchée

9 plat) = —1aD 2 p( t)+D8—2P( £) (1.44)
8t Z, = 6 83} x, 83}2 ZT,1). .

Considérons maintenant un champ inhomogeéne, c’est-a-dire a = a(nA) dépend du site
nA. Dans ce cas p(nA) = & + a(nA)A, g(nA) = 3 — a(nA)A, et la densité de probabilité
P(z,t) obéit a I'équation

P(nA, (k+1)7) = p((n — )A)P((n — DA, k7) + ¢((n + D)A)P((n + 1)A, kr),  (1.45)
ce qui se réécrit sous la forme
P, (k+ 1)7) — P(nA, kr) %(P((n £ 1A k7) — 2P(nA k) + P((n — DA, r)
- A(a((n +1DA)P((n + DA, k) — a((n — 1)A)AP((n — 1)A, kf)), (1.46)

qui dans la limite A — 0 et 7 — 0 se réduit a

0 0 0?

S P(a,t) = —4D — (a(m)P(:c, t)) + D55 Pa.1). (1.47)
Ceci donne 'idée, pour des raisons de dimensions, de poser 4D a(x) = %ﬁ) ou F(z) est la
force? agissant sur la particule, et d’écrire en général

0 1 90 0?

—P =———|F(x)P D—P . 14

5P t) =~ o (F@)P@.0) +D g5 Plat) (1.48)

Cette derniére équation est dite équation de Smoluchowski, du nom de celui qui I’a établie en
1906 pour décrire la distribution de probabilité d’une particule brownienne dans un milieu
inhomogeéne.

2Notons M pour une masse, L une longueur et T' un temps. La dimension de Da(x) est [%]7 7 est une

constante de dimension [ ], si bien que [F(z)] = [myDa(z)] = [%#%] a les dimensions d’une force.
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Remarque Les équations (1.44) et (1.48) sont des cas particuliers de I'équation de Fokker-
Planck (voir les sections 3.1 a la page 43 et 3.2.1 a la page 46). L’interprétation de F'(z)
comme champ de force sera confirmée par I’étude de I’équation de Kramers (voir la section
3.4.1). o

Nous désirons donner la solution de I’équation de Smoluchowski (1.48) avec une force
de gravitation F'(z) = —myg, puis une force harmonique F(z) = —xx. Dans ces deux cas,
on va encore trouver des solutions gaussiennes de la forme

1 _ (z—a(t)?
P(z,t) = ————¢ 20 | (1.49)
270 (t)

olt la valeur moyenne (z) = a(t) et I'écart-type ((z — a(t))*) = o(t) dépendent du temps.
Les moments de la gaussienne (1.49) sont

(2 (1)) = /]R dz 3 P(2,1) = alt), (1.50)
2
2y = 2 —a2 = $$2 X — T T X =0 . .
((0(0) = a0)?) = (220)) ~ a*(0) = [ dea*Plost ( [ arap ,t>) (1). (151)

Pour déterminer a(t) et o(t), il suffit d’écrire leur équation du mouvement. On a par inté-
gration par parties

d (1.50) g
T (x(t)) = /]Rdx x atP(w,t)

(1.48) 1 0 / 0
=7 —(F ()P D P
e /]Rdzn $8$( (z) (:U,t)) + Rdﬂj T35 (z,t)
1 / 0
= — [ dz F(z) P(z,t) — — x F(x) P(x,t)| "
el (z) P(z,1) (z) P(z,t)]
=0
—-D | dx 2P(a: t)+D :L'QP(QS‘ t) b (1.52)
& O , O ) _007 .
N————

en supposant que P(x,t) et sa dérivée s’annule suffisamment rapidement a l'infini (ce qui
est le cas pour la gaussienne (1.49)). On procéde de facon similaire avec & (22) (t) pour

finalement obtenir les équations

d 1

4t (70) = o (F@®) (1.53)
d 2
11 (# ) = = (aOF () +2D. (1.54)

Les conditions initiales caractérisant une particule se trouvant en xg au temps ¢ = 0 sont
a(t=0)=z¢et o(t =0)=0.
(i) Force de gravitation : F/(r) = —mg. Les équations du mouvement (1.53) et (1.54)

deviennent
d g
g a0 =7 (1.55)
d 29
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ce qui, avec les conditions initiales (z(0)) = zg et (2%(0)) = 23, donne

(x(t)) = 0 — %t, (1.57)

2
_ _9
(z%(t)) = <a:0 7t> + 2Dt, (1.58)

d’ott a(t) = zo — £t et o(t) = 2Dt, par conséquent

exp [_ ($—l‘0+gt/’7)2] (159)

P(z,t) =

1
vVar Dt 4Dt

décrit une particule en translation uniforme dans le fluide infiniment étendu avec
une dispersion 2Dt autour de sa position moyenne xg — %t. Il n’y a donc pas d’état
stationnaire (contrairement au cas traité dans la section 1.1.4 ou le fluide était supposé
résider dans le demi-espace x > 0).

(ii) Force harmonique : F(z) = —kx. Les équations du mouvement (1.53) et (1.54)
deviennent
d K
G @) =~ (o), (1.60)
d, , 26, o

Avec condition initiale (x(0)) = z¢ ’équation (1.60) a pour solution

(z(t)) = zoe” ™" = a(t). (1.62)

2K
On vérifie que la forme d’essai (z?(t)) = A(t)e” ™" est solution de D'équation (1.61)
sous la condition

L A@r) = 2perst (1.63)
dt ’ ‘
d’ont
Ay = P sy o (1.64)

avec C' € R une constante. En utilisant la condition initiale <a:2 (0)> = 23 on détermine
Dm~y

-, donc

la constante C' = 22 —

D _ <k _ =k
<a:2(t)> = Zw (1—e Efwt) +ate ot (1.65)

Les équations (1.62) et (1.65) donnent

o(t) = (#2(1)) ~ (a(0)? = 22 (1 -7, (1.66)

et par conséquent en insérant (1.66) et (1.62) dans la distribution de probabilité
générale (1.49) on obtient

— k¢ 2
I3 KJ(IE—:IIOG m"/)

P(:I;,t) = 28y exp | — _ 264
2m Dmyy (1 —e my ) 2Dmyy (1 —e my )

(1.67)
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On voit qu’un état stationnaire est atteint pour des temps infinis

K K
lim P(z,t) = /| =——— — 7). 1.
el (1) 2w Dy exp( 2m’me > (1.68)

Comme %RIL’2 est I’énergie potentielle de l'oscillateur harmonique, la distribution

(1.68) s’identifie a la distribution thermique de loscillateur P(z,t) o exp [— ‘k{gp)]

siD= %, ce qui impose & nouveau la relation de Einstein.

1.1.6 Chaine moléculaire aléatoire et chemin brownien

Les chemins browniens sont susceptibles de recevoir beaucoup d’interprétations variées
en physique. Voici un exemple.

On considére une chaine moléculaire composée de N 4+ 1 monomeéres, une extrémité de
la chaine étant fixée a l'origine, I'autre se trouvant au point r € R3. On suppose

(i) Deux monoméres consécutifs sont & distance fixe a, et la position r; du j°™° mono-
meére ne dépend que ce celle du monomere précédent en r;_;.

(ii) Toutes les orientations d’un monomére relativement au précédent sont équipro-
bables, c’est-a-dire

1
—25(|I‘j —I‘j_1| —a), (169)

P(rj_1lrj) = P(|r; —rj—1] —a) = T

€ monomeére en

oit P(rj_1|r;) désigne la probabilité conditionnelle de trouver le j™
r;, sachant que le précédent est en r;_1. Cette derniére probabilité est normalisée par

rapport a r; sur la surface de la sphére de rayon a centrée en r;_q.

F1c. 1.8 — Polymére formé de N + 1 monoméres espacés d’une distance a.

Nous désirons trouver la distribution Py (r) qui donne la probabilité d’avoir une chaine
de longueur N se terminant en r. En vertu de 'hypothése d’indépendance (i), la probabilité
d’une configuration de la chaine ro = 0,rq,rs,...,ry =T est

W(ry,re,...,ry_1,r) = P(r1) P(ri|ra) ... P(ry_2|rn—1) P(ry_1]|r), (1.70)
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avec P(r;j_1|r;) donné par (1.69). La distribution de probabilité Py(r) d'une chaine de
longueur Na aboutissant en r s’obtiendra de (1.70) en sommant sur toutes les positions des
monomeres 1 a N — 1

Pn(r) = / dBry ... dPryg W(ry,ro,...,*N_1,IN)
R3X(N-1)
(1.70) 3 3 3
= d’ry P(ry) d’ry P(rq|rs). .. d’ry_1 P(ry_2|rny—1) P(ry_1|r)
(1.69) 3 1 3 1
= /RSd o d(|rq| _a)/]de 2 O(jra —ri| —a) x ...

1 1
3
. X /RS Pry 1 5 0jen = rv| = a) g (| — v | —a). (171)

Il s’agit d’un produit de convolution multiple qui se factorise dans la représentation de
Fourier. Le détail du calcul est comme suit. Soit le changement de variables qui permet de
découpler les intégrales

X1 r
X2 r; —rp
= . , (1.72)
XN r—ry_i
alors r; = 23':1 x; Vi = 1,...,N, et on vérifie que le jacobien de la transformation

Bry ... Bry_; =Jd%x; ... d3xn_1 est J = 1. Soit k € R3, alors en utilisant r = Zf\il X;
la transformée de Fourier Py (k) de Py(r) est

Py(k) = / d®r Py (r) e kT
IRS
(121) / d3x1 5(|7;1| ;a) o—ikx1 / d3XN—1 5(|XN—1|2— a) e kXN_1 3
R3 Ta R3 dma
></ Bxy O(|xn]| 2—“) o—ikxy
R3 4ma

50X = ) o)™
_ 3, 2N T %) —ikex
= </IR3 d°x e © , (1.73)

ce qui donne par passage en coordonnées sphériques

P 1 > " 3 —i|k|r cos o N
Pyk) = <W /0 dr r?6(r — a) /0 6 sin(@)eilkIrcos(®) /0 dgp>

1 N
z:—;os(@) 1/ dz ei\k|az
2 ),

(s -

Par transformée de Fourier inverse

P = 1 sy (50 (K1) \ ™
Pr(r) = 5 /]Rgd k ( Ao > . (1.75)

En pratique un polymeére est formé de N > 1 monomeéres, donc on va prendre le com-
sin(z)

< 1 pour tout x # 0, alors

portement asymptotique N — oo de (1.75). Comme
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. N
limpy 00 (#) = 0, et donc la contribution dominante de l'intégrand pour N grand

provient du voisinage |k| = 0 ce qui permet d’écrire

sin (|kla) _ | (Jk|o)®

7R -5 +0 (|k|"). (1.76)

Négligeant le reste d’ordre k|4, en insérant (1.76) dans (1.75) et en utilisant In(1 + ) =
z 4+ O (2%) on obtient

) ik-r

N (i
)

3
\k|2a2 e
d3k e N 6 eZkr

1
PN (I‘) = (27_[_)3 /IR
(1.76) 1

(271T)3/
7 s
- E[ZL/ dk e—NSQkQH’%, (1.77)

1

qui en utilisant la relation générale (1.15) devient finalement pour N > 1

3\ sk
PN(I’) = <m> e m (178)
En comparant (1.78) et (1.21) on en déduit que la constante de diffusion est D = %2 alors

que le "temps" est t —tyg = N, et <r2> = NT“Q traduit un comportement diffusif. L’écart-
quadratique moyen se comporte donc comme v/Na, et non comme la longueur de la chaine
Na. Ainsi, dans la limite continue, la chaine peut étre assimilée & un chemin brownien &
trois dimensions. Cette analogie sera reprise dans la section 3.7.2.

1.2 Mouvement brownien au sens de Langevin

1.2.1 Equation de Langevin et force aléatoire

La théorie de Einstein n’est pas dynamique au sens de Newton (il n’y a pas de notion
de vitesse et d’accélération) et le concept de force est introduit par Smoluchowski de fagon
ad hoc, dans un contexte probabiliste. L’idée principale de Langevin est que les équations
de la mécanique restent valables en moyenne. Ainsi, pour une particule dans un milieu avec
coefficient de friction v, on écrit

() =~ (1), (1.79)

avec (v(t)) = % (x(t)). La moyenne (-) est une moyenne réalisée sur toutes les trajectoires
possibles d’une particule, soumise & un champ de force aléatoire f(t). L’équation qui gou-

verne la trajectoire de la particule soumise a une réalisation de la force f(t) est alors

d

mav(t) =—myo(t) + f(t), (1.80)
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On choisit la force f(t) agissant sur la particule de fagon a modéliser effet des collisions
microscopiques. Il s’agit donc d’une force inconnue, compliquée et non reproductible que
I'on va traiter de fagon aléatoire. Supposons avoir N > 1 réalisations de la force f(t), notées
fi(t), fa(t), ..., fn(t), alors I'équation (1.80) fournira les N solutions vy (t), va(t), ..., vn (%),
ce qui permet de réaliser les moyennes en question. Quelles sont les propriétés statistiques
de f(t)?

Hypothése 1.1 Etant donné que la friction est déja prise en compte dans (1.80) et que

f(t) ninclut que les effets aléatoires dus auz collisions dans un espace isotrope et homogéne,
alors sa moyenne doit étre nulle

LN
() =+ > filt)=o. (1.81)
i=1

0 R RN DT

i t?

F1G. 1.9 — N > 1 réalisations de la force fi(t), f2(t), ..., fn(t), et force moyenne nulle {f(t)) (courbe
épaisse confondue avec 'abscisse).

En effet, en exploitant cette hypothése on obtient bien (1.79) de (1.80). Par conséquent,
en moyenne 'effet des collisions simulé par f(t) est nul, et la seule force systématique que
ressent la particule est la friction. Ainsi

(v(t)) = voe ™, (1.82)
et avec la condition initiale xg = 0 la position moyenne est
t 1— e—ﬂ/t
@ty = [ dr (o) = w0 (1.8)
0 Y
avec (v(0)) = vp.

La corrélation de la force entre les temps t1 et to est définie par

N
(0 (02)) = 1 S St il (1.8)
=1

et son temps de corrélation t. est l'intervalle de temps pendant lequel cette quantité est
non nulle.
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Hypothése 1.2 Comme f(t) varie a l’échelle du temps de collision microscopique, son

temps de corrélation t. est beaucoup plus petit que le temps de relazation de la vitesse v,

te < y7h (1.85)

c’est-a-dire que f(t1) et f(t2) sont des variables aléatoires indépendantes dés que |t —ta| >
te. On idéalise cette situation en postulant que la corrélation entre f(t1) et f(t2) est nulle
si ty # to, c’est-a-dire que la corrélation est instantanée

(f(t1)f(t2)) = Cd(t1 — ta), (1.86)

avec C' € R une constante.

Etant donné que le probléme des valeurs moyennes est résolu par les équations (1.82)
et (1.83), étudions les fluctuations de vitesse.

1.2.2 Fluctuations des vitesses

La solution de (1.80) avec v(0) = vg est
1 t
v(t) = voe " + —/ dse 7=5) £ (s). (1.87)
mJo

Ainsi, en tenant compte de I'hypothése 1.1 assurant (f(¢)) =0 on a

t1 to
t)(t), = o [ sy [T dsae 0D (1) fao)) e 040,
m 0 0 N———’

(126)05(51—32)

(1.88)
On calcule

t1 to
/ ds; / dss e7(81+82)5(31 — 89)
0 0
= / ds; / dss e7(31+32)9(t1 — 51)0(ta — s2)0(s1 — s2)
0 0

:/ dsy 6251 9(ty — 51)8(t2 — s1)
0

=0(min(ty,t2)—s1)

min(t1 ,tg)
= / dsy e?751
0

_ i 2y min(t1,t2)
=5 <e 1) . (1.89)

En insérant (1.89) dans (1.88) on obtient en utilisant ¢1 + to — 2min(t1,t2) = [t1 — to|

] G ) R L S

En particulier pour t{ =ty =%t on a

C - -
(V1) = 5 (1= 1) + e, (1.91)
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L’indice vy rappelle que la vitesse initiale n’est pas aléatoire, mais fixée & vy.

Pour déterminer C', on pose que la particule approche I’équilibre thermique pour ¢ — oo,
par conséquent I'équipartition de I’énergie donne

lim 1m<v2(t)> = %k:BT. (1.92)

t—oo 2

D’autre part, on tire de 1’équation (1.91)

.1 9 e
En égalant (1.92) et (1.93) on tire la constante C
C =2mykpT. (1.94)

05 .

F1G. 1.10 — Représentation adimensionelle de <1)2>U0 (t) pour une température fixée % =17?% =1 (droite

(1)), ¥* < vg = 2 (courbe (2)) et D* > v§ = 1 (courbe (3)). La droite (1) représente le cas ot la vitesse
initiale v est exactement la vitesse d’équilibre. La courbe (2) représente le cas ot la vitesse vg est supérieure
a la vitesse d’équilibre, tandis que pour (3) vo y est inférieure. Ce dernier cas correspond & une vitesse vo

tellement faible que les fluctuations thermiques accélérent la particule.

Avec la valeur de C' trouvée, I’équation de Langevin devient

d - Q’YkBT
So(t) = —o() + /=

f(@0), (1.95)

avec (f(t1)f(t2)) = d(t1 — t2). Le processus de Langevin décrit la thermalisation d’une
particule de vitesse initiale vg.
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1.2.3 Fluctuations des positions

On s’intéresse maintenant a la fluctuation des positions, et plus spécifiquement, suppo-
sant xg = 0, a I'écart quadratique moyen <x2>vo (t). Notons 8 = (kgT) ™!, alors en utilisant
(1.94) et (1.90) on a

@0, = fan [l oieten,

o L t t —7|t1—ta] ‘ —t ’ 9 t o 2

= — dity dtge it _ dt; e M0 + 02 dty et

G| Jy ), - (/ O

=2 lot dty /51 dto e—v(t1—t2)

[yt e -1y (1 1 z
e ()] i)

ﬁm Yy y ol 5
_ 2 1 fot _ 20t _ g 2 (1, X 2 o
= ' e 0T T A (ST ) (190

qui décrit I’écart quadratique moyen de la position d’'une particule de conditions initiales
{z¢o = 0,v9} dans un fluide a I’équilibre thermique.

En développant les deux premiers termes de (1.96) pour ¢ petit, on voit qu’ils ne contri-
buent pas jusqu’a lordre ¢3, ainsi

t—0
(2*(1)),, = (vot)?, (1.97)
et pour les temps longs,
t—o0 2

Pour ¢ — 0, on trouve la loi du mouvement balistique x(t) ~ vot car si le temps ¢ est
suffisamment petit (¢ < t.), il n’y a pas encore eu de collisions.

Pour t — oo, le temps est suffisamment grand pour qu’il y ait eu beaucoup de collisions
et on retrouve la loi de diffusion de Einstein (1.23). En particulier, (1.98) montre que la

constante de diffusion D = ﬁ prend & nouveau la valeur prédite par Einstein.

La théorie de Langevin interpole donc entre le comportement balistique et diffusif.

Dans cette analyse, nous avons attribué a la particule une vitesse initiale vy bien dé-
terminée. Si ce n’est pas le cas, la particule étant & tout instant immergée dans le fluide &
I’équilibre, il est naturel de remplacer v2 par sa moyenne thermique 1/(8m). Les relations
(1.90), (1.91) et (1.96) deviennent alors compte tenu de (1.94) (supprimant alors Iindice
vo)

t)olt) = el (1.99)
%<v2(t)> = % (1.100)
(z%(t)) = ﬁmivz('yhl—e_”t—l) (1.101)

On voit que la corrélation des vitesses tend exponentiellement vite vers zéro et que ’énergie
cinétique moyenne reste stationnaire au cours du temps.



Chapitre 2

Processus stochastiques

2.1 Introduction

Tout processus dont 1’évolution temporelle peut étre analysée en termes de probabilité
est dit processus stochastique. La notion de processus stochastique est donc trés générale.
Le processus peut étre vectoriel, a valeurs discrétes ou continues. Il se manifeste par ’ob-
servation d’'une grandeur x(t) variable au cours du temps t. Par exemple, x(¢) peut étre la
coordonnée d’une particule brownienne, la position d’un piston soumis au choc des molé-
cules d’un gaz, la concentration d’une substance chimique, le nombre de photons absorbés
ou émis par un atome, les valeurs boursiéres, ou encore le nombre de personnes attendant
au bas d’une file de téléski. Il s’agit souvent d’une observable macroscopique soumise aux
effets d’un grand nombre de variables microscopiques.

Comment analyser en pratique un processus stochastique? Nous traitons par la suite
le cas d’un processus scalaire continu.! On répéte une succession de N expériences avec la
méme condition initiale z(tg) = z¢. On obtient ainsi N réalisations du processus. Etant
donné que nous décrivons le processus en termes de probabilité, il faut trouver un moyen de
construire les distributions de probabilité & partir de ’expérience. Pour ce faire, considérons
une séquence de temps tg, t1, ..., t,. L’idée est alors de prendre au temps t; un petit
intervalle I; = [z;,2; + dz;], et de regarder le nombre de réalisations qui passent dans
cet intervalle au temps t;. La probabilité qu'une réalisation prenne une valeur entre x; et
xj + dx; s’obtiendra alors naturellement comme le nombre de réalisations passant par I;
divisé par le nombre total de réalisations. Ceci conduit aux définitions suivantes.

2.1.1 Probabilités absolues et conditionnelles

Soient n intervalles I; = [x;,2; +dxj], 7 =1,...,n, n = 1,2,.... Nous définissons les
distributions de probabilité jointes du processus par

W(z1,t1;...; 2, ty) day ... da,, = probabilité de trouver {z(t1) € I1,...,x(t,) € I}
nb. de réalisation qui passent dans [y, ..., I,

= 2.1
nb. total de réalisations » (21)

avec t; #t; ViF#jeti,j<n,n=12,....

'Les définitions se généralisent aisément aux processus vectoriels ou & valeur discréte.

21
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A
x . ! Ik:}
o e
Iy | z1(t)
Tl g V rrrrrrrrrrrrrrrrr o (t)

Il | W//\/v Iﬁg(t)
o ¢ : § , |
L) o

>t

to t1 to 173

F1G. 2.1 — Construction de distributions de probabilité a partir de N > 1 réalisations d’un processus
stochastique. Contrairement a la définition des I; = [z;,z; + dz;], ce schéma représente des intervalles I;
symétriques autour de ;.

Définition 2.1 (Probabilités absolues) Les fonctions W (xy,t1;...;%n,ty), t1 # to #
... % t,, sont appelées probabilités absolues du processus, % et doivent satisfaire auz condi-
tions naturelles suivantes.

(i) W(x1,t1;. 520, t0) >0

(i) Jgedary .. de, Wzt 2n,t) = 1V {1t 52, tn )

(15i) W (x1,t1;...;@n,tn) est une fonction symétrique sous les permutations des argu-
ments {x1,t1;...;Tn, ty}.
(iv) fR dzy, W(z1,t1;. 5 2n,tn) = W(T1,t15 .05 3 T 1, tn1)

La condition (iii) tient a la logique commutative de formulation de la probabilité jointe
de plusieurs événements.

La condition (iv) est évidente car la somme sur tous les événements possibles au temps
t, réduit la distribution a celle des événements aux temps t1,...,t,_1. C’est une relation
de compatibilité entre les distributions & n et n — 1 arguments.

Sit, — tp_1, on pose

hm W(.Tl,tl;...;(En_l,tn_l;l’n,tn) = W(]Il,tl;...;(En_l,tn_l)(S(]In —:ZIn_l) (22)

tn—tn—1

puisqu’alors les variables x,, et z,,_1 doivent étre identifiées.

Définition 2.2 (Processus stochastique) Un processus stochastique est défini par la
donnée de l'ensemble des probabilités absolues {W(z1,t1;...;Tn,tn)}, >, satisfaisant auz
conditions (i)-(iv).

Définition 2.3 (Processus stationnaire) Un processus stochastique est dit stationnaire
si W(x1,t1;. .3 &n,ty) = W(z1,t1 +75.. 520, t, +7) VT € R, Vn > 1. En particulier
(1) W (a1, t1; 32, t2) = W (w1, 0522, b2 — t1)

2Par brieveté de langage et si cela ne préte pas a confusion, on qualifie W de probabilité alors qu’il s’agit
d’une densité de probabilité si x est une variable continue.
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(i) W (x1,t1) = W (1) est indépendant du temps.

Dans 'exemple de la figure 2.1 o la condition initiale est fixée, la distribution & un
temps est telle que lim; ., W(x,tg) = 6(x — ). Si les conditions initiales sont aléatoires,
W (zo,t0) décrit leur distribution.

Parfois, on ne dispose que d’une seule (longue) séquence temporelle sans qu’il soit pos-
sible de générer plusieurs réalisations (par exemple une variable météorologique, la lumino-
sité d’une étoile, etc.). Si le processus est stationnaire, on peut scinder la séquence en N
partitions de durée T dont on fera la statistique.

A\

F1G. 2.2 — Construction de distributions de probabilité a partir d’une seule séquence temporelle d’un
processus stationnaire z(t).

Bien souvent, il est utile de travailler avec les probabilités conditionnelles.

Définition 2.4 (Probabilités conditionnelles) Soient t1 < to < ... < tg, on défi-
nit alors la probabilité conditionnelle P(x1,t1;. .. ;g te|Tke1, tha1; -3 Ty tn) dTggq - . . Aoy,
par

P(xy,t1;. . s xp, te| ka1, teat; - -5 Tny tn) dogay - .- day,

B { probabilité de trouwver {x(tg41) € Ipt1,...,x(tn) € I} (2.3)

sachant que {z(t1) € I1,...,x(tg) € I},

et
W(xy,t1;5. . 520, ty)
P(xy,t;.. .28, te|x that; . ;Tn,tn) = . 2.4
(@1, 15 ko Uk [Tt 1, bt 15+ - T, ) W et o ) (2.4)

Ces distributions jouissent des propriétés

(1) P(x1,t1;- -5 bl T, thgas - -3 Tns ) >0
(i) fgoow dTps1 - dzn P(zr, s o5 @ b Thgt st 1 -3 T tn) = 1
(iil) P(x1,t15. .52k, te|Tra1, that; - - -5 T, ty) est symétrique sous les permutations des
arguments {z1,t1;...; 2k, tp} et {Trr1, thrts .3 Ty tn -
(iv) Jgdmn P(zy,ti;. . T, te|Thgt, thgts - - -5 Ty tn)
= P(z1,t15. 5 T, te|Thr1, ty 1 -+ -5 Tn—1, tn-1)

qui suivent immédiatement de la définition 2.1. Il découle en particulier de (2.2) que

lim P(x1,t1]|z2,t2) = d(x1 — x2). (2.5)

to—t1
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Pour alléger 1’écriture, nous notons souvent les couples {x;,t;} par leur indice i. La

donnée des P(1,...,k|k + 1) avec W (1) est équivalente a celle des W. En effet, par la

définition (2.4) qui dit que P(1,... klk+1,...,n) = % on a

w(L2) % wpa) (2.6)
w(L2,3) 2 w(1,2)P,213) € w)paf2)Pa,23) (2.7)
Ww(1,2,3,4) 2 w1,2,3)P(1,2,314) 2 w)P12)P(1,23)P(1,2,3]4) (2.8)
Wi, 23 k) =W(Q)P2)P(1,23)... P(1,2,3,... k- 1|k), (2.9)

ce qui donne I'expression des probabilités absolues W connaissant les probabilités condi-
tionnelles P. Un processus stochastique peut donc aussi bien étre défini par la donnée de
ses probabilités absolues que celle de ses probabilités conditionnelles.

Remarque On peut avoir deux points de vue sur le processus z(t).
(i) Le processus consiste dans I’ensemble {z(t,w)} , de ses réalisations. Les diverses réa-
lisations x(t,w) sont distinguées par un indice w appartenant & un ensemble approprié
Q) (par exemple les conditions initiales w et l'espace de phase ). Souvent on adopte
la méme notation x(t) pour désigner le processus dans son ensemble, ou une de ses
réalisations particuliére.
(ii) Pour chaque t fixé, z(t) est une variable aléatoire usuelle. On peut alors considérer
le processus comme la collection (infinie) {x(t)}, de toutes ces variables aléatoires
dont les distributions jointes sont données par la hiérarchie des fonctions W.
o

2.1.2 Corrélations, cumulants et fonction génératrice

Définition 2.5 (Fonction de corrélation) La fonction de corrélation d’ordre n du pro-
cessus, notée C(ty,...,t,), est définie pour t1 # ... # t, par

Ctr,... tn) = (x(t1) ... x(tn)) = / dzy...dzy 1. .2, W(z1,t15. . 520, 1), (2.10)

Si deux temps coincident, on utilise (2.2), par exemple

lim C(tl,tg) = / dxl/da:Q r1 X9 lim W(.rl,tl;.rg,tQ)
to—t1 R R to—t1 P

:W($1,t1)5(zl—(£2)
= / da:l {L’% W(.Tl,tl)
R
= (2*(t1)), (2.11)

et ainsi de suite. Les fonctions de corrélation généralisent pour le processus stochastique la
notion de moment d’une distribution de probabilité.
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Une question importante est de savoir sur quelle échelle de temps les variables x(t1) et
x(t2) ont des corrélations non triviales. Cette information est donnée par le comportement
de la fonction d’autocorrélation.

Définition 2.6 (Fonction d’autocorrélation) La fonction d’autocorrélation du proces-
sus K(t1,t2) est définie par’

Kt ta) = ( (a(0) = {ot0r) ) (s(t2) = (o)) ) = Cltr,t2) ~ Cl0) Clta). (212

Pour un processus stationnaire K(t1,t2) = K(|[t; — t2|). Si K(|t1 — t2]) ~ 0 lorsque
|t1 — to| > t¢, alors t. est appelé temps de corrélation. Ainsi, lorsque |t1 — ta| > t., on peut
considérer que les variables aléatoires x(t1) et z(t2) sont pratiquement indépendantes.

Une notion importante est celle de fonction génératrice. Pour une variable aléatoire ordi-
naire, la fonction génératrice permet d’obtenir les moments de la distribution par dérivation.
Rappelons-en la définition.

Définition 2.7 (Fonction génératrice des moments) Soit une variable aléatoire x de
distribution P(x) dont les moments sont (x") = [p dza"P(x), alors on définit la fonction
génératrice des moments G(z) par

G(z) = Z %n' (x™) 2" = <Z (zz;;’)"> = (e"") = /Rda: e P(z), (2.13)

telle que les moments s’obtiennent par dérivation

d"G(z)

T = i" (2") | (2.14)

z=0

G(z) est donc la transformée de Fourier de P(x). Cette derniére définition montre que
I'information contenue dans I’ensemble des moments est équivalente & celle de la distribution
de probabilité P(z). En effet, connaissant tous les moments (et sous des hypothéses de
régularité des fonctions), il est possible de calculer P(x). Cette définition se généralise
comme suit pour un processus stochastique.

Définition 2.8 (Fonction génératrice des corrélations) Soit f(t) une fonction test,
alors on définit la fonction génératrice des corrélations G(f) par

Glf) = Z;);—T:/ndtl...dtn F(t) o F () ((t) - 2(t)

—C(treostn)
S5 (s

_ <ei I dtw(t)f(t)> 7 (2.15)

I
|~

3

3Dans la littérature, on trouve souvent le terme fonction de corrélation tronquée pour désigner la fonction
d’autocorrélation, tandis que la fonction de corrélation est le moment d’ordre 2. Néanmoins, ces dénomi-
nations sont sujettes & confusion, et certains auteurs emploient le terme de fonction de corrélation pour
décrire la fonction de corrélation tronquée.
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telle que les fonctions de corrélation s’obtiennent par dérivation fonctionnelle

"G(f) iy N
5T 61 () |y o) lin)) (2.16)

La relation (2.16) fait apparaitre 'opérateur de dérivation fonctionnelle, dont le symbole
st %. Sa propriété formelle essentielle est

oft) _ o
sy = 0= (2.17)

d’ott l'on établit facilement (2.16) & partir de (2.15).

Définition 2.9 (Cumulants) Les cumulants K(t1,...,t,) sont définis par
% n
K(f)=In(G(f)) = Z ﬁ/ dty...dty f(t1)... f(tn) K(t1,...,tn). (2.18)
n:l . n

On peut exprimer les corrélations en termes des cumulants, et vice-versa. Par exemple,
on a

C(t1) K(t1) (2.19)
Cti,t2) = K(t1)K(t2) + K(t1,t2) (2.20)
C(tl, to, tg) = K(tl)K(tQ, tg) + K(tz)K(tl, t3) + K(tg)K(tl, tg)
+ K(t1) K (t2) K (ts) + K(t1,t2,13) (2:21)
Pour montrer (2.19) & (2.21), posons
K, = i”/ndtl coodty f(tr) . f(tn) K(t1, ...y tn), (2.22)
de sorte que
[e%S) Kn
K()=(G(f) =3 (2.23)
n=1

Pour trouver les corrélations, nous devons établir une expression pour G(f) en fonction des
K,, connaissant celle de In(G(f)), puis identifier cette série avec celle (2.15) définissant les
corrélations. Ainsi, en développant jusqu’au troisiéme ordre

G(f) = en(G(f))

(2.23) K1+%K2+%K3+...

1 1 21
= K+ K2+3K3+ <K1+ K2> +§Kf’+...

= Kty (K2+K1) ,(K3+3K1K2+Kf)+
'2

= i/dtlf(tl)K(tl)+%/ dty dta f(t1)f(t2) (K(t1,t2) + K(t1)K(t2))
R )3

,L'3

+= - dty dto dts f(t1) f(t2) f (t3) (K (t1, ta, t3) + 3K (t1) K (ta, t3)

3!
+K (1)K (t2) K (t3))
+... (2.24)
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Le résultat suit de I'identification terme a terme de cette série (2.24) avec celle (2.15) qui défi-
nit G(f). On tient également compte du fait que les fonctions C(t1,...,t,) et K(t1,...,tn)
sont symétriques sous ’échange de leurs arguments. On peut inverser les relations entre
corrélations et cumulants. Par exemple, on voit de (2.19) et (2.20) que K (t1,t2) n’est rien
d’autre que la fonction d’autocorrélation du processus. Les cumulants généralisent donc
cette notion aux corrélations d’ordre supérieur. Les cumulants sont parfois appelés fonc-
tions de corrélation tronquées.

Lemme 2.1 (Corrélations en fonction des cumulants) La régle générale qui donne
Uexpression de la fonction de corrélation d’ordre n en termes des cumulants d’ordre k < n
est la suivante.

(i) Diviser {t1,...,tn,} de toutes les fagons possibles en union de sous-ensembles non

vides (partitions).

(ii) Associer une fonction K a chaque sous-ensemble.

(iii) Pour chaque partition, prendre le produit des fonctions K.

(iv) Sommer sur toutes les partitions possibles.
Ceci se formalise de la fagon suivante. Soit Q = {t1,...,t,}, soit p le nombre de partitions
de Q, soit QO = U;“:l Agi) la décomposition de Q2 selon la i°™ partition comportant k; < n

)

sous-ensembles notés Ag. et indicés par j, alors

K (Ag?)) . (2.25)

cw-3]

=1 j5=1

2.2 Processus markovien

2.2.1 Définition et exemples

La classe des processus stochastiques définie par les seules conditions (i)-(iv) de la dé-
finition 2.1 des probabilités absolues est trés vaste. Pour que le concept de processus sto-
chastique soit utile, il est nécessaire de spécifier des conditions supplémentaires.

Définition 2.10 (Processus de Markov) Le processus est dit de Markov* (ou marko-
vien) si les probabilités conditionnelles ont ¥V t1 < to < ... < t, la propriété

P(xy,t1;m0,t0; .. 51, tn1|Tn, tn) = P(Tpn—1,tn-1|Tn,tn)- (2.26)

Une telle définition équivaut a dire que I’événement {x,,t,} ne dépend que du précé-
dent {z,—1,t,—1}. On dit de fagon imagée que le futur est indépendant de I'histoire du
systéme, ou encore que le processus est sans mémoire. En fait, le caractére markovien (ou
approximativement markovien) d’un processus physique est une question délicate, comme
nous le verrons dans I'exemple du mouvement brownien et dans d’autres situations.

Lemme 2.2 La seule donnée de W(x,t) et de la probabilité de transition de Markov
P(x1,t1|xe,te) détermine entiérement le processus stochastique de Markov.

“Du nom du mathématicien russe Andrei Andreievitch Markov (1856-1922). Il a notamment démontré
les inégalités de Tchebychev, et affiné la preuve du théoréme limite central. Pour étudier la loi des grands
nombres, il introduit les chaines ou processus de Markov.
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Preuve De la définition 2.2 on sait que le processus stochastique est défini par la donnée
des fonctions W. De plus, nous avons montré a la fin de la section 2.1.1 que les W étaient
entiérement déterminés par la donnée de W (z1,t1) et des probabilités conditionnelles P.
En appliquant la définition du processus de Markov sur 1’équation (2.9) on a

W(z1,t15. .. 520, tn) = Wz, t1)P(z1, ti|z2, t2) P(x2, ta|x3,t3) . .. P(@n—1,tn—1|Tn, tn),
(2.27)
ce qui achéve la preuve car on constate que les deux fonctions W(x,t) et P(xq,t1|z2,t2)
déterminent tous les W. Réciproquement, si les W sont de la forme (2.27), on voit de la
définition (2.4) que la propriété de Markov est vérifiée. |

Montrons que tout mouvement déterministe jouit de la propriété de Markov.

Exemple 1 (Equation déterministe) Considérons I'équation différentielle de premier
ordre i(t) = F (x(t)).> Soit ¢(xg,t — to) le flot de 'équation donnant la trajectoire x(t) =
¢(xo,t — tg) correspondant a la condition initiale x(tg) = x(. Choisissons des points de
cette trajectoire, par exemple {xg, to; x1,t1; X2, to; ... Tn, tn}- Etant donné que la condition
initiale détermine complétement la solution, on a

z1 = ¢(xo,t1 — o), (2.28)
Ty = P(xo,ta —to) = d(x1,t2 — t1), (2.29)
Tn = O(xo,tn —1to) = d(Tp—1,tn —tn_1)- (2.30)
t
to
1 T v,
Zo

F1G. 2.3 — Trajectoire déterministe et points z; = x(t;),i = 1,...,n.

Puisque la particule partant de {xg,tg} doit passer avec certitude par tous les points
{xi,t;};, on a par définition

W(.Tl,tl; cee ,.Tn,tn) = 5 (.’131 - ¢(x07t1 - to)) 5 (.'172 - ¢(x07t2 - to)) X
X 0 (1:3 — (;5(1:0, t3 — to)) .0 (l’n — (;5(1:0, t, — to)) . (2.31)
En utilisant (2.28) a (2.30) dans (2.31) on a
Wiz, t1;. . 520, tn) = 6 (21 — (20,81 — t0)) 0 (22 — P(w1,t2 — t1)) X
X 0 ($3 — qb(l‘Q, ts3 — tg)) ) (SL‘n — ¢($n_1, t, — tn—l)) . (2.32)

511 n’y a pas de restriction a la généralité car toute équation différentielle d’ordre supérieur peut se
réduire & un systéme différentiel de premier ordre (x(t) est alors un processus vectoriel).
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Si 'on définit

P(z1,t1]z2,t2) = 6 (22 — ¢(21,t2 — 11)) , (2.33)
W(z1,t1) =6 (1 — ¢(xo,t1 — o)) , (2.34)

alors en insérant (2.33) et (2.34) dans (2.32) on obtient

W(xy,t1;. .. 520, ty) = W(z1,t1)P(z1, t1|z2, t2) P(x2, to|xs, t3) . .. P(Xp_1,tn-1|Tn,tn),
(2.35)
ce qui est 'équation (2.27) et le processus est entiérement déterminé par la donne de
W(x1,t1) et de P(x1,t1|xe,t2), par conséquent le processus est de Markov.

La meécanique est donc un processus de Markov vectoriel en considérant le couple
{q(t),p(t)} solution des équations canoniques

i(t) = (%H@,p), (2.36)
p(t) = —%H(qm), (2.37)

avec conditions initiales ¢(0) = go et ¢(0) = vp. Si 'on ne considére que le processus ¢(t)
sans tenir compte de p(t), le processus mécanique perd la propriété de Markov car la seule
donnée de la position ne détermine plus la trajectoire. D’une maniére générale, il se peut
qu'un processus devienne markovien en adjoignant des variables, ou qu’il perde cette pro-
priété en supprimant des variables. Il est donc important de préciser pour quelles variables
la propriété de Markov est valable. De plus, si les conditions initiales gy et vy sont statis-
tiquement distribuées, le mouvement devient authentiquement aléatoire et la propriété de
Markov est également perdue, voir I’exemple 2. o

Exemple 2 (Mouvement brownien) Supposons un mouvement brownien sans champ
de force. On considére les déplacements successifs (x; —z_1) de la particule et on observe a
I’échelle de temps 7 de résolution des mesures que ces déplacements sont indépendants lors-
qu’on en fait la statistique. La probabilité conditionnelle d’une succession de déplacements
débutant en {x1,t1} est alors de la forme

W(:Iil,tl; . ;(En,tn)

P(xy,t1|xa,to;. . 520, ty) =

W(.Tl, tl)
= F(xg —x1,tp —t1;23 — w2, t3 —to;.. .50 — Tp_1,by — 1)
n—1
= H F(QS‘Z‘_H — Ty, ti+1 — ti). (2.38)
i=1
La seconde ligne exprime l'invariance de P(z1,t1|xe,to;...; Ty, t,) sous les translations

d’espace et de temps. La factorisation (2.38) résulte de I'indépendance statistique de ces
déplacements pour des intervalles de temps suffisamment grands (¢,11 —t; = 7), et montre
que W(z1,t1;...;2p,t,) est précisément de la forme (2.27). A I'échelle de résolution 7, le
processus peut donc étre considéré comme markovien. Un tel processus est dit & «incréments
indépendants».

Remarquons encore que la propriété de Markov ne peut pas étre rigoureusement sa-
tisfaite dans une échelle de temps microscopique, en particulier & cause du phénoméne de



30 CHAPITRE 2. PROCESSUS STOCHASTIQUES

{z1,t1} {Zn-1,tn-1}

{z3,t3}

F1c. 2.4 — Mouvement brownien et échelle de temps microscopique (trait fin) et macroscopique (trait
épais). Sur des temps suffisamment longs, la probabilité de déplacement de la particule située en {x, ¢y}
ne dépend pas des déplacements antérieurs, ce qui valide les hypothéses de Markov.

recollision. Les chocs que subit une particule donnée dépendent de toute son histoire an-
térieure. En effet, supposons qu’en tg la particule a entre en collision avec la particule b.
Cette derniére est alors déviée de sa trajectoire et subit par exemple un choc en ¢; avec
une particule c¢. Au temps to, la particule b entre & nouveau en collision avec la particule
a, et donc ce dernier choc subit par a est la conséquence directe d’une collision qui s’est
passée avec b en tq, soit deuxr pas de temps avant cette derniére collision. Par conséquent,
la propriété de Markov n’est pas vérifiée pour le mouvement de la particule a.

FIG. 2.5 — Phénomeéne de recollision qui montre que la propriété de Markov n’est formellement pas vérifiée
pour le mouvement brownien. En effet, la particule a subit une seconde collision avec b qui est la conséquence
directe de sa trajectoire plusieurs pas de temps auparavant.

Par contre, le mouvement brownien peut approximativement hériter de la propriété de
Markov si I'on considére des collisions "fraiches", c’est-a-dire toujours avec des nouvelles
particules qui n’ont pas été affectées par la trajectoire antérieure de la particule test. Ceci
est par exemple le cas pour des fluides suffisamment homogénes et dilués.
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Analyse du mouvement brownien du point de vue de la mécanique et relation
avec le concept de processus stochastique. Supposons N particules de masse m en
interaction avec une particule de masse M (la particule brownienne), de coordonnées y;(t),
i=1,...,N et X(t) respectivement. Donnée une condition initiale
yilte) =10 Bilto) =¥, X(to) = X°, X(to) = V",

les équations de Newton permettent en principe de calculer la position de la particule
brownienne X (t) = X (t, {y?,v?; X0 VO}) comme fonction des conditions initiales. Si ces
derniéres ne sont pas précisément connues, l'idée est d’analyser X (t) comme processus
stochastique : les motivations sont doubles.

(i) Méme si les conditions initiales étaient connues, la trajectoire X (t, {y? , v?; X0, VO})
apparait comme trés erratique, bien que déterministe. On a avantage a la décrire par
des outils probabilistes.

(ii) L’incertitude sur les conditions initiales donne un caractére probabiliste authentique
a X(t).

Cet exemple montre que le processus peut étre considéré comme dépendant d’une variable
aléatoire sous-jacente w = {y?,v?;XO,VO} (les conditions initiales), c’est-a-dire que les
différentes réalisations du processus brownien sont indexées par les valeurs de w, et on les
notera X (t,w). Supposons que 'on connaisse exactement la condition initiale w de toutes
les particules, alors, comme dans I'exemple 1, les distributions jointes sont

Wo(x1,t1;. o @, ty) =0 (1 — X(t1,w)) ... 0 (2 — X(tp,w)) . (2.39)

Mais comme nous l'avons vu, la connaissance parfaite des conditions initiales n’est pas
possible, donc il est nécessaire d’introduire la distribution de conditions initiales u(w).
Les distributions jointes du processus avec conditions initiales aléatoires sont obtenues en
pondérant (2.39) avec p(w)

W(xy,t1;. .., Tp,tn) = /dw W)Wy (z1,t15. .., Tpy tn)

(2§9) /dw,u(w)5 (xl _ X(tl,W)) ) (1;” — X(tn,w)) . (240)

On vérifie que W(x1,t1;..., 2, t,) défini par (2.40) satisfait aux points (i) & (iv) de la
définition 2.1 page 22 des les probabilités absolues, et donc leur donnée définit un proces-
sus stochastique, mais ce processus, maintenant décrit & 1’échelle de temps t. des collisions
microscopiques, ne jouit plus de la propriété de Markov. Un théoréme général di & Kolmo-
gorov assure que toute famille de probabilités absolues satisfaisant les points (i) a (iv) de la
définition 2.1 peut se mettre sous la forme (2.40) & I'aide d’une indexation adéquate w des
réalisations. Toutefois, ’espace 2 des événements w est alors abstrait, et n’a pas toujours
une interprétation aisée. o

Les exemples précédents montrent que l'attribution de la propriété de Markov & un
processus est délicate. Elle dépend du choix des variables stochastiques et de 1’échelle des
temps d’observation. Dans les exemples proposés dans la suite du cours, on admettra que la
propriété de Markov conduit a une description acceptable du phénoméne physique considéré.
Ce point reste toujours sujet & caution et peut étre invalidé par des observations plus fines.
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2.2.2 Equation de Chapman-Kolmogorov

Définition 2.11 (Equation de Chapman-Kolmogorov) Soit un processus stochastique
de Markov, alors la probabilité de transition P(x1,t1|xa,ts) et la distribution W (x,t) satis-
font

P(wl,tl‘xg,tg) = /dxg P(:Iil,tl‘xg,tg)P(Jrg,tg‘xg,tg) (2.41)

W(:Iig,tg) = /dxl W(:z:l,tl)P(xl,tl\xg,tg). (2.42)

L’équation (2.41) est appelée équation de Chapman-Kolmogorov.

Preuve
(i) Preuve de 'équation (2.41). Soit un processus de Markov, alors

Wz, t1; 22, ta; 23, t3) = W(x1,t1) P(21, t1 |22, t2) P22, ta|x3, t3). (2.43)

En intégrant (2.43) sur x5 on a

/dwz W (x1,t1; 22, t2; 23, t3) :W(«T17t1)/d$2 P(x1,t1|22, t2) P(xo, ta]xs, t3).

=W (z1,t1;23,t3)
=W (x1,t1)P(21,t1]23,t3)

(2.44)
En simplifiant les deux cotés de (2.44) par W (x1,%1), on obtient (2.41).
(ii) Preuve de I’équation (2.42). Soit un processus de Markov, alors
W(.Tl, tl; 9, tg) = W(Z‘l, tl)P(xl, tl |.732, tg). (2.45)
En intégrant (2.45) sur z; on a
/ d.rl W(;rl, tl; 2, tQ) = / d.rl W(;rl, tl)P(ZL‘l, t1|33‘2, tQ), (2.46)
:W(.’Eg,tg)
ce qui est bien I’équation (2.42).
|

L’équation de Chapman-Kolmogorov (2.41) s’interpréte de fagon intuitive comme suit.
Le processus initié en {1, 1} atteint I'état {3, t3} en passant par I'un quelconque des états
To en to. Ainsi, I'intégration sur zo représente la somme sur toutes les facons possibles au
temps to pour atteindre x3 au temps t3.

Tout processus de Markov livre deux fonctions P(x1,t1|x2,t2) et W (x,t) satisfaisant
(2.41) et (2.42). Réciproquement, toute paire de telles fonctions normalisées, c’est-a-dire
satisfaisant [p dz W (z,t) = 1 et [dag P(x1,t1|z2,t2) = 1, définit par Vintermédiaire de
(2.27) un processus stochastique de Markov.

Dans la pratique, le physicien dit qu'une évolution a un caractére markovien dés qu’il est
capable de la décrire par une probabilité de transition satisfaisant a I’équation de Chapman-
Kolmogorov. Cela ne suffit pas pour dire que le processus est markovien au sens mathéma-
tique : pour cela il faut encore vérifier ’équation (2.26) pour tous les n. Une telle vérification
n’est en général pas possible expérimentalement.
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Définition 2.12 (Processus de Markov homogéne) Un processus stochastique de Mar-
kov est dit homogéne (dans le temps) si
(i) P(ZEl,t1|$2,t2) = P(ZL‘,0|{L‘2,t2 — tl).

Définition 2.13 (Processus de Markov stationnaire) Un processus stochastique de Mar-
kov est dit stationnaire si

(i) P(ZEl,t1|$2,t2) = P(ZL‘,0|{L‘2,t2 — tl)

(i) W(x,t)=W(x).

Il est clair qu’un processus stationnaire est homogéne, mais la réciproque n’est pas vraie.

2.2.3 Loi de semi-groupe
Pour un processus de Markov homogéne, il est commode de considérer
P(x1|z2,t) = (x1|T¢|x2) (2.47)

comme les "éléments de matrice" d’un certain opérateur 1" qui agit sur les distributions de
probabilité p(x). L’équation de Chapman-Kolmogorov (2.41) devient en tenant compte de
la propriété de homogénéité

P(QS‘1|:E3, t3 — tl) = /dﬂ:‘Q P(QS‘1|:E2, t2 — tl) P($2|3§‘3, t3 — tQ). (2.48)
En posant to — t1 = 7y et t3 — to = 7o, (2.48) devient
P(xi|x3, 71+ 72) = /dmg P(x1|zo, 1) P(22|23, T2). (2.49)

Ceci se réécrit en adoptant la notation opératorielle (2.47)

(@[T smlaa) = [ doa @[Ty o) (0l Trfes) (2:50)
ou encore pour les opérateurs
T7—1_|_7—2 = TTl . TTQ, T1 Z 0, T2 Z 0, TO =1 (251)

ce qu’on appelle loi de semi-groupe car on a une représentation de I'addition 7 = 71 + 7
sur ’axe positif uniquement. La relation de normalisation s’écrit

/d:rg (@[T |wa) = 1. (2.52)

Si le processus est stationnaire, alors dans cette notation ’équation (2.42) donne bien évi-
demment

/ dy W (1) (1| T |2) = W (a), (2.53)

c’est-a-dire 1(z) = 1 et W (z) sont des vecteurs propres de T’ a droite et a gauche respec-
tivement
T 1(z) =1, W (z)T, = W(x), (2.54)
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pour un processus de Markov stationnaire.

On introduit encore le générateur du semi-groupe de Markov par

=1
T, — T
G = —lim < 0 > (2.55)
7—0 T
et en utilisant e"¢" =T — G7 + O (72) et la loi de semi-groupe (2.51) on obtient
T, = lim T T = tim (1- ST N—e—GT (2.56)
7—_N—>oo /N 7—/N_N—m)o N - ’ '
qui satisfait a
d
—T, = —GT-. 2.
dr ¢ (2.57)

En particulier on retrouve a partir de (2.57) I’équation de diffusion (1.17) en posant

d2

G=-D—
dx?’

(2.58)

qui est le générateur du semi-groupe de diffusion.

Analogie avec I’équation de Schrodinger. L’opérateur d’évolution d’un systéme quan-
tique est

U, = e~inH (2.59)
ol H est 'hamiltonien du systéme. Il satisfait &

d

h— Uy = HU;. 2.60
ih Ut t (2.60)
Pour une particule libre
h? d?
H=Hy= - — —_. 2.61
0 2m da? (2.61)

La forme mathématique des lois (2.56) et (2.59) est la méme si on identifie G & H/h et
7 & it. Néanmoins, la différence fondamentale provient du facteur purement imaginaire 7 de
I’équation de Schrodinger (2.60), ce qui a comme conséquence que 'opérateur d’évolution
U; défini par (2.59) satisfait a la propriété de groupe par rapport a l'addition des temps
positifs et négatifs (et non plus la propriété de semi-groupe seulement).

Les différences entre la mécanique quantique et ce formalisme des processus stochas-
tiques markoviens faiblement stationnaires peut étre exprimée comme suit.

T, régit ’évolution irréversible de la distribution de probabilité d’une quantité macro-
scopique.

U, régit 'évolution réversible de ["amplitude de probabilité d’un objet microscopique.
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2.3 Processus gaussien

2.3.1 Deéfinition, corrélations et fonction génératrice

Définition 2.14 (Processus gaussien) Un processus stochastique x(t) € R est dit pro-
cessus gaussien de moyenne nulle si tous les W(x1,t1;...;2n,t,) sont des distributions
gaussiennes normalisées en les x4, ..., T, pour chaque choix de tq,...,t,, c’est-a-dire

1 .
5 (det 4)1/? ™2 Lijm1 midisz (2.62)

W(.rl,tl; Ce ;l'mtn) =
(2m)

avec A € M, (R) une matrice n x n réelle A;; € R, symétrique A;; = Aj;, inversible
det A # 0, strictement définie positive ZZj:l x;Ajjx; > 0.

Une conséquence des propriétés de A données dans la définition 2.14 est que A est
diagonalisable avec toutes ses valeurs propres A; strictement positives. A dépend du choix
des temps t1,...,t,. Nous allons expliciter cette dépendance.

Lemme 2.3 (Transformée de Fourier de W) La transformée de Fourier des probabili-
tés absolues W(x1,t1;...;2p,1t,) est donnée par

— _ 1 n . -1 .
W (kiy s s oy ) = € 2 o= Ki(AT ) s, (2.63)

Preuve Notons (k|x) = 37" k;z; le produit scalaire usuel, et (x|A[x) = > 70", z;4i;;,
alors

W(ky,ty;... 5 kn,xn) = / dxl...dxnei<k‘x>W(3:1,t1;...;xn,tn) (2.64)

1/2
(2.62) %/ dzy _”dxnei<klx>e—%<x|A‘x>_ (2.65)
)" n

On sait que toute matrice symétrique réelle peut étre diagonalisée par un changement de
base x = O -y ol O est une matrice orthogonale O™t = O, det(O) = 1. Soit D =
o' -A.0= {Xidij}i ;= la diagonalisation de A de valeurs propres A; > 0. Avec le
changement de variables x = O -y (le Jacobien étant J = 1), I’équation (2.65) devient

— 1/2 ‘ t
W(klv t1;. 5 kn, mn) = M / dyy ...dy, e2<k|0~y)e—%<y\0 'A‘O|Y>
R"

(2m)n/2
/2 n
= o 1T [ aveonomeio (260
m)" /R

En utilisant la relation générale (1.15) de la page 6, I’équation (2.66) devient

_ det A2 (myis2 s @
W(kla tla o 7kn7 :Z:n) = ( (2 )n)/2 ( 1)/2 e ? X . (267)
T =1 A
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En utilisant 'invariance par similitude du déterminant det A = H?:l Aj, on obtient finale-
ment

Wkt bk an) = o3 2y-1(0710,3,7(0 ),
— ¢ 3(klO-D-O'[k)
— e2(klAaTlk) (2.68)
ce qui est la méme équation que (2.63), et donc achéve la preuve. [ |

Lemme 2.4 (Corrélations d’un processus gaussien) Les corrélations d’un processus
s’obtiennent par

L 0 W (ki t1; ..k, t) . (2.69)

(@(tr)...z(tp)) = "ok, Ok, ki=0Yi

Preuve (Lemme 2.4) Il suffit de constater que

(x(t1)...z(tn)) :/ dzy...dxy xy ..oy Wz, th;. .52, ty)

1 0 0 .
= —— ... = dzy ... day, S POW (2, ;.. t , (2,70
(224)W(k17t1§~~§kn7$n)
ce qui est bien la méme équation que (2.69), et par conséquent achéve la preuve. |

Dans le cas d'un processus gaussien (de moyenne nulle), on appelle covariance du pro-
cessus sa corrélation a deux temps C(t1,%2), et on a

Oltinty) = (et alt;)) = (A7), (2.71)

L’expression de la covariance C(t;,t;) = (x(t;) z(t;)) = (A_l)z.j s’obtient aisément &
partir du lemme 2.4. En effet, de (2.69) et (2.63) on a

(a(t) aty)) = -2 0 i A |

= 1 8 e_%zﬁmzl kl(Ail)lmkm Z (A_l)lm (6J,lkm + kléj,m)

I,m=1

k=0

(A_l)lm (5j,l(si,m + 5i,l5j7m) e_% Z?,m:1 kl(A_l)lmkm ‘k .

(A_l)lm (5j,lkm + k’léj,m)

(A_l)l,m/ (8i0kms + kb mr) 73 Lim=t kl(A_l)“"km‘k:O -(2.72)

(]

Vm/=1
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En posant k = 0, seul le premier terme de (2.72) est non nul, donc

(x(t;) (t;)) = % Z (A™Y), (8j40im + 6i185m)

I,m=1

- %( (A_l)jz' + (A_l)z'j)
=(Aa"t)

)
_ —1
= (A7), (2.73)
Ce résultat montre que la covariance détermine tous les éléments de matrice A~!, et donc
A. Ainsi, le processus est entiérement déterminé par sa covariance. Par conséquent, on
conclut que la covariance détermine également toutes les corrélations supérieures & 2. Le

résultat est donné par le théoréme suivant.

Théoréme 2.1 Soit un processus gaussien, alors

Z <:1:(tp1) a:(tp2)> .. <a:(tpn71) $(tpn)>, n pair,

(x(t1)...z(tn)) =< Pn) (2.74)
0, n IMmpar.
La somme s’étend sur toutes les partitions P(n) de 1,...,n en k = n/2 paires. 1l y a
k=DM =1-3-5-...- 2k —1) = 2 yermes.

Nous ne procédons pas & la preuve générale du théoréme 2.1, mais plutét & une vé-
rification. Par exemple, pour la corrélation d’ordre 4, on applique 1'équation (2.69) et en
reprenant le passage intermédiaire (2.72) on trouve aprés quelques calculs

((t)z(t2)e(ts)r(ts)) = (@(tr)z(t2)) (x(ts)z(ta)) + (2(t1)2(ts)) (2(t2)(ts))
+ (@ (tr)x(ta)) (x(t2)z(t3)) - (2.75)

Remarque Les corrélations des champs libres quantiques obéissent aux mémes relations
(2.74), qu’on appelle dans ce cas théoréme de Wick. o

Lemme 2.5 (Fonction génératrice d’un processus gaussien) La fonction génératrice
G(f) d’un processus gaussien est

G(f) = o3 Jr2 dtrdtz f(t1) f(t2) O(t1,t2) (2.76)

Preuve (Lemme 2.5) En insérant la valeur des moments donnée par (2.74) dans la
fonction génératrice (voir la définition 2.8 page 25), et en se souvenant que les moments
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impairs sont nuls donc n = 2k, £k =0,1,..., on obtient

-y / Cdty by f(t) - f () (2(t) - 2 (t)

n=0
. 2
N (2]€‘) R2k dty ... dbay f(tl) U f<t2k) Z C(tpl’tm) to C<tp2k717tp2k)
k=0 P(2k)
> k
-y Z ( [ dtrats o) 16 Clon 1)
k:O
v
:k_
o Kk
= Z 2’“/{:' < diq dt2f tl)f( )C(tlat2)>
k=0
oo 0 ), o

Lemme 2.6 (Cumulants d’un processus gaussien) Les cumulants d’un processus gaus-
sien de moyenne nulle sont donnés par

Clty,ts), n=2,
K(tl,...,tn):{ 0(1 2) 2#2' (2.78)

Preuve (Lemme 2.6) Par la définition (2.18) des cumulants on a

K(f)=In(G(f)) = Z%/ndtl...dtnf(tl)...f(tn)K(tl,...,tn) (2.79)
n=1

276) 1

—5 [ dtrdta f(10) £02) Cr, ). (2:50)

Par comparaison de (2.79) et (2.80) on en tire que seul le cumulant K (t1,t2) = C(t1,t2) est
non nul. |

Les relations (2.74), (2.76) ou (2.78) sont des caractérisations équivalentes d’un processus
gaussien.

Lemme 2.7 (Transformation linéaire) Un processus obtenu par transformation linéaire
d’un processus gaussien est encore gaussien.

Preuve (Lemme 2.7) En effet si par exemple y(t) = [ ds L(t, s)z(s) out x(t) est gaus-
sien et L(t,s) un noyau intégral, tous les cumulants d’ordre 3 et supérieur du processus
y(t) sont des combinaisons linéaires des cumulants du processus x(t) d’ordre 3 et supérieur,
donc tous nuls. |
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Définition 2.15 (Processus gaussien stationnaire) Pour un processus gaussien sta-
tionnaire (x(t1)x(t2)) = C(ta—t1) ne dépend que de la différence des temps. Un tel processus
est donc entierement défini par la donnée d’une fonction C(t) définie positive.

Nous laissons le lecteur généraliser les formules aux processus gaussiens de moyenne non
nulle. Si (z(t)) # 0, on envisage alors z(t) — (z(t)) qui est gaussien de moyenne nulle, la
covariance s’identifie a la fonction d’autocorrélation K (t1,t2).

Nous avons défini deux classes importantes : processus markoviens et processus gaus-
siens. Le théoréme de Doob caractérise la classe des processus (stationnaires) qui jouissent
simultanément de ces deux propriétés. Nous le démontrons dans le cas scalaire par un calcul
élémentaire. Il reste vrai quand le processus est vectoriel.

2.3.2 Théoréme de Doob

Théoréme 2.2 (Doob) Un processus gaussien stationnaire est markovien si et seulement
st sa fonction d’autocorrélation est exponentielle.

Preuve La distribution stationnaire W (x) est gaussienne® W (z) = ﬁe_%ﬁ

—) Puisque le processus est gaussien stationnaire, la probabilité de transition a né-
cessairement une forme gaussienne, que 1’on peut écrire en général comme

P(x,0]y, 7) = de(ax"~2bwytey?), (2.81)
ou a, b, ¢, d sont des fonctions de 7. La condition de normalisation f]R dy P(z,0ly, 1) =
1 implique

T 2 z \2
/ dy P(z,0ly,7) = de‘az%r% / dy e—clv="%)
R R
(.15) [e—ﬁ(a—%)
c
= 1 Va, (2.82)
d’ou

2
a= b—, d= \/E (2.83)
& 7T

et la condition de stationnarité (2.42) [ dz W (z)P(z,0ly,7) = W (y) implique
d

1 / _1g2 (2.81) —((a+1/2)22 —2bzy+cy?)
—— [ dze 2" P(z,0ly,7) = —/ dre \\* ey
Vor JRr R

w1 e
V2T a+1/2

1
= L 2.84
o (2.84)

=W(y)

5Pour la simplicité, on prend ici sa covariance égale & 1 et on suppose que le processus est de moyenne
nulle.
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b? 1 a+1/2
- - d=14/ . 2.
‘“ariezty T (285)

En résolvant (2.83) et (2.85) par rapport a ¢ on trouve

d’ou

a=c—1/2, b=+/c(c—1/2), d:\/g. (2.86)

Ceci conduit apres insertion de (2.86) dans (2.81)

P(z,0ly,7) = \/ge_c@_\/ccmz)

1 _ (y—)?
= ¢ 209 (2.87)
2m (1 —?) ’

ol on a encore posé

[c=1/2 1
Y= C/ S (at (2.88)

L’écart quadratique moyen est donc o = 1 — 2. Il reste & donner la signification de
~. Pour ceci, considérons la fonction d’autocorrélation pour un processus de moyenne
nulle.

@) = [ dedyayW(@)Pe0p)

dz dy $ye—((a+1/2):r:2—2bxy+cy2)

_ 19 —((a+1/2)z2—2bzy+cy2)
= 2772(%/demdye

d 10 2 12
T V2r20b <(a—|—1/2)c—b2>

d |m b
N 5\/;((a+1/2)c—b2)3/2

=" . (2.89)

~(7) est donc la fonction d’autocorrélation du processus.
Utilisant les relations de Chapman-Kolmogorov dans le cas homogéne, nous avons
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pour 71,79 > 0

) [ dedy oy WP Oy + )
R

(241 / dedy 2y W (z) / dz P(2,0), 1) P(=, 0y, 72)
R2 R

dz dz W (2) P, 0]z, ) / dy y P(2,0ly, 72)
R

T

R2

e

")/(7'2)/ dzdz zzW(x)P(x,0|z,11)
RQ

CE) ) (m). (2.90)

L’égalite (@) résulte de

(2.87) 1 / _ (=22
= dy y P(z,0ly, = dy ye 2o =~z 2.91
(y) /]Ryy (2,0[y, 72) Tors J WY v (2.91)

Seule la fonction exponentielle posséde la propriété (2.90), il existe donc un nombre
C € R tel que (2(0)z(7)) = (1) = e~C7. C est positif pour que P(x, 0|y, 7) atteigne
la distribution d’équilibre W (y) lorsque 7 — oc.
<) Réciproquement, si le processus gaussien stationnaire avec fonction d’autocorréla-
tion (covariance) exponentielle, il est identique (& une transformation d’échelle prés)
au processus d’Ornstein-Uhlenbeck, lequel posséde la propriété de Markov (voir la
section 3.2.2).
|






Chapitre 3

Processus markoviens diffusifs

3.1 Equation de Fokker-Planck

Nous allons présenter des spécialisations de ’équation de Chapman-Kolmogorov pour
des processus markoviens homogénes qui sont trés utiles pour décrire diverses situations
physiques. Dans ce qui suit, on considére les processus de Markov continus. Ils sont dits
diffusifs, dans le sens ou la théorie développée permet de généraliser la notion de diffusion
brownienne a une large classe de systémes. Les processus & valeur discréte seront traités
dans le chapitre suivant.

A titre de motivation reprenons le mouvement brownien, et calculons les moments du
déplacement de la particule & partir d’une position initiale ¢ au temps ty = 0. Selon la
relation (1.24) ces moments valent!

<(Am)k>x0 = /Rdw (x — 20)FP(xo|x,t)

1 (z—xq)?
dz (z — xg)" e~ Dt
/]R (@ =)

—u?/2

V2Dt k/2 k€
= 2Dt du u
(2D%) /]R V2m

0, k=1,
=2, (3.1)
(2mt)F/2 k> 3,

I
Q
—~
&y
~
X
[\
)
\.Pf-
o

ot C'(k) peut étre calculé par

nt1l i) T, TN palr,
R

0, n impair.

Le caractére diffusif se traduit par le fait que <(Aaz)2>x0 est de l'ordre ¢ et les mo-

ments supérieurs <(Aaz)k>z0, k > 2, tendent vers zéro plus vite que ¢ lorsque ¢ — 0. Ces
considérations conduisent & la définition suivante.

1Si to # 0, il suffit de remplacer partout ¢ par t — to.

43
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Définition 3.1 (Processus diffusif) Un processus de Markov homogéne est diffusif s’il
existe deuzx fonctions a(z) et b(x) telles que la probabilité de transition P(xo|z,t) satisfait

t~0

(i) (Ax),, = Jgdz(z—z0)P(xolz,t) = a(xo)t + O(t%), a>1,
(ii) ((Ax)?), = [gdz(z—20)*Plaola,t) = blzo)t + O(t%), a>1,
(iii) (Ax)*) = [g da (@ — 20)* Plaolw,t) =0 oY), a>1, k>2

Les fonctions a(z) et b(z) s’appellent respectivement fonction de dérive et fonction de
diffusion du processus.

On va montrer que P(z¢|z,t) obéit & une équation différentielle de second ordre, [’équa-
tion de Fokker-Planck

2
%P(x(ﬂaz,t) = —({%(a(:r)P(xoh:,t)) + %%(b(:r)P(xou,t)), (3.3)

avec condition initiale P(xg|z,t = 0) = 0(z — z¢).

Preuve Le processus étant de Markov homogéne, I'équation de Chapman-Kolmogorov
pour un instant ¢ + At donne

P(zo|z,t + At) = /]R dy P(zoly,t) P(y|z, At). (3.4)

On est conduit & examiner P(y|z, At) pour un temps At infinitésimal auquel on va appliquer
les conditions (i)-(iii). On cherche & établir une équation différentielle pour P(xg|x,t). Soit
¢(x) une fonction infiniment différentiable & support compact, alors en multipliant les deux
membres de (3.4) par ¢(x) et en intégrant sur =

/de(wo\x,t—i—At)qS(x):/ dy/ dz P(xoly, t)P(y|z, At)p(x). (3.5)
R R R

La variable d’intégration du membre de gauche étant muette, on y fait la substitution
x — y. En réordonnant 'ordre des termes du membre de droite on a

/ dy P(zoly,t + At)p(y) = / dy P(zoly.t) / dz P(ylz, ADG(z).  (3.6)
R R R

Etant donné que At est infinitésimal et que limay_.q P(y|z, At) = 6(z—1), seules les valeurs
de x proches de y contribuent & la derniére intégrale. On peut donc faire un développement
limité de ¢(z) en z = y, ainsi

At~0
[ avPGolyst+ anow) =" [ ayPlaolyt) [ do Plyls, a0 x
R R R

< (80 + (@ = 06 0) + 50— 020"0) +0 (o~ 7))

At~0

£ [ ay Planlyt) (606 + 0 hal) A + 36"

+(’)((At)0‘)>. (3.7)
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Pour le dernier passage, on a utilisé les conditions (i) a (iii) de la page 44 avec xy = y. En
réordonnant les termes de (3.7) et en prenant la limite At — 0 on obtient

1

57 [ o) (Plavlynt-+ 80 = Plaant)) = [ duPlaoly.) (#0ate) + 30" )b )

~~

A0 dyé(y) & Plaoly.t)

(3.8)
Intégrant par parties le membre de droite

0 0 102
d =/ d - P t ———(b(y
[ avots) g Plaolint) = [ dwoto) (5 (@l Plank0) + 55 () Plash0) ).
(3.9)
relation valable pour toute fonction ¢, ce qui établit I’équation de Fokker-Planck (3.3) et
achéve la preuve. [ ]

Remarques
(i) L’équation de Fokker-Planck est donc définie par la fonction de dérive a(zx) qui ca-
ractérise un mouvement de type balistique, et la fonction b(z) > 0 qui, elle, caractérise
la diffusion.

(ii) L’équation de Fokker-Planck est dite linéaire si

a(x) = a1 + asx, b(x) = b, (3.10)

et quasi-linéaire si a(x) est non linéaire et b(x) = b. Si I’équation est linéaire, alors la
solution est gaussienne.

(iii) Une solution de (3.3) avec la condition initiale P(zq,to|x,t = tg) = d(x — o) est
appelée solution fondamentale, et définit la probabilité de transition d’un processus
de Markov diffusif. Pour déterminer totalement le processus en question, il faut encore
donner W (x,t). Par linéarité de ’équation de Fokker-Planck

P(a,t) = / dzo W (20, t0) Px0, to|2. 1) (3.11)
R
est encore solution, ot W (xg,ty) est une distribution de conditions initiales. On a

P(x,t)],—y, = Wz, to). (3.12)

Dorénavant, on omettra ’écriture de la condition initiale dans (3.3).
(iv) La distribution Ps(z,t) est stationnaire si %PS(:E, t) = 0. Une distribution station-
naire (si elle existe) est alors solution de

10
—— Py = P,(x). 1
35 (B@)Py(2)) = a(2) Py(a) (313)
(v) La distribution approche la distribution stationnaire au cours du temps si
tlim P(z,t) = Ps(x). (3.14)
o

Le terme linéaire se rapporte ici aux propriétés de a(x) et b(z). L’équation de Fokker-Planck est, elle,
toujours linéaire pour P.
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3.2 Processus de Wiener et d’Ornstein-Uhlenbeck

Les deux processus considérés sont des cas particuliers de I’équation de Fokker-Planck
pour une certaine définition de a(z) et b(x).

3.2.1 Mouvement brownien (processus de Wiener)

Le cas particulier a = 0 et b = 2D, D = (Bm~y)~!, dans (3.3) donne I'équation de
diffusion (1.17). Le processus markovien correspondant est défini par
1 (zg—=1)2

P($17t1|x2,t2) = me_élD(t?*tl), t2 > tl, (315)
2 — U

1
varn Dt

Ce processus est dit processus de Wiener. 11 est homogéne (mais non-stationnaire), gaussien
et de moyenne nulle. Ses réalisations sont les trajectoires browniennes issues de l’origine.

A JEW

22
W(z,t) = e Dt t>0. (3.16)

X1 (t)
NV
I3 (t)
>t
0 S Vo
W\/\x4(t)

F1G. 3.1 — Reéalisations du processus de Wiener et trajectoires browniennes. La courbe épaisse représente
V/(x2)(t) = V2Dt, comportement caractéristique d’un processus diffusif.

On peut vérifier explicitement que le processus de Wiener défini par (3.15) et (3.16)
satisfait les relations de compatibilité de Chapman-Kolmogorov (2.41) et (2.42).

La covariance du processus de Wiener est

C(tl,tg) = <$(t1)$(t2)> =2D min(tl,tg). (3.17)
Cette derniére relation se vérifie en calculant d’abord pour t9 > t1
<I‘(t1)33‘(t2)> = /2d$1 dI‘Q r1 X9 W(.rl,tl;.rg,tg)
R _/_J
=W(z1,t1)P(z1,t1;22,t2)
(3'15) 2 2
(3.16) / 1 7 / 1 _ (wa—=1)
= dzy 71 e 4Pt drg 19 ——1¢ D(t2-t1)
R V4Dt R 4D(ta — t1)
=x1

= oD, (3.18)
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Comme (x(t1)x(t2)) est une fonction symétrique on trouve (3.17) en général.

Application : phase aléatoire et élargissement spectral.

On considére un champ électromagnétique £(t) = Ege“0t+¢() o1 ¢(t) est un processus
stochastique de Wiener qui obéit a I’équation de diffusion avec constante de diffusion D.
On va montrer que la transformée de Fourier de la fonction de corrélation du champ

Cw) = / dt e“tC(t), (3.19)
R
avec
Ct1 —t2) = (E(t1)E(t2)) (3.20)
est égale & la lorentzienne
Olw) = 6o ——2 (3.21)
T W - w2+ DY '

L’¢élargissement spectral est donc donné par la constante de diffusion D. On a en effet
(E(R)E(D2)") = [EofPemiontn—te) (ot —sta)). (3.22)

Posant f(t) = d(t—t1) —0(t —t2), et en se souvenant de la fonction génératrice du processus

de Wiener
<ei Jrdt f(t)<z>(t)> — oD Jrdt [rds f(1)f(s) min(t.s) (3.23)

on peut écrire

<ei(q§(t1)—q§(t2))> _ o Dimin(t,t) -2 min(tyto) +min(tz t2) _ o~ Dlti—ta| (3.24)

dont la transformée de Fourier est précisément (3.21).

3.2.2 Processus d’Ornstein-Uhlenbeck de la vitesse

Ce processus est défini par a(v) = —yv, b(v) = g—;’n = 292D et décrit la thermalisation
d’une particule dans un fluide a I’équilibre thermique. L’équation de Fokker-Planck (3.3)
donne

QP( t) = 2( P(v,t)) + 2D8—2P( t) (3.25)
ot v, —’)’8,0 v v, Yy 82}2 v,T). .

Le processus markovien correspondant est défini par la probabilité de transition solution de
(3.25) avec P(vy,t1|ve,ta =1t1) = 6(va —v1) qui est

(112 — 1)18_“7('52 _tl))2

mp 1 1
P(vl,tl‘v27t2)—\/§mexp [—ﬂim o) , (3.26)

et il existe une distribution stationnaire qui est celle de Maxwell de la vitesse

W(v) =4/ Tg—fe_ﬁémUQ. (3.27)
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Le processus d’Ornstein-Uhlenbeck est stationnaire et gaussien de moyenne nulle

(v(t)) = /]Rdv vW(v) = 0. (3.28)

On peut & nouveau vérifier par le calcul explicite que les distributions (3.27) et (3.28) satis-
font aux relations de Chapman-Kolmogorov (2.41) et (2.42). Pour des raisons de symétrie,
les moments impairs sont nuls. Calculons la fonction d’autocorrélation des vitesses. Comme
le processus est de moyenne nulle, sa fonction d’autocorrélation coincide avec sa covariance.
Considérons d’abord la vitesse moyenne au temps ¢, donnée une vitesse initiale vg au temps
to, soit selon (3.26)

/ dv v P(vo, tolv, t) = voe 7 = (v), , (#), (3.29)
R
donc
(w(to) v(t)) = / dvodv vov W (vg, fo; 0, )
R2 —

W('L)() ,tQ)P('L)() ,to ‘”U,t)

= /dvo ) W(vo)/ dv v P(vo, to|v, t)
R R

(3.29) / du v2 W (wg)e (1)
R

_ L —(t—to)
= ﬁme . (3.30)
Remarquons que ce processus étant gaussien, stationnaire, markovien (car il est solution
de 'équation de Fokker-Planck), alors par le théoréme de Doob sa covariance doit étre expo-
nentielle, ce que confirme le calcul (3.30). Le processus d’Ornstein-Uhlenbeck (au choix des
constantes (3, m, v prés®) est donc 1'unique processus qui est & la fois gaussien stationnaire
et markovien.

Calculons encore la fluctuation de la vitesse, donnée une condition initiale {vg,¢g}.

<U2>v0 to (t) = / dv v P(’Uo,to|v,t)
’ R
1
= B
Les équation (3.29) et (3.31) montrent que la mémoire de la condition initiale est perdue
pour t — oo, tandis que (3.30) et (3.31) indiquent que les fluctuations approchent de la

valeur de I’équilibre thermique ﬁLm Plus généralement, on voit sur (3.26) que P(vq, to|v,t)
tend vers la distribution de Maxwell (3.27) lorsque ¢ — tg — 0.

(1 _ e—QV(t—to)) + vge_%/(t_t‘)). (3.31)

3.3 Lien avec ’équation de Langevin

On remarque que (v), . (t) et <v2>v0 t (t) ont exactement la méme valeur que dans la
théorie de Langevin (voir les équations (1.82) et (1.91) aux pages 17 et 18 respectivement).

De quelle fagon ’équation de Langevin définit-elle un processus stochastique de Markov
homogéne 7

3Par le changement d’échelle v/Bmv = u on se raméne aux notations de la démonstration du théoréme
de Doob, section 2.3.2.
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3.3.1 Bruit blanc

Pour ceci, il faut définir les corrélations multiples de v(¢) a partir de celle de la force
aléatoire f(t). Dans la section 1.2, nous avions fait ’hypothése de corrélation instantanée de
la force (1.86), sans rien dire des corrélations d’ordre supérieur. Le processus complet associé
a f(t) est désormais défini comme gaussien avec covariance (f(t1)f(t2)) = T d(t1 — t2),
(f)(t) = 0. Un tel processus avec covariance singuliére est appelé bruit blanc. Cette origine
terminologique provient du fait que la transformée de Fourier de (f(¢1)f(t2)) est constante,
c’est-a-dire indépendante des fréquences, donc donne méme poids & toutes les fréquences
du spectre d’ou I'association terminologique de ce bruit avec la couleur blanche.

(i) La fonction génératrice du bruit blanc est

r r

G(f) = e 2 fmdtIfOF (3.32)

On se souvient en effet que la fonction génératrice d’'un processus gaussien de cova-
riance C(t1,t2) est
G(f) = o3 Jr2 dt1dtz f(tl)f(t2)c(tlvt2)7 (3.33)

donc
C(ti,t2) =T (t1 — ta), (3.34)

ce qui conduit immédiatement & (3.32).

(ii) Si f(t) est un bruit blanc, alors fg ds f(s) = x(t) est un processus de Wiener.
Puisque le bruit blanc est gaussien et que la relation entre x(t) et f(t) est linéaire, le
processus x(t) est également gaussien (voir le lemme 2.7 & la page 38). Ce dernier est
donc entiérement défini par sa covariance

((t)(ts)) = T /0 " s, /0 " sy 651 — 5) =T min(inta),  (3.35)

qui est identique & celle du processus de Wiener.
(iii) Le processus gaussien avec covariance (f(t1)f(t2)) = I'(ta — t1) ou I'(¢) est une
fonction rapidement décroissante appelée bruit coloré.

Lemme 3.1  Le processus des vitesses engendré par ’équation de Langevin

d 2y
—v(t) = —yv(t —f(t 3.36
F00 = =700 + /2510, (3.36)
ot f(t) est un bruit blanc, (f(t1)f(t2)) = d(t1 — t2), avec une distribution thermique des
vitesses initiales est identique au processus d’Ornstein- Uhlenbeck.

Preuve (Lemme 3.1) Pour ce qui est du processus de Langevin, la relation entre v(t)
et f(t) est linéaire, donc v(t) est un processus gaussien car un processus gaussien reste
gaussien sous des transformations linéaires (voir le lemme 2.7). De plus, les deux processus
ont la méme moyenne (v) (t) = 0 et la méme covariance (v(tq)v(t2)) = ﬁime_V(tQ_tl). Par
conséquent, comme la covariance d’'un processus gaussien le détermine univoquement, ces
deux processus sont identiques. On conclut que le processus de la vitesse engendré par (3.36)

jouit de la propriété de Markov puisque le processus d’Ornstein-Uhlenbeck la possede. W
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On voit qu’il y a une relation étroite entre la description des fluctuations par une équa-
tion de Langevin et celle donnée par ’équation de Fokker-Planck. Du point de vue de la
physique, la loi d’évolution est généralement régie par une équation différentielle détermi-
niste telle que

d
Ew(t) = F(xz(t)). (3.37)
Si le systéme est de plus soumis & des perturbations aléatoires dont 1’échelle de variation

est beaucoup plus rapide que les temps caractéristiques de I’évolution z(t), il est simple et
naturel d’envisager un modéle "4 la Langevin" en y ajoutant un bruit blanc

%x(t) = F(z(t)) + f (), (f(t1)f(t2)) =T 6(t1 — t2). (3.38)
I' doit étre déterminé par la physique du probléme. Par exemple, I' est donné par les
fluctuations dans I'état stationnaire, s'il existe.* Comme la solution de (3.38) est entiérement
déterminée par la condition initiale ¢ en tg, on a la propriété de Markov pour chaque
réalisation f(t) (voir 'exemple 1 & la page 28). Nous allons montrer que z(t) reste markovien
aprés la moyenne (-),, sur les réalisations du bruit blanc. Pour une réalisation du bruit blanc
f(t) les distributions du processus z(t) sont donc

Wf(xl, tl; ey Ty, tn) = Pf(xo, to‘:L’l, tl)Pf(le, tl‘mg, t2) oo Pf(a:n_l, tn_l\xn, tn), (339)

avec Py(xo,to|lx1,t1) = 0(x1 — ¢f(xo,tost1)). Ici, le flot ¢¢(xo,t0;t) dépend de 'action de
la force entre tg et t. La moyenne de We(x1,t1;...52,,t,) sur la force f(t) se factorise et
conserve la propriété de Markov, puisqu’il n’y a aucune corrélation de la force entre les
intervalles successifs tg — t1, t1 — to, to — t3, etc.

W(zy,t1;5... 520, t,) = <Pf(3707 to|r1, t1)>bb <Pf(:1:17 ty|w2, t2)>bb e <Pf(33n—17 tn—1|Tn, tn)>bb :

(3.40)
Par conséquent, toutes les propriétés du processus sont déterminées par P(z1,t1|xg,t2) =
(Pg(x1,t1|w2,t2)),, qui obéit a I'équation de Fokker-Planck. De plus, comme les corrélations
du bruit blanc sont invariantes sous les translations temporelles, les probabilités moyennées
(Pg(xy,t1|w2,t2)),, héritent de cette propriété. Ainsi, le processus induit par le bruit blanc
a partir de Uéquation (3.37) est markovien homogéne. La propriété de Markov est perdue
si on a & faire a un bruit coloré.

Pour établir ’équation de Fokker-Planck correspondante, il faut déterminer la fonction
de dérive a(z) et la fonction de diffusion b(x). Pour ce faire, nous déterminons les moments
du déplacement & partir de xg au temps ty directement a partir de I’équation différentielle
(3.3) et les identifions aux quantités (i) a (iii) de la page 44.

(i) a(z). En intégrant (3.38) sur un intervalle temporel ¢ — t( petit, on a

/t ds dix(s) _ /tt ds F(x(s)) + /t ds f(s). (3.41)

to 5 0 to

=x(t)—=0o 20 F(20) (t-to)

En prenant la moyenne de (3.41) sur les réalisations du bruit blanc sachant que
(f)y, = 0 et en notant que F'(xg) n’est pas aléatoire (zg est fixé)
t

(w(t) — 20)yy = Pw0)(t — to) + / ds () (s). (3.42)

1Le coefficient T qui mesure Pamplitude du bruit blanc peut étre introduit dans la covariance comme
dans (3.37), ou dans I’équation différentielle par le changement f(t) — v/T'f(t) comme dans (3.36).
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donc
a(zp) = F(xo). (3.43)

(ii) b(y). En procédant de la méme fagon

(@ =20y, = [ st [ s (o) + £6) (Platoo) + Fs))

ot t t
2 Pl tof + [ dsi [ dsa (750 f(s2)
to to —_—
=I"6(s1—s2)
= F(x0)%(t —to)2 + T (t — to)
= D(t—ty) + O ((t—t)?), (3.44)
donc
b(zg) =T. (3.45)
L’équation de Fokker-Planck correspondant & (3.38) est donc
0 0 r o9
—P =——(F(x)P ——=P . 4
O P(r,t) =~ (F()P(,1)) + 5 2 P 1) (3.46)

Exemple (Equation de Smoluchowski pour la position) Une particule dans un
champ de force F(z) avec friction vy obéit a

d 1
— =—F — . 4
So(t) = —F(a(t) - yo(t) (347
On suppose que la friction est forte et qu’on peut négliger I’accéleration %v(t) ~ 0 devant
les autres termes. Ceci donne pour la position, avec adjonction d’un bruit blanc f(¢)
d F(z(t))
—zx(t) = —== t). 3.48
G0 ==+ 1) (3.48)

En appliquant (3.43) et (3.46), on trouve

a(zo) = %9;0) b(xg) =T, (3.49)

ce qui donne I’équation de Fokker-Planck suivante

%P(;r,t) _ —% <%:)P(m,t)> + gaa—;P(;r,t). (3.50)
Elle est identique & 'équation de Smoluchowski (1.48) (dérivée & partir de la marche aléa-

toire asymétrique). Si F(x) = —%V(;v), on a l'état stationnaire Ps(z) déterminé par
25 =~ (%V@)) Py(a), (3.51)

avec solution )

Py(z) = Ce Ty V@), (3.52)
C' étant une constante de normalisation. Pour avoir I’équilibre thermique P,(z) = C e V(@)
il faut que Mim = [3, ce qui impose la relation de Einstein D = g = ﬁ—ﬁw o
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3.4 Equation de Fokker-Planck a plusieurs variables

Considérons un processus stochastique de Markov vectoriel & n composantes homogéne,
x(t) = (x1(t),...,zn(t)). On suppose que les n variables du processus satisfont a des condi-
tions semblables & celles de la définition 3.1

/n d3x (z — x0); P(x0|x,t) = ai(x0)t + O(tY), a>1, (3.53)
/n d3x (z — x0)i(x — x0); P(Xo|x,t) = bij(x0) t + O(t*), a>1, (3.54)

avec a € R"™ le vecteur de dérive dans R™ et b € M, (R) la matrice de diffusion n x n
symétrique réelle b;; = b;; € R. L’équation de Fokker-Planck a plusieurs variables associée
est (en omettant I’écriture des conditions initiales)

) I 92
5 P 1) Z P, (a:(x)P(x,1)) + §i§1m(bij(x)mx,o). (3.55)

Sa dérivation est la généralisation immédiate du cas scalaire (3.3).

3.4.1 Equation de Kramers

L’équation de Kramers (un cas particulier de I’équation de Fokker-Planck (3.55)) décrit
le mouvement aléatoire d’une particule dans l'espace de phase. Le processus {x(t),v(¢)}
est vectoriel. Pour la simplicité nous nous limitons & une dimension d’espace, de sorte
que le processus {x(t),v(t)} a deux composantes. L’étude de Kramers généralise celle du
mouvement brownien et celle de Langevin dans le sens que la premiére ne s’occupait que
de la position z(t) et la seconde que de la vitesse v(t). Nous partons des équations du
mouvement dans un champ de force F'(z) avec friction 7 et bruit blanc f(t)

d
20 =), (3.56)
%v(t) — t)+ F(”“’T(t)) + 5—; (8. (3.57)

Pour établir I’équation de Fokker-Planck correspondante, dite équation de Kramers, il faut

déterminer les fonctions
_ (az(z,v)
a(z,v) = <av(:v,v)> , (3.58)

e = (00 b)) (339)

avec byy(x,v) = by (x,v). En utilisant la méthode exposée a la page 50 on a pour t — tg

et

(@(t)— 20))pp ~ vo(t —to) = az(70,v0) = vo
~ ( Yo + (IO)) (t —to) = ay(T0,v0) = —yvo +
(vo(t —t0))* = O ((t — t0)?) = bya(20,v0)= 0
)= 20)(v(t) — o))y, = vo (—Wo + Eloo )) (t — t0)? = bau(20,v0) = bue(20,v0) =0
(v(t)—v0)?),, ~ %(t — o) = byy(20,v0) = ﬁ_v

F(zo)
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En substituant ces valeurs dans (3.55) on obtient [’équation de Kramers

0 0 F(z) 0
EP(QS‘,UJ) +U%P(;v,v,t) P (x,v,t)

(3.60)

P 1 92
=7 <%(’L)P(ZL‘,U7t)) + ﬁ—mwp(x’%t)) :

Cette équation sert de point de départ & de nombreuses études, par exemple celle de la
métastabilité (voir la section 3.5 & la page 54). On introduit la densité de particules®

p(;v,t):/Rva(av,v,t) (3.61)

et le courant de particule
jlx,t) = / dv v P(z,v,t). (3.62)
R

En intégrant (3.60) sur v tout en supposant que lim,_, 1o P(z,v,t) = 0, on obtient [’équa-
tion de continuité qui relie p(z,t) et j(x,t)

0 0 .
ap(;r,t) + %](x,t) = 0. (3.63)

En multipliant (3.60) par v puis en intégrant le résultat sur v on obtient ’équation a laquelle
satisfait le courant de particule j(x,t)
( )

—jxt —i——/dvv P(z,v,t) +

ot ——=p(z,t) = —7j(z, t). (3.64)

Remarque L’équation de Kramers a la structure d’une équation cinétique

) ) F(z) 0 -
aP(az v, t) + U%P(x,v,t) + %P(x,v,t) = Ip(z,v,t). (3.65)

L’opérateur linéaire Ip sur P(z,v,t) représente 'effet des collisions de la particule avec son
environnement. Il s’agit d'un opérateur de collision. Ici, Ip(x,v,t) ne prend en compte que
les effets de friction décrits phénoménologiquement et des collisions via le bruit blanc.

L’équation de Boltzmann aura cette structure avec Ip décrivant la dynamique micro-
scopique des collisions.

Si Ip(xz,v,t) = 0, la connaissance du flot du systéme différentiel &(t) = v(t), mo(t) =
F(z(t)) permet de résoudre (3.65). Posons w = (x,v), t — ¢(wo,t) = w(t) une trajectoire de
condition initiale wy, et P(wq) une distribution des conditions initiales, alors la distribution
au temps t est définie par

P(w,t) = /2 dwo P(wp) 6 (w — p(wo,t)) = P (¢ ' (w,t)) (3.66)
R
et vérifie 5 5 Flz) 0
x

—P(w,t —P(w,t t) = 0. .67
SP(,1) + v P, t) + — 0Pl t) = 0 (367)
Dés que Ip # 0, 'équation de Kramers ne peut en général pas étre résolue analytiquement
et il faut recourir & des approximations dictées par la physique. o

5Cette densité est normalisée & 1. En considérant N particules indépendantes et changeant p(z,t) —
Np(z,t), on peut la normaliser & N.
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3.5 Application & la métastabilité

Nous désirons étudier le temps de vie d’'une particule soumise & des fluctuations ther-
miques dans un puits de potentiel. Il s’agit d’une application directe du modéle de Kramers.
On considére une particule dans un potentiel V' (z) décritla figure 3.2.

bruitiblanc | :
ag: 0 a b b(]

<
N

F1c. 3.2 — Particule fluctuant autour de sa position d’équilibre a dans un potentiel V() et soumise & un
bruit blanc (fluctuations thermiques). Selon Pamplitude des fluctuations, elle peut franchir la barriére de
potentiel Vy en passant dans la région z > b. On simule un état stationnaire par un terme de puits en bg
qui absorbe la particule, ensuite réinjectée par un terme de source en ag.

Supposons tout d’abord que la particule dans le puits de potentiel occupe la position
d’équilibre a. Cependant & cause du mouvement engendré par fluctuations thermiques elle
pourra franchir la barriére de potentiel d” amplitude Vj en b. Le processus de franchissement
d’une telle barriére par les fluctuations thermiques est dit activation thermique. Cet effet
peut par exemple représenter la dissociation d’une molécule dans un solvant de température
T. Kramers suppose que la particule est soumise a la force aléatoire f(¢) représentant les
fluctuations du milieu, et il faut donc résoudre les équations de Kramers pour la distribution
de probabilité. On cherche le temps de vie d’une particule localisée au voisinage de a au
temps ¢ = 0. Comme la force F(z(t)) dérive du potentiel, F(z(t)) = — LV (2(t)), si f(t) =0
on a I’équation déterministe

d? V' (x(t)

@m(t) =T Yo(t). (3.68)

Une particule de condition initiale z¢g < a, vg = 0 va évoluer vers le point d’équilibre
x = a. Si on enclenche f(t) et si 'énergie thermique est faible comparée a Vy, kT < Vp,
la particule va parfois gagner suffisamment d’énergie cinétique pour franchir la barriére. Le
cas kT > Vj est sans grand intérét car la particule s’échappe librement du puits. Par la
suite, on suppose donc kT < Vj. La notion de temps de vie reste & préciser et on peut
adopter différents points de vue pour la définir.

En principe, on doit résoudre (3.60) avec distribution initiale centrée en a, et déterminer
la probabilité de trouver la particule dans {z € [b, 00[}. Le temps de vie peut alors étre défini
comme le temps moyen du premier passage de la particule en z = b. Il n’y a pas d’état
stationnaire dans ce cas, car le potentiel n’est pas confinant, et le calcul de la solution de
(3.60) n’est pas aisé.
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On adopte ici un autre point de vue en modifiant la description de la fagon suivante :
on imagine que la particule, lorsqu’elle a franchi le point b, disons en by, est réinjectée avec
méme vitesse a gauche de l'origine en ag. Cet effet est décrit formellement par I’adjonction
d’un terme S(z,t) a I'équation de Kramers, qui joue le role de puits en by (absorption de la
particule) et source en ag, et qui est nul pour = € [ap, bp]. Dans ces conditions, il se crée un
état stationnaire avec courant stationnaire entre ag et bg. Il n’est pas nécessaire d’expliciter
la forme de S(z,t) par la suite car on basera 1’étude uniquement sur les propriétés de
I'état stationnaire, x € [ag, by]. L’effet de I’absorption de la particule en by est donné par la
condition de bord

P(x = bg,v,t) =0. (3.69)

D’autre part, comme le potentiel est confinant pour z — —o0, on prendra ag = —oc.

Remarquons d’abord que le courant stationnaire est uniforme : par ’équation de conti-
nuité (3.63) en régime stationnaire on a

0 . 0
oz (z) = —EP(JU) =0, (3.70)

donc j = C € R est une constante. Le temps de vie est alors défini par
1
T=-. (3.71)
J

On va résoudre 1'équation de Kramers (3.60) en régime stationnaire et de friction forte
~ > 1. On suppose un développement de P(x,v) en puissances inverses de 7 de la forme

1 1 1 1
P(z,v) = Z$P(k)(a:,v) = P(O)(a:,v)%—;P(l)(x,v)—i-?P(Q)(a:,vﬁ—(’)<$>, (3.72)
k>0

et on cherche a satisfaire I’équation (3.60) & chaque ordre en puissance de . En insérant
(3.72) dans (3.60) on obtient

Z 1 <v %P(k) (x,v) + Fg) %P(k) (a:,v))

k
k>0
1 /0 1 92
— I (k+1) =Y p(k+1)
> " <8v (0 PH D (@,0)) + o35 P (x,v)). (3.73)
k>—1
Le coefficient du terme d’ordre  obtenu pour k = —1 dans le membre de droite doit
s’annuler
%) 0 19
5 <vP( )z, v) + ﬁ_mWP( )(x,v)> = 0. (3.74)
La solution est de la forme
PO (z,0) = p(v)o(x), (3.75)
ou
p(v) = 2 oo (3.76)
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est la maxwellienne et ¢(z) une fonction de x uniquement encore inconnue. L’égalité des

termes pour k = 0 dans (3.73) impose

1 F
% <UP(1)(:U,U) + —QP(I)(:E,U)> = ’UEP(O) (x,v) + @) QP(O) (x,v)

Bm v ox m  Ov

T o (rote) - BR@) ) o). (317

On vérifie que la solution de (3.77) pour PM)(z,v) est de la forme

PO () = = ((5560) = FFIO) ) wp(e) + D)), (3.78)
ou ¢ (x) ne dépend que de z. Cela provient du fait que
0 1 0 0 1
(o) 4 gt ) ) = o (o) = —op. (319
S ——
= g P (v)—v2p(v)
En collectant les termes
Pla.0) = g(o)p) + ( w(ehplo) ~ (5200) = BF@)0() ) v0(0) ) +0 (5 ). (350)
T ~ ox vy
PO) (g
=P (z,v)

Le courant est alors avec f]R dvv?p(v) = G

(@) = /Rdva(a:,v) (3.80) —% (5%%¢(x)—Fg)¢(x)> +0<%>. (3.81)

Comme j(z) = j est uniforme, on peut maintenant déterminer la fonction ¢(z) en terme
de j. Ecrivant F(z) = —%V(x), (3.81) donne

5@+ (55V (@) ole) = ~pmnj (382
Posons
o(z) = e VO x(2), (3.83)
d’ott q
X @) = —pmyj e, (3.84)

et selon la condition de bord (3.69), la fonction X'(z) satisfait X'(bg) = 0 et

bo
X(z) = ﬁmwj/ dz V@), (3.85)

xT

ce qui donne
bo

$(x) = Brmyje V) / da 7Y@, (3.86)

xT
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Finalement, la densité est

p(x) = /]R dv P(z,v) 2 ¢(w)+0<%>. (3.87)

La normalisation de la densité ffooo dz p(z) = 1 implique alors & 'ordre dominant
bo 1\ (3.86) bo bo 1
1 = / dz ¢(z) + O <§> = 5m~yj/ dz e_ﬁv(x)/ dy VW 1+ 0 <;> . (3.88)

Pour estimer ces intégrales, on suppose kg1 < V| si bien que le minimum du potentiel
V(z) en x = a et le maximum en x = b sont trés étroits, puis on réalise 'approximation
parabolique. Dans la premiére intégrale, c¢’est le minimum en a qui compte, et dans la
deuxiéme c’est le maximum en b qui compte :

V(a) = V(o) + 5V"(@)(x — a)® + O (Jz — af’), (3.89)
Vi) = V() — 5 [V'0)| (s~ 0 + O 1y — ). (390)

On étend les deux intégrales sur tout R (la rapide décroissance de l'intégrand le permet en
bonne approximation), ce qui donne

97 BV (5) -V (a))

VV @)V @)

1=jBmyefV®-Vi) / dze 73V (@ / dye PIVIOW —
R R

(3.91)
d’ou le résultat final, dit formule de Kramers
1 2 BV (0)—V (a))
r=-=MYe . (3.92)
J V"(a)[V"(b)|

Si V"(a) est grand, cela signifie que le puits est étroit et la particule se trouve "proche"
de la barriére, donc le temps de vie 7 & U'intérieur du puits diminue. De méme, si V" (b)
est grand, la barriére est étroite et donc 7 diminue. Si V(b) — V(a) est grand, la barriére
est haute et 7 augmente. Si la température augmente, alors le temps de vie diminue ce qui
signifie que les fluctuations thermiques accroissent la probabilité de franchissement de la
barriére de potentiel.

Il faut bien souligner que la particule considérée est classique. Si la particule est quan-
tique, il s’ajoute a leffet d’activation thermique la possibilité de franchir la barriére de
potentiel par effet tunnel. La compétition entre ces deux phénoménes donne lieu & un inté-
ressant probléme dans la théorie quantique des systémes ouverts.

A T'aide d’autres méthodes, I’étude de I'équation de Kramers est aussi possible dans le
cas de friction faible, c’est-a-dire lorsque v < 1.

3.6 Le laser

L’équation de Fokker-Planck & plusieurs variables trouve une application intéressante
dans I’étude de l'intensité et de la phase d’un laser. L’équation d’évolution de 'amplitude
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E d’un mode laser peut étre modélisée par

%E — (a— ¢)E — b|E2E +£(t), (3.93)

~~

=h(E)

ol a est le coefficient de pompage, b le coefficient d’amortissement et ¢ le coefficient d’inter-
action. h(E) représente donc la partie déterministe du modéle, qui est non linéaire, tandis
que f(t) est un bruit blanc (complexe) tel que

(f(t)) = (3.94)
(f(t1) f(t2)) = (3.95)
(ftr) f(t2)") = D5(t1—t2) (3.96)

Ce bruit blanc représente les diverses sources de fluctuations sur le fonctionnement du laser
telle qu’émission spontanée dans d’autres modes, vibration de la cavité, etc.

Considérons d’abord la partie déterministe du probléme (f(t) = 0). On déduit ’équation
d’évolution pour l'intensité lumineuse I = |E|?

d
dtI( ) = 2I(t)(a—c—0bI(t)) = F(I(t)). (3.97)
En écrivant F(I) = —%V(I) ot V(I) = —(a — c)I? + %bl?’ joue le role d’un potentiel, on
trouve les points d’équilibre stables correspondant aux minima de V(I), soit
- au-dessous du seuil de fonctionnement a < ¢ : Iy = 0,
- au-dessus du seuil de fonctionnement a > ¢ : Iy = “3< > 0.

En présence du bruit, la distribution de probabilité de 'amplitude P(E, E*,t) (consi-
dérant E et E* comme des variables indépendantes) obéit a I'équation de Fokker-Planck

Op— -2 wmP) - 2 - (E)P)+ DL P (3.98)
ot OE OE* OEQE* "’ '

En effet, ’équation de Fokker-Planck (3.55) est dans notre cas

0 0 0 1 9? 1 92 1 02

—P=—-—— (aEP) 8E* (aE P) 28E2 (bEP) 2@ (bE*P) + =

ot OF 20EOE" (bp-P),

(3.99)
ou ag, ag+, bg, bg+ et bpg+ sont les composantes des vecteurs de dérive et de la matrice de

diffusion. Ces derniers s’obtiennent selon la méthode exposée a la page 50. Notons AE =
E(At) — Eg et AE* = E*(At) — E§, avec Ey la condition initiale.

(i) ag :
wey = (f “as () 0

— /OAtds h(E)+/0Atd8 @f_)l

(3. 94,

B0 w(By) At (3.100)
——

=agp
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(i) ap~ :
At i
(AE*),, = < /0 ds (R(E*) + f*(s))> S0 (B A (3.101)
(iii) bp :

<(AE)2>bb = </Atd51 /Atd52 (h(E(s1)) + f(s1)) (h(E(s2)) + f(s2) >

— /d31/ dsy h(E E(s2)) /d81/ dsy )>

At At
9 /O ds, /0 dss h(E(s1)) (f(s2))

||co

——
(399
S0 W(Eo)h(ED)(AL?, (3.102)
d’out
b = 0. (3.103)
(iv) bg~ : de fagon similaire on trouve
b = 0. (3.104)
(v) bpg- :
At At
(AEAE"),, </ ds, / dsy (h(E(s1)) + f(s1)) (" (B(s2)) + f*(32))>
Y D At+0 (AP (3.105)

_bEE*
En insérant les expressions trouvées pour ag, ag+, bg, bp+ et bpp~ dans (3.99) on trouve
bien I’équation de Fokker-Planck (3.98) du modéle.
Ecrivons E = E(I,¢) = VIe'® et considérons I = EE* et ¢ = % (In(E*) — In(E))
comme variables indépendantes. On calcule avec

9 ol & 06 d

_ = — 4 L
ok OF 0l OF 8¢5
OE* — OFE*9dI  OF* 8gz5
les termes du membre de droite de ’équation de Fokker-Planck
0 0 0P
= (W(E)P) = Poh(E) + h(E) 5
0 i 0
_ A _ _pr2 o) —
= ((a—c)—2b) P+ ((a—o)I bI)E)IP 2((a c) —bl) 8¢P
= %([(a—c)l—bﬂ] P)——((a—c)—b[)(%)P, (3.107)
0? 0 L, 0 0 i 0 0
apan’ ~ arl TP amart T 2F OE* 8¢
2 2
= éP+Ia P+ — L 9 —P. (3.108)

ol oI2" " 41 9¢?
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En introduisant (3.107), son complexe conjugué et (3.108) dans (3.98), on obtient pour
P(I,¢,t)

o .9 ) o (9 D 9
5P =257 (((a =)l —bI%) P) + D77 (15P> ik (3.109)

Considérons la distribution de l'intensité du laser P(I,t) = 027r d¢ P(I,$,t). P obéit &
I’équation (3.109) sans le dernier terme.® L’équation de stationnarité pour P est donc

0

57 {—2((a—c)f—b12)F+DI£F} =0, (3.110)

o1

et puisque limy_,o P(I) =0
P=(2(a—c)—0bl)P, (3.111)

d’otl la solution stationnaire

P(I) = Ceblla—ai=31), (3.112)
ou C est tel que [;~df P°(I) = 1. (3.112) peut encore s’écrire
P()=Ce I =2 - c (3.113)

Lorsque a — ¢ > 0 (laser en fonctionnement), P°(I) a son maximum en Iy = are.

FI1G. 3.3 — La distribution de probabilité stationnaire de I'intensité du laser est une gaussienne centrée en
g

Ip de largeur Q—Db.

L’intensité moyenne ne coincide pas exactement avec [ :

(I)y, = / dI IP°(I) = Iy +C dz (x—]o)e—%IQ, (3.114)
0 Iy

50n suppose que P(I,¢,t) et ses dérivées s’annulent lorsque I tend vers infini et que P(I, ¢,t) est

2m-périodique en ¢, donc fozﬂ do 6%2213 =0.
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La correction est de Pordre e~ 510 , donc trés petite lorsque le bruit est faible (D petit).

Etudions & présent le régime non stationnaire linéarisé dans l'intensité. La linéarisation
de l’équation de Fokker-Planck (3.109) consiste a linéariser le terme de dérive au voisinage
de Iy, en posant I = Iy + x, soit

(a —¢)I —bI* ~ —blyz, (3.115)

et a prendre les coefficients de diffusion constants & la valeur de Iy. L’équation linéarisée
pour P(x,¢,t) est donc

0 9, 02 D 92
— P =2bly— (xP) +DIO@P+ o 96

o o P. (3.116)

Avec cette approximation, 1’évolution de x = I — Iy et de la phase ¢ sont indépendantes.
On voit en effet qu'on peut résoudre (3.116) pour une distribution factorisée P(x,¢,t) =
Py(z,t)Pa(¢,t) avec

0 0 0?
0 D 02
o’ = i ag e

Selon (3.117), z(t) = I(t) — Iy est un processus d’Ornstein-Uhlenbeck. En se rapportant aux
propriétés déja établies de ce processus on trouve immédiatement que l'intensité moyenne

approche la valeur I avec temps de relaxation 7; = ﬁ = ﬁ :
() — o) = (@(t)) = =20, (3.119)
et les corrélations d’intensité sont
D _ _
(1) = Io) (T(t2) — To) ) = o okt (3.120)

Selon (3.118), la phase accomplit une diffusion brownienne, et le temps caractéristique de

ses fluctuations est 74 = % :

D

(P*(t)) = Lt (3.121)

Cette description linéarisée, ot I'intensité et la phase évoluent indépendamment, est valable
si Ty > 77, soit a — ¢ > %\/@ Lorsque 'intensité a atteint sa valeur stationnaire (dans le
temps 77), la phase poursuit une diffusion brownienne. En se rapportant au résultat (3.21)
on en conclut un élargissement spectral de 'ordre de %.

3.7 Intégrale de chemin

3.7.1 Mouvement brownien sans absorption

Le probléme que nous nous posons est comment calculer la moyenne d’une fonctionnelle
F(z(-)) des chemins browniens. La notation z(-) signifie que F' dépend du chemin x(t) pour
toutes les valeurs de t. Considérons les chemins issus de z( en ty et qui aboutissent en x
au temps ¢. Si F(x(-)) ne dépend de z(t) que par I'entremise d’un nombre fini de temps
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t1,...,tn, F(x(-)) s’'identifie & une fonction F(x1,...,x,) de n variables, et nous savons
d’aprés la définition générale que sa moyenne est donnée par

/ dzy...dx, P(xo,to|z1,t1;. .. Tn, tn; 2, t) F(z1, ..., 25). (3.122)

Le cas général se traite par passage au continu de facon analogue & la construction de
I'intégrale ordinaire. Divisons l'intervalle [to,t] en n 4 1 intervalles égaux de longueur

t—to
= , 3.123
’ n+1 ( )
et posons
ty =ty + kT, k=0,...,n, tn+1 = ¢. (3.124)
Selon la propriété de Markov, la probabilité de trouver le chemin en [z1,2; + dx1] en T,
[xo, 29 + dxo] en 27, ..., [xp, xy + dxy, | en n7 factorise

P(xg,to|lx1,t1; .. 5@, ty;x, t)dey ... day, = P(xg, to|lx1,t1) ... P(zp, thlx, t)dey ... day,
(3.125)

| {z;t}

{ } tn tht1 =1
xo; to <> C— >l
T T T T T T
F1G. 3.4 — Discrétisation de la trajectoire brownienne. Les points 1, ...,z sont susceptibles de varier.
Seuls les points de départ xo et d’aboutissement x sont fixés.
La probabilité de transition du mouvement brownien étant
Pl tolz1, 1) L (3.126)
xg, to|r1,t1) = —/————=¢ ta—t1 .
’ ’ 4nD(ty — 1) ’
(3.125) devient
1 n+tl
2 11y )2
P(xzg,to|z1,t1;. .. s 2, tps 2, t)dey ... day, = e~ 107 2k=0(Tr+17%)" qp . dg,, .
dn DT
(3.127)

Remarquons ensuite que dans la limite 7 — 0 la somme qui figure a 'exposant tend for-
mellement vers une intégrale

1< " (x(to + (k+ 1)7) — a(to + k7)\ 2
- )

lim =) (zpg1 —2)? = lim 7
T—0T 7—0

k=0

/

T
~

=0 Law)?

= /t: dt’ <%x(t’)>2. (3.128)
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Définissons par la limite de (3.127) lorsque 7 — 0 (ou, ce qui est équivalent, n — o0) le
"poids d’un chemin"

"t r(_d n)2
lim P(zg,tolx1,t1;. .. Tn,tn;x,t)day ... da, = D[z(")] e_ﬁjto at’ (G (1) =dWw.

(3.129)

Dans (3.129),

n+1
2

lim< 1 > dzs ... dz, = Dz()] | (3.130)

n—oo \ dr DT

représente "l'intégrale multiple” sur toutes les variables de chemin. La notation (3.129), bien
que formelle, est trés suggestive et couramment utilisée par les physiciens. Le mathématicien
N. Wiener (1894-1964) a montré qu’'on pouvait lui donner une définition mathématique
précise au sens de la théorie de I'intégration, appelé mesure de Wiener conditionnelle AW .

Si F(z(-)) est une fonctionnelle des chemins débutant en {zg,ty} et aboutissant en
{z,t}, on peut alors écrire

(F(x()) = /m AW F(z(-)). (3.131)

0,t0

L’interprétation intuitive de (3.131) est que 'on somme sur tous les chemins possibles avec

. 7 L /'t dt’(ix(t’))Q . e L . P
un poids e 4P Jto ar’ . En pratique l'intégrale de chemin est donc définie par le

passage a la discrétisation et la limite n — oo.

(F(z()) = lim dzq...dx, P(xg, tolx1, t1, ..oy xn, tpy 2, t) Fay, ... 2y),  (3.132)

n—0o0 JRn

ou F(x1,...,xy) est la fonctionnelle évaluée sur le chemin polygonal tel que xj, = x(tg+k7).

3.7.2 Mouvement brownien avec absorption et formule de Feynman-Kac

Appliquons ces idées au mouvement brownien avec absorption. On suppose qu’en un
point z la particule a la probabilité par unité de temps Q(x) de disparaitre. Par exemple, il
peut s’agir d’'une molécule sujette & une réaction chimique, et éliminée du systéme lorsque
celle-ci a lieu. On s’intéresse a calculer Pq(xo,to|z,t), la probabilité moyenne de survie de
la particule entre les temps tg et t et les points x¢ et . Considérons pour commencer la
probabilité que la particule ne soit pas absorbée le long d’une réalisation du mouvement,
avec xp = x(tg + k7). Pour 7 suffisamment petit, la probabilité de survie entre t;_1 et ty
est (1 — 7Q(xy)), ainsi cette probabilité est donnée en vertu de 'indépendance statistique
par la fonctionnelle

[T (1 = 7)) = lim o7 =i @) = ¢~ Jrg 4 0t)), (3.133)

lim
T—0
k=0

ot on a utilisé e~ ™2@k) = 1 — 7Q(zy) + O(72). Ceci est la probabilité que la particule ne
soit pas absorbée pour une réalisation donnée. La probabilité de survie de Pq(xo,to|z,t)

"On montre en fait que les chemins browniens sont non différentiables avec probabilité 1 pour la mesure
dW. La notation (3.129) est donc purement formelle et mnémotechnique. Nous renvoyons par exemple a
Pouvrage [S] pour une étude mathématique précise
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est la moyenne de (3.133) sur toutes les réalisations browniennes. Ainsi, il faut calculer la
moyenne de (3.133) selon (3.132), en se rappelant que 7 — 0 est équivalent a n — oo

Po(xo, to|z, t) = nhnolo dzy ...dz, P(a:o,t0|:r1,t1,...,:Un,tn;:r,t)e_TZkZOQ(xk)
e Rn

GL) Yim [ ey ... dan Plwo, to|z1, t1) - .. P, tla, e Srmo @) (3.134)

n—0o0 Jpn

Or on sait que (voir la section 2.2.3)

P(zo,to|x,t) = (xo|Ti—t, ) (3.135)
est donné par les éléments de matrice du semi-groupe de diffusion
Ty_yy = e (t0)Co, (3.136)
avec générateur (2.58)
d2
Go=-D—. 3.137
0 da? ( )

Introduisons opérateur { qui agit multiplicativement sur les états |x)
Qlz) = Q) |z) . (3.138)
En introduisant (3.138) et (3.135) dans (3.134) avec t;41 —t; =7 Vi=0,...,n on a

Po(xo, to|z, t) = nh_{go dzy...dz, <a:o‘e_TQe_TG°|a:1><x1‘ . |$n><azn|e_70e_7G°|x>.

]R'n
(3.139)
La relation de fermeture [ dz |z) (z| = 1 pour chaque intégration z1 a x,, conduit &

, Gty Gt o\
Po(zo, to|w,t) = (xo| lim (e 7wt Y~ mrt 0 ). (3.140)
n—oo
La formule de Trotter permet d’évaluer la limite (3.140).

Théoréme 3.1 (Formule de Trotter) Soient A et B deuz opérateurs linéaires (qui ne
commutent pas en général, [A, B] #0), alors®

lim (e%eg)n = oAHD, (3.141)

n—oo

Ce théoréme sera démontré plus loin. En utilisant (3.141) dans (3.140) on obtient fina-
lement

Pq(zo, to|z,t) = <x0|e_(t_t0)G|x>, (3.142)
G =Gy + 9, (3.143)

d’ou I'équation différentielle pour Pq(xg,to|x,t)

0 0?

— P, to|lx,t = D—P tolx,t) — Q(x) P, tolz,t

B a(zo,tolz, 1) 922 (o, tolz, 1) (z) Pa(wo, to|x, 1), (3.144)
PQ(xo,to‘:L’,t:to) = (5(33—:60).

8Pour les conditions précises de validité de la formule, consulter [Si].
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Le cas particulier du mouvement brownien s’obtient naturellement en posant {2 = 0. Dans le
cas ot il y a une absorption Q(z) # 0, la probabilité de survie de la particule dans I'intervalle
t — tg, quel que soit son point d’aboutissement, est f]R dz Po(xq,to|x,t) qui reste inférieure
a 1. Po(zo, to|z,t) ne représente donc plus une probabilité conditionnelle normalisée.

L’importance de ce résultat tient au fait qu’il réduit le calcul d’une intégrale fonctionnelle
a la recherche d’une solution d’une équation différentielle partielle. Réciproquement, toute
équation différentielle du type (3.144) a pour solution 'intégrale fonctionnelle

x,t t , ,
/ AW e i 4 HE)), (3.145)

0,t0

La formule (3.145), résolvant (3.144) s’appelle formule de Feynman-Kac. Dans le cas ot la
fonctionnelle dont on veut calculer la moyenne n’est pas de la forme (3.133), il faut recourir
a la théorie générale des intégrales fonctionnelles gaussiennes et leurs perturbations.

On démontre ici la formule de Trotter pour des opérateurs bornés. Avec les précautions
mathématiques appropriées, elle reste valable pour les opérateurs qui sont non bornés tels
que (2.58).

Preuve (Formule de Trotter) Cette preuve se limite au cas d’opérateurs A et B
bornés. Notons ¢ les éléments de 1’ espace vectoriel ou 'opérateur A agit. La norme || - ||
est définie par [|A|[ = sup)|,=1 [|A¢||. Elle vérifie les inégaltés

1A Bl < [[A[l|BI], (3.146)
1A+ Bl < [[All + [|B]] (3.147)
Posant
C=e"s", D=enen, (3.148)
il faut montrer que lim, ., ||C™ — D"|| = 0, c’est-a-dire que la distance entre C™ = eA+B

et D" tend vers 0 si n — oo. Comme par hypothése A et B sont des opérateurs bornés,
alors il existe a € R et b € R tels que

Al <a,  ||BI| <b. (3.149)

On a

donc
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De plus
Il
et de la méme fagon
1D
Ainsi pour n > 1
lc™ — D

Etant donné que par (3.152) ||C — D|| = O (
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3 ii A+ B\*
N k! n
k=0
(3.147) L[[(A+B)¥]
< 1 el A 1 |
- k! nk
k=0
(3.146) =, 1 HA_,_BHk
< S| et £
- k! nk
k=0
[1A+B]|
_= e n
(3.147)
< eHAH:HBH7 (3.153)
B 1 AP 1 Bk
= ||l
k=0 k=0
(3146) || X1 AP ||| 1 B*
< | m EWH
k=0 k=0
G140 X1 [|AR] s 1 [|BY|
S X
k=0 k=0
(3.146) = 1[|A]F ¢~ 1 [1BI)*
S D A D wh
k=0 k=0
[IENTRIED]
= e n e n
B LALI+1B]] (3.154)
= [|>_c*Yc-D)p*
k=1
(38.147) ™ B B
< > llck ¢ - D)D"
k=1
(3.146) n B .
< [|IC =Dl Y_lIC* 1D
k=1
(3.146) n B -
< [lc=D[Y_llc|p|r*
k=1
(3.153)
G200 - Dl nesUAIHIED
(3.149) .
< ||C = D||ne"w (ath), (3.155)
n%) et que =1 = O (1), alors (3.155) devient

1

0

lc™ — D) :o< (3.156)



3.7. INTEGRALE DE CHEMIN 67

donc on a bien lim,_, ||[C™ — D"|| = 0, ce qui achéve la preuve. [

Remarque (Intégrale de Feynman) On remarque a nouveau l’analogie avec le forma-
lisme quantique si on identifie le générateur G de (3.143) a 'hamiltonien H = —%dd—; +

V(x) d'une particule quantique dans un potentiel V(x). Cette analogie se prolonge en
termes d’intégrale de chemin en mécanique quantique. Dans ce cas, on peut montrer que le
propagateur quantique

Lt—t, i(t— LdQ _ly(e
Ul ty) = el = o= (drim—1Ve) (3.157)

est donné par le noyau de l'opérateur d’évolution (3.157)
x,t

([T (¢, ) o) = / D [a()] eFSE0), (3.158)

z0,to

S (2() = /tt ds (%m (%x(s))Q _ V(x(s))) (3.159)

0

avec

'action classique.? Cette formulation est adaptée a I'étude semi-classique des phénoménes
quantiques.

Le propagateur quantique (3.157) peut étre obtenu comme prolongement analytique du
propagateur brownien (3.136)

d2 ~
Tpy = e (t—0)G — ((=10) (D7 —0(a) (3.160)

dans le plan complexe des temps, précisément en évaluant (3.160) sur l'axe des temps
purement imaginaires.

Malgré les analogies, l'interprétation et les statuts mathématiques de 'intégrale de Wie-
ner et de Feynman sont trés différents. L’intégrale de Wiener effectue une moyenne associée
4 un poids de probabilité gaussien, et posséde un sens mathématique bien défini. Le propaga-
teur brownien décrit ’évolution irréversible d'une densité de probabilité classique. L'intégrale
de Feynman, qui ne fait intervenir que des phases, n’a pas d’interprétation probabiliste. Le
propagateur quantique décrit I’évolution réversible d’'une amplitude de probabilité quantique.
On peut dire de la formule (3.158) que 'amplitude de probabilité de trouver une particule
quantique en x au temps ¢ est donnée par superposition linéaire d’états qui contribuent
chacun avec un facteur de phase end@() correspondant & une trajectoire classique possible
joignant xg & x dans le temps t — tg. Alors que les réalisations des chemins browniens sont
en principe physiquement observables, ce n’est pas le cas des trajectoires qui interviennent
dans l'intégrale de Feynman & cause des relations d’incertitude qui interdisent une détermi-
nation jointe arbitrairement précise de la position et de la vitesse d’une particule quantique.
Le calcul de I’évolution quantique sous forme de U'intégrale fonctionnelle (3.158) requiert de
délicates intégrations de fonctions oscillantes. o

9Le noyau de 'opérateur d’évolution donné par (3.158) permet d’obtenir la fonction d’onde (x, t) grace

a P(z,t) = (zlth) = [g dzo (2[U(t to)|zo) (wolt)).
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3.7.3 Polyméres comme chemins browniens

Nous revenons a ’exemple de la chaine moléculaire aléatoire traité dans la section 1.1.6.
Nous voyons qu’une telle chaine, dans la limite du continu, peut étre assimilée & un chemin
brownien r(s), 0 <s < N, ot N > 1 est le nombre de monomeres constituant la chaine. En
exploitant 'intégration fonctionnelle, on peut aussi écrire I’équation (1.78), obtenue lors de
I'étude des polyméres, sous la forme P(r) = 1:’0N dW , avec dW donné par (3.129). Cette
écriture permet aisément de généraliser au cas du polymére soumis & un potentiel extérieur,
ou encore au cas de la répulsion & deux corps et a courte distance entre les monoméres
de sorte que deux monomeéres ne peuvent occuper la méme position dans l'espace (volume
exclu). Dans le premier cas, chaque monomeére est supposé soumis & un potentiel extérieur
V(r), et dans la limite du continu, un segment infinitésimal d’un polymére de forme r(s) est
soumis au potentiel V(r(s))ds. Ainsi, a I’équilibre thermique, la distribution de I'ouverture
de la chaine r est donnée par U'intégrale fonctionnelle (& un facteur de normalisation prés)

r,N

Py(Olr,N) = Cx / AW e=8Jo" ds V(r(s)) (3.161)
0,0

qui, par la formule de Feynman-Kac, peut étre étudiée a 'aide de I’équation différentielle

associée.

Absorption de polymeéres sur une membrane

Une membrane plane donne lieu au potentiel V' (x) (cf. Fig. 3.5), ou €, est la direction
perpendiculaire au plan de la membrane (r = (x,y, 2)) :
V(z) — 00, x — —oo (la membrane est impénétrable),
V(x) a un puits de potentiel (la membrane exerce une attraction),
V(z) =0, x > o (la membrane n’a pas d’effet & grande distance).

V(z)
A

Y
®

Lo

Eo | oo

F1c. 3.5 — Potentiel définissant la membrane avec 1’énergie Eo de I'état fondamental du polymére.

Tenant compte que la constante de diffusion associée au probléme des polyméres est
D = a%/6 (voir section 1.1.6), on conclut de (3.143) qu’en présence de la membrane

Py (0|r, N) = en(0le N Cr), (3.162)
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ou le générateur du processus G est

a’ a’? [ 0? 0? 0?
G=—FA+pV =—= <W+a_y2+@> + BV (z). (3.163)

Py (0|r, N) s’exprime en terme des fonctions propres ¥, et énergies propres E, de G par
Py(0r, N) = cn Y e N Fw,(0)T4(x). (3.164)
«

Pour résoudre I’équation aux valeurs propres GV, = E,¥, on impose des conditions de
bord périodiques sur une distance L dans les directions y et z si bien que

tkyy otkzz 6
eﬁeﬁ Eo = e+ —5(ky + K2), (3.165)

ou ky = 2mny/L.k, = 2mn,/Ln,, n, € Z, sont des nombres d’onde et 1y, €,, n € N, sont

\Ila(xv Y, Z) = wn(m)

les états et énergies propres du probléme unidimensionnel'©
a’ o?

Considérons la distribution de I'extension du polymére Py (0|z,0,0, N) dans la direction
x perpendiculaire & la membrane pour N > 1. Dans cette limite, il est clair que le terme
dominant de la somme (3.164) correspond a I’ état fondamental n = n, = n, = 0 d’énergie
Eo=¢p:

Py(0|2,0,0,N) “=° ene 0N Wy (0)¥(z,0,0)
X dN”l/}o(O)’(/Jo(:L’), (3167)

puisque selon 1'Eq. (3.165), ¥qy(x,0,0) est proportionnelle a I’état fondamental 1o(x) de
I'équation (3.166) et dy est une constante indépendante de z. La distribution de I'extrémité
d’'un polymeére selon x est donc déterminée par le comportement de 1o(x). Puisque le
potentiel s’annule pour x > xg on conclut de (3.166) qu’a la normalisation prés

Yo(x) ~ exp (—\/ %x) , x> . (3.168)

Ainsi a//6|€g| représente la longueur typique au-dela de laquelle la probabilité de trouver
la seconde extrémité d’un polymeére attaché a la membrane est négligeable, et donne donc
I’épaisseur de la couche d’absorption.

Polymeéres auto-répulsifs

Dans le cas ot on tient compte d’une répulsion entre les monoméres, on aura & considérer
I'intégrale fonctionnelle

r,N
/ AW o= 2 I dsu [ dsa V(x(s)—x(s2)) (3.169)
0,0

°0n peut également imposer une condition de bord pour x grand (z > xo) de sorte que le spectre soit
entiérement discret.
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ou V(r(s1) — r(se2))dsidss est le potentiel répulsif entre deux segments infinitésimaux de
la chaine. En présence d’une telle répulsion on peut s’attendre & une loi de fluctuation de

I’ouverture de la chaine du type
(r?) oc N?, (3.170)

ou 'exposant v est situé entre 1/2 et 1. Le cas v = 1/2 traduit un comportement diffusif pour
lequel les interactions entre monomeéres sont négligeables; v = 1 caractérise un polymére
dans lequel l'interaction entre les monomeéres est suffisamment répulsive de sorte que ces
derniers s’éloignent autant que possible les uns des autres et forment une chaine rigide. Si
v = 1 écart-quadratique moyen est du méme ordre que le nombre de monoméres N, ce qui
signifie que le polymeére s’étend dans une seule dimension pour former une chaine linéaire
de longueur Na. Soit d la dimension de ’espace, alors les effets de volume exclu introduits
par la répulsion entre monomeéres ménent aux relations universelles

1, d=1,
3 d=2,

Y7 0588..., d=3, (3.171)
3 d>4.

L’universalité manifeste le fait que (3.171) ne dépend pas de la forme explicite du potentiel
répulsif entre les monoméres. En dimension supérieure a 4, on sait que les points d’intersec-
tion d’un chemin brownien avec lui-méme forment un ensemble de mesure nulle, de sorte
qu’une répulsion & courte distance demeure sans effets. Par conséquent, en dimension d > 4
I'exposant v reste égal & 1/2 (voir [Ma] chapitre 4 pour des développements sur le sujet).

3.8 Processus a loi large et diffusion anormale

Cet exposé est inspiré de la référence [Ba]. On trouvera une revue trés compléte sur les
processus de Lévy et leurs applications en physique dans la référence [Bo].

3.8.1 Mouvement brownien et loi des grands nombres

Le mouvement brownien est caractérisé par le fait que la distribution du déplacement
de la particule y = x9 — 21 (c’est-a-dire I'incrément du processus) dans un pas de temps 7
est donnée par 'Eq. (1.21)

1 y?

P(y) = W/ror exp <—E> . (3.172)
La propriété de Markov équivaut & dire que les incréments sont indépendants, tous distri-
bués par la méme loi P(y). La distribution (3.172) donne une probabilité trés faible aux
incréments de grande amplitude : ils sont tous statistiquement de 'ordre de grandeur de
la variance ¢ = v/2D7. Une telle loi, de variance finie, est dite étroite. Si 'on considére
le processus brownien z(n) en temps discret (n = 0,1,... indexe les pas de temps), nous
savons que la probabilité de trouver la particule (issue de lorigine) en x aprés n = t/7
intervalles de temps est

1 72
Pan) = ————exp [ ———— ) | 3.173
= o (i) (3175)
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qui conduit au comportement diffusif

V{x(n)?) = V2D7n. (3.174)
En fait,

n
x(n) =an = Zyna Yi = Tit1 — T, 20=0, zip1 =z, (3.175)
i=1

est la somme de n variables aléatoires indépendantes et équidistribuées (les n incréments
successifs). En introduisant u, = x,/y/n, on voit de I'Eq. (3.173) que la distribution nor-
malisée de u,, est une gaussienne indépendante de n et ceci a fortiori pour n — oco. On a
la un cas particulier de la loi des grands nombres qui affirme que les fluctuations (aprés
changement d’échelle /n)

Ty — (Ty)
Vn
d’une somme z,, = Y., y; de n variables indépendantes et identiquement distribuées
selon une loi P(y) posséde une distribution gaussienne lorsque n — oo. Le théoréme est
valide sous I'hypothése que le premier moment (y) = [dyyP(y) et le second moment
<y2> = [dyy?P(y) de P(y) sont finis. Le théoréme se formule précisément sous la forme

(3.176)

Up =

1 Up 'LL2
i < < = - .
nh_)ngo Prob{u, < u, <ug} oz La du exp < 202) , (3.177)

o o = 1/(y2) — (y)? est la variance de P(y) : il est remarquable que la distribution li-
mite (3.177) ne dépende que de o et non des détails de P(y). Le résultat (3.177) signifie
que les réalisations typiques de ’écart de la somme z,, a sa moyenne se comportent comme

Tn — ()~ Vn, (3.178)

qui est conforme & la loi de la diffusion.

3.8.2 Processus de Lévy

Un processus & incréments indépendants & loi large qualifie la situation ol le second
(et éventuellement le premier) moment de P(y) est infini. Un exemple est donné par la

distribution de Cauchy
2b

- m(y? +v2)’

La particule a alors une probabilité appréciable d’accomplir un déplacement (vers la droite)
important en un seul pas de temps. La loi des grands nombres n’est plus valable sous sa forme
habituelle et les fluctuations de la somme x,, montrent des propriétés tout-a-fait nouvelles.
En particulier on sort du cadre des équations de Fokker-Plank puisque les hypothéses qui
y conduisent (existence d’un second moment fini, voir section 3.1) ne sont plus vérifiées.

P(y) y > 0. (3.179)

Considérons un processus de Markov homogene x(n) avec pas de temps discrets, n =
0,1,2,..., et a valeur positive. Les incréments y,, = x(n+1)—xz(n) sont également positifs'®.

"Nous choisissons cette classe en vue des applications. Les considérations se généralisent aux processus
avec incréments de signe quelconque.
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La probabilité de transition du processus est déterminée par la donnée de la distribution
d’un incrément P(y)

Yy, y=wx2—wx1 >0,
P($17n|$2,n + 1) = (3180)
0, y<O.

La probabilité P(z,n) que le processus z(n) prenne la valeur x aprés n pas s’obtient par
usages successifs de ’équation de Chapman-Kolmogorov

T T
P(z,n) = / dz,_1 / dzy P(z1)P(xg — 1) ... P(x — xp—1), x>0, (3.181)
0 0

ou l'on a tenu compte dans les limites d’intégration que les incréments sont positifs. Pour
étudier la convolution multiple (3.181), il est utile d’introduire la transformée de Laplace
qui transforme un produit de convolution en un produit algébrique, c’est-a-dire

P(s) = /Ooodye‘syP(y% (3.182)

P(s,n) = / dze™** P(x,n) G180 B
0

P(s)". (3.183)

La distribution P(y) sera caractérisée par son comportement asymptotique

oo b
Py) =" — > 0. (3.184)

y1+u’
Si0 < p <2 le second moment <y2> diverge et la loi est dite large (si 0 < u < 1 le premier
moment diverge également). Si p > 2 le second moment est fini, la loi est dite étroite et
la loi des grands nombres (3.177) est valide. Le cas p = 1 correspond & la distribution de

Cauchy (3.179).

Méme si le second moment est infini, on peut encore poser la question analogue au
contenu de I'Eq. (3.177) : existe-t-il un recentrage a, et un changement d’échelle A, tels
que

(3.185)

posséde un distribution limite lorsque n — oo 7 La réponse est affirmative, le résultat pour
le cas 0 < p < 1 étant

ug
lim Prob(uq < up, < ug) = / du Ly, p(u), (3.186)
avec -

Il est remarquable ici que la distribution limite L, ;(u), appelée loi de Lévy, ne dépende que
des paramétres p et b qui caractérisent le comportement asymptotique (3.184) de P(y). La
transformée de Laplace de L, ;(u) a I'expression simple

Emb(s) = exp (—bp 'I'(1 — p)st) (3.188)

dont nous justifierons la forme plus loin (I'(x) est la fonction d’Euler). Le résultat (3.186)
avec (3.187) signifie que les réalisations du processus se comportent typiquement comme

z(n) =" /e, (3.189)
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Puisque 0 < p < 1, sa croissance est beaucoup plus forte que celle du processus diffusif
habituel de I'Eq. (3.174), et plus forte que le mouvement balistique z(n) ~ n. Par exemple
pour p = 1/2, z(n) ~ n2. Ceci tient au fait que les incréments individuels peuvent étre de
grande amplitude comme on le précisera dans la suite.

Donnons un argument qui indique I’origine du comportement (3.187) mais qui ne consti-
tue pas une preuve compléte du théoréme'? de I'Eq. (3.186). Considérons la variable u =
x /A, dont la distribution normalisée est

Q(u,n) = \yP(Ayu,n). (3.190)

11 s’agit de montrer que @Q(u,n) posséde une limite pour un choix approprié de 1’échelle A,,.
En transformée de Laplace, on obtient

Qs = [ aueQuun)
— A\ | due P\,
/0 ue (Apu,m)

= P(s/\n.n)
- [ﬁ (s//\n)]n . (3.191)
La troisiéme égalité suit du changement de variable A\,u = z et la derniére de 'Eq. (3.183).

On sait que le comportement de P(y) pour y — oo est déterminé par celui de P(s) pour
s — 0. Si le comportement dominant de P(y) est de la forme (3.184), alors

P(s)°=" 1 — b '0(1 — p) st + o(sM), (3.192)

ol le premier terme est dii a la normalisation ]3(3 = 0) = 1 et, formellement, la transformée
de Laplace de y~(1*#) aprés changement de variable sy = v/, donne lieu au terme d’ordre
s*. On conclut de I'Eq. (3.192) que

Q(s,n) = [1—bp T (1 — p)(s/An)" + o(s/An)")]" (3.193)
posséde une limite si Pon fait le choix A\, = n'/* :
~ -1 — H AN
lim Q(s,n) = lim |1-— bu” T = s +o <S—>]
n—o00 n—o00 n n
= exp (—bu 'T(1— p)s"), (3.194)

d’ott le résultat (3.188). Notons que zmb(s) ~1—bu 'T(1 — p)s*, s — 0, implique que la
distribution de Lévy L, ~ uliﬂu u — 0, a la méme décroissance (3.184) que P(y). Dans
le cas p = 1/2 la distribution de Lévy a la forme explicite

b
L1/27b(u) = me_an/u’ u > 0, L1/27b(u) = 0, u < 0. (3.195)

Une analyse similaire peut étre faite pour les cas 1 < p < 2 : ils conduisent aux diffusions
anormales suivantes :

z(n) ~ nlnn, w=1,
z(n) —nly) ~ n'/* l<p<2, (3.196)
z(n)—n(y) ~ Vvnlon, p=2.

Nous ne discutons pas ici les distributions de Lévy correspondantes.

2Pour plus de détails mathématiques, consulter [Ba, Bo] et les références citées dans ces ouvrages.
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3.8.3 Vols de Lévy

Les incréments du mouvement brownien, ou d’une maniére générale d'un processus a
loi étroite, sont tous du méme ordre de grandeur : la variance de la loi. La situation est trés
différente quand on a affaire a une loi large. Posons la question : quelle est la probabilité
P(y,n) d’observer un incrément y > 7, tous les autres étant inférieurs a y. Cette probabilité
est

Q(y.n) =nQ(m(1 - Qm)" ™, (3.197)

Q) = / N dy P(y) (3.198)

est la probabilité d’obtenir un incrément supérieur a 7. En effet, Q(7)(1 — Q(7))™ ! est
la probabilité d’obtenir exactement un incrément supérieur & ¥ dans une séquence de n
incréments et le facteur n tient compte du fait que ce dernier peut survenir & n’importe
quelle étape du processus.

La valeur la plus probable 7,, de 'incrément maximal s’obtient en maximalisant Q(7,n) :

d%g@, ) = nl(1l-0@)"" - (n-1)Q@)(1 - om)"? %Q@

= —nl- Q@)1 - nQ®)] PF.n). (3.199)

Cette quantité s’annule lorsque 1 — nQ(y) = 0, donc 7, vérifie la relation

/_oo dy P(y) = % (3.200)

n

L’évaluation de y,, pour le mouvement brownien conduit avec I'Eq. (3.172) a
1 1 *° y2 n—00 \/E g y2
== d BN RN ) 3.201
n o Ln Y €Xp < 20.2> ™ Yn exXp 20.2 ( )

7, ~ ovV2Inn. (3.202)

On voit que la taille de 'incrément maximal ne croit que trés lentement au cours du temps.
Les choses sont trés différentes pour une loi large. On peut estimer 'ordre de grandeur de
Y, pour n — oo en remplagant P(y) dans I'Eq. (3.200) par son comportement asymptotique
de I'Eq. (3.184) :

d’ou

1 % b b1
- 2/_ dy = = ——u (3.203)
n Ty © (Yn)
ce qui conduit &
U, = nle (3.204)

En comparant a 'Eq. (3.189), on constate que I'incrément maximal est du méme ordre de
grandeur que le déplacement total z(n) aprés n pas, et la chance d’observer un tel incré-
ment au cours de ce déplacement est appréciable puisque selon les Eqs. (3.197) et (3.200),
Q,n) = (1—1/n)" ! ~e~! >0, n — co. Pendant une réalisation typique, le mouvement
de la particule jusqu’au point x(n) s’effectue donc essentiellement par un petit nombre de



3.8. PROCESSUS A LOI LARGE ET DIFFUSION ANORMALE 75

sauts d’amplitude proportionnelle a n/#, appelés vols de Lévy. On dit aussi que la statis-
tique du processus est dominée par les événements rares. La situation est illustrée par les
figures 3.6 et 3.7 ot 'on a simulé une marche au hasard dans le plan, dont la longueur des
incréments y > 0 est distribuée selon la loi

1Y
P(y) =0(y - yo)ylf“- (3.205)

L’angle d’un incrément est équidistribué dans l'intervalle [0, 27]. La figure 3.6 correspond a
la loi étroite pu = 3 et la figure 3.7 a la loi large p = 3/2.

E‘S‘E -1000¢}

-1250¢
-1500¢
3

F1G. 3.7 — Marche au hasard pour p = 3/2 et yo = 5.
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3.8.4 Applications

On a pris conscience assez récemment que nombre de situations physiques se rapportant
aux propriétés de relaxation et de transport doivent étre décrites par des processus & loi
large, voir [Bo|. Ce type de processus apparait en particulier lors de 'étude de la marche
aléatoire d’une particule en milieu désordonné. On présente ici un modéle simplifiée et
générique appelé cascade d’Arrhenius.

La cascade d’Arrhenius

On considére une particule se déplacant (& une dimension) dans un potentiel V(z)
constitué d’une suite de n puits étagés du type de la figure 3.2 (voir la figure 3.8).

e
n .
détection

> T

F1G. 3.8 — Modéle de la cascade d’Arrhenius.

Les puits sont séparés par des barriéres de potentiel d’amplitude V; > 0. La particule
subit une diffusion ordinaire dans le potentiel V(x), telle que régie par les équations de
Kramers (cf. Sect. 3.5). Les fluctuations thermiques font passer la particule du i¢me au
(i + 1)éme puits aprés un temps de sé¢jour moyen dans le iéme puits donné par (formule
d’Arrehnius (3.92))

i = Toeli. (3.206)

Ici 79 est une constante de temps que I'on prendra identique pour tous les puits'®. Lorsque
les barriéres sont élevées et la température basse, on peut négliger les transitions ou la
particule franchirait plusieurs barriéres simultanément ou retournerait au puits précédent.
Ainsi le temps total nécessaire pour franchir n barriéres est

T(n) =) . (3.207)
=1

13En realité, & cause du mouvement diffusif de la particule, 7; a des fluctuations dont nous ne tenons pas
compte ici.
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On introduit maintenant 1’effet du milieu désordonné en déclarant que les barriéres V; sont
des variables aléatoires (positives) indépendantes distribuées selon la loi exponentielle

1 V
F(V)=—=exp|—= |, 3.208
v)=g-oo (-5 ) (3.208)
ou Ej est un énergie caractéristique. Ainsi 7(n) de I'Eq. (3.207) devient un processus avec
incréments indépendants sur I’axe du temps dont les pas correspondent aux franchissements

successifs des barriéres. La distribution d’un incrément P(7) est induite par les Eqgs. (3.206)
et (3.208) utilisant P(7)dr = F(V)dV :

P(r) = F(V(r)=(V(7),  V(r)=kgTlh(r/70), 7=m, (3.209)

ce qui conduit &
7'6‘ kT

P(r)=p—g, #= T > 7. (3.210)

Ey ’ -

Le comportement asymptotique du processus est donc réglé par la température 1. Si kT >
2Ey on a une loi étroite. Si kT < 2FEy la loi devient large, en particulier kT < Ey
correspond au vol de Lévy traité dans les sections précédentes. Le temps total 7(n) ~
nfo/ksT et pas proportionnel au nombre de barriéres franchies mais croit beaucoup plus
rapidement. De plus il est réalisé par quelques longs séjours du méme ordre de grandeur
nfo/ksT Jans un petit nombre de puits.

Le refroidissement laser

Donnons un autre exemple qui provient de I’étude du refroidissement optique d’un gaz
d’atomes par émission et absorption de photons. Si p désigne la quantité de mouvement
d’un atome, un phénomeéne qui empéche d’amener ’atome au repos est 1’émission sponta-
née. Celle-ci se produit aléatoirement et conduit au passage de la quantité de mouvement
atomique p a un état p’ = p + hk ou Ak est la quantité de mouvement du photon émis ou
absorbé lors d’une transition atomique d’énergie iiw = hic|k|. Les fluctuations de la quantité
de mouvement Ap ~ h|k| qui en résultent (bruit quantique) donnent lieu a une tempéra-
ture effective T ~ (Ap)?/2kpm =~ (h|k|)?/2kpm qui apparait comme un limite absolue au
refroidissement laser. Il est cependant possible de franchir cette limite en exploitant judi-
cieusement les propriétés de I'interaction entre ’atome et les photons. Nous nous référons
a 'ouvrage [Ba| pour une description compléte de ces phénomeénes. Nous nous bornons a
indiquer briévement comment la statistique de Lévy intervient favorablement dans cette
situation.

On assimile I’évolution de la quantité de mouvement de ’atome & un processus stochas-
tique (markovien) p(t) qu’on suppose ici unidimensionnel pour la simplicité. Le processus
est gouverné par ’équation maitresse pour la densité de probabilité p(p,t) de la forme (voir
I'Eq. (4.10)) :

%p(p,t) = /dp' W@ [p)p(' t) = W(plp")p(p, )] - (3.211)

1¢i le processus est & valeurs continues et les sommes sur les états sont remplacées par des intégrales.
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Les taux de transition W(p'|p) et W(p|p’) doivent étre calculés a partir de la dynamique
quantique de I'atome en interaction avec les photons. Introduisons la probabilité I'(p) par
unité de temps de transiter de I’état p a un état p’ # p quelconque

L(p) = /dp’W(p!p’) = %- (3.212)

I'(p) est 'inverse du temps de vie de 1'état p. Les taux ont les caractéristiques suivantes.

1. Pour p et p’ petits, le taux de transition de p & p’ est indépendant de p’ et
W(plp') = cC(p),  Ipl; 1P| < po. (3.213)

2. I'(p) s’annule quadratiquement en p =0 :

p—0
L(p) '~ ~p?, v > 0. (3.214)

Cette particularité joue le réle crucial pour le contrdle du bruit quantique di a I’émission
spontanée. Elle peut étre réalisée physiquement en bénéficiant des propriétés de 'interaction
atome-photons pour créer un «état noir» ou les processus d’émission et absorption sont
stoppés.

On congoit alors que le voisinage de p = 0 constituera un «piége» pour la quantité
de mouvement. En effet les réalisations typiques du processus p(t) ainsi définies ont 1’al-
lure donnée dans la figure 3.9. p(t) accomplit des sauts aléatoires, mais si p(t) atteint le
petit voisinage de zéro Iy = [—po, po] les temps de résidence entre des sauts consécutifs
T1,T9,73,... dans cet intervalle excédent de beaucoup le temps d’attente qu’on observe
entre deux sauts lorsque p(t) est hors de cet intervalle. Ce phénoméne est naturellement
da, selon 'Eq. (3.214), a la forte suppression du taux de transition au voisinage de p = 0.
On peut alors s’intéresser a la statistique des temps de résidence lorsque p(t) appartient a
Iy (cf. Fig. 3.9).

p(t)
A

FI1G. 3.9 — Refroidissement laser et statistique des temps de résidence.
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Comme I'(p)dt est la probabilité de quitter p dans le temps infinitésimal d¢, la probabilité
que p(t) demeure constant égal & p pendant le temps 7 entre deux sauts est

I(p,7) = T(p)e "), (3.215)

quantité qu’il faut encore moyenner sur toutes les réalisations possibles du processus. Il est
raisonnable de supposer que les valeurs de p sont équidistribuées dans Iy. La distribution
du temps passé entre deux sauts dans I est alors

P( )—i/po dpTI( )—i/po dpT(p)e T®" (3.216)
T _2]?0 . pLlp, T _2]?0 pL{p . .

En utilisant le comportement de 'Eq. (3.214), puis faisant le changement de variable u =
~p?7, on obtient I’expression asymptotique

e 2, —yprrTze 1 /m 1
P(r) =~ w0 ), dpp“e ~ 2o\ 7 P (3.217)
Si on considére le temps de résidence total 7(n) = Y, 7; dans Iy, on voit que 7(n) est
un processus de Lévy dont les incréments sont distribués par la loi large de 'Eq. (3.217)
correspondant a la valeur 4 = 1/2. Nous savons selon 'Eq. (3.189) que le temps de résidence
total d’un atome dans I croit comme 7(n) ~ n2. Ce temps doit encore étre comparé a celui
que p(t) passe a faire des excursions hors de Ig. Si ce dernier a une croissance inférieure n?,
on pourra conclure que la majorité des atomes atteindra 1'état de quasi repos p € I (se

reporter a [1] pour une discussion de ces points).






Chapitre 4

Equations maitresses

Les équations maitresses sont une autre spécialisation des relations de Chapman-Kol-
mogorov qui s’applique au cas d’un processus de Markov homogéne a valeurs discrétes noté
n(t) (il s’agit d’un cas différent du mouvement brownien qui était considéré comme continu).

Par exemple, n(t) peut représenter le nombre de particules au temps ¢ (photons, noyaux
radioactifs, molécules dans une réaction chimique), le nombre de personnes dans une file
d’attente ou encore le nombre de personnes infectées par une maladie (modéles d’épidémie),
etc.

D’une maniére générale, le systéme posséde un ensemble d’états Y. distingués par une
indexation appropriée (par exemple, configurations de particules ou de spins sur un ré-
seau, états propres d’un systéme quantique). Dans la suite, on adoptera encore la notation
générique n pour l'indexation de ces états et n(t) pour le processus correspondant.

F1cG. 4.1 — Représentation d’un processus discret n(t). Remarquons que nous n’excluons pas I'existence
d’incréments de plus d’une unité caractérisés par un temps t; tel que |n(t;) — n(ti—1)| > 1.
4.1 Dérivation de I’équation maitresse

Nous considérons un processus de Markov homogéne sur un ensemble d’états > indexés
par n. Nous proposons d’établir une équation différentielle, appelée équation maitresse, qui

81
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régit la probabilité de transition P(nj|ng,t) du processus avec P(ni|ng,t = 0) = 0ny p,-

L’hypothése de base est celle de l'existence d'un tauz de transition YW(ni|ng) de ni a no,

ni # no, défini par

P(?”L1|’I’L2,t) - 0
t ot —o

Ce taux donne la probabilité par unité de temps d’avoir une transition de I'état nq & no.

Ainsi lorsque ny # ngy et t — 0,

P(nilng,t) = W(ni,na)t + o(t). (4.2)

W(nilnz) = lim P(ni|ng,t) (4.1)

Pour dériver les équations maitresses, constatons d’abord que

_ | probabilité de rester en
P(nfng, At) = { ny durant At si n; = ne (4.3)
et
| probabilité d’arriver en ng durant
P(nafng, At) = { At en partant de ni si ny # no (4.4)
Or
probabilité de rester en _ i probabilité de partir
ny durant At si n; = ng o de nq durant At S
- (1 -y W(n1|n2)At) Gy ma (4.5)
no€YX
n1#n2
et !
probabilité d’arriver en no durant -
{ At en partant de ny si ny # ng = W(n|n2) At (1 = dny n,)- (4.6)

Introduisant la probabilité a(n1) de quitter n; par unité de temps

ni) = Y W(mlny), (4.7)

no€YN
n1#n2
on peut écrire avec (4.5) et (4.6)
P(n1|n2, At) = (1 — (I(nl)At)(Snl,nQ + (1 — 5n1,n2)W(n1|n2)At. (4.8)

Puisque le processus est de Markov, les équations de Chapman-Kolmogorov dans le cas
discret donnent

P(nilns, t+ At) = Y P(ni|na,t) P(n, ting, t + At)
no€X

:P(n2|n3+At)

4.8
(48) 37 P(nafna, t)((1 — a(n2) At)Sny g + (1 — Gy ng)W(nalns) At)
no €Y
= P(ni|ns,t) — P(ni|ns, t)a(ng)At + Z P(ni|n2, t)W(nalng) At
no€YX
n2#ng
4.7
(:) P(n1|n3,t) n1|n3, Z W 7”L3|7”LQ At-i— Z 7”L1|7”LQ, (7”L2|7”L3)At,
no€EX no€EX
naF#ng na#£ns

'ci et dans la suite on omet d’écrire le terme o(At) qui tend vers 0 plus vite que At, lorsque At — 0.
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d’ol en réordonnant les termes en prenant la limite At — 0

P(nqy|ns, t + At) — P(nqi|ns, t)

Ahtrilo At = EEZ (P(nq|ng, t)W(na|ng)—P(ni|ng, t)W(ns|ns)).
n2
:%P(nl\ng,t) n2#ng

(4.9)
On constate que le terme ny = n3 de la somme (4.9) s’annule, ce qui permet d’omettre
la restriction no # n3.2 Si les conditions initiales sont aléatoires avec distribution Pg(ng),
P(n,t) = > ,.ex Po(no)P(noln, t), avec P(n,t = 0) = Py(n), satisfait encore & (4.9) par
linéarité.
On omet désormais de noter explicitement la condition initiale si bien que 1’équation
maitresse s’écrit

%P(n,t) = Z (P(n’,t)W(n’|n) — P(n,t)W(n|n')) , (4.10)
n’exy

avec

P(n,t = 0) = Py(n). (4.11)

Le premier terme du membre de droite de (4.10) représente un terme de gain pour 1'état
n, tandis que le second membre une perte pour I’état n. Plus précisément, les équations
maitresses traduisent le fait intuitif suivant. En termes de probabilités, le gain par unité de
temps de I’état n provient des transitions de tous les états n’, dont la probabilité d’occupa-
tion est P(n’,t), vers I'état n et ceci avec taux de transition W(n'|n). Par contre, 'état n
se "dépeuple" proportionnellement & sa probabilité d’occupation multipliée par le taux de
transition vers chacun des autres états n’.

W(nln')

W(n'|n)

F1a. 4.2 — Interprétation des équations maitresses. Le taux de transition W(n|n') engendre une perte
—P(n,t) Y, e W(n|n') de Détat n, tandis que W(n|n’) est la cause d'un gain ) , s P(n/,t)W(n'|n) de
I’état n.

Si le processus est stationnaire, alors il existe une distribution P*(n) telle que pour tout
temps ¢t
Z (P*(n)W(n'|n) — P*(n)W(n|n')) = 0. (4.12)

n'ex

Un élément important de la théorie est la recherche et la discussion des propriétés de
I’état stationnaire, s’il existe. Ce point sera repris la section 4.3.

20n peut alors assigner & W(n|n) une valeur arbitraire.
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4.1.1 Processus "birth and death"

Supposons qu’il soit possible de classer les états dans X selon un certain ordre linéaire.
On note alors n+1 et n—1 les deux états voisins de n. L’existence d’un tel ordre est évident
si n € N représente un nombre de particules ou d’individus. On appelle processus "& un
pas" ou "birth and death" la situation ou il n’y a transition qu’entre états voisins dans un
temps infinitésimal. Ceci s’exprime par le fait que les taux de transition sont tels que

W(n|n') =0, n #n+1. (4.13)

Si par exemple n décrit une population, cette condition traduit le fait que lorsque At — 0, la
probabilité que cette population s’accroisse ou diminue de plusieurs individus simultanément
est négligeable.

On note désormais W(n|n+1) = g,, W(n|n—1) = r, et P(n,t) = P,(t). Les équations
majtresses prennent alors la forme

0

Epn(t) = gn-1Pn—1(t) + rnt1Pog1(t) — (gn + 7n) Po(t). (4.14)

Les deux premiers termes du membre de droite de (4.14) représentent un gain pour
I’état n, tandis que le troisiéme terme est une perte pour ’état n.

F1G. 4.3 — La transition entre deux états d’un processus & un pas ne se fait qu’entre plus proches voisins,
a cause de la restriction W(n|n') = 0 Vn' # n £ 1. On note par g, le gain, c’est-a-dire I'incrément d’une
unité du processus stochastique sachant que 1’état initial est n, et par r, la perte, c’est-a-dire le décrément
d’une unité.

4.2 Applications

On admettra que tous les exemples de cette section peuvent étre traités dans le cadre
des processus "birth and death".

Exemple 1 (Processus de Poisson) On suppose que des événements se produisent
indépendamment au cours du temps avec la méme probabilité, et on étudie le processus
n(t) € N = {0,1,2,...} qui est le nombre d’événements survenus jusqu’au temps t. Par
exemple, n(t) peut représenter la longueur d’'une file d’attente. On suppose de plus que les
incréments de n(t) ne se font que d’une unité au maximum par unité de temps. Ainsi, il
s’agit d’un processus & un pas, croissant. Il est caractérisé par

{g” - o (4.15)

r, = 0.
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L’équation maitresse se réduit a

0
apn(t) = a(Pn—l(t) - Pn(t)) (4‘16)
On vérifie facilement que
_ (at)n —at
P,(t) = e (4.17)

est solution de (4.16), avec P, (t = 0) = 0y, 0. (4.17) est la distribution de Poisson. C’est le cas
particulier 8 = 0 de la marche aléatoire asymétrique traité plus en détail dans ’exemple 2. ©

Exemple 2 (Marche aléatoire asymétrique en temps continu) Soit n(t) la position
d’une particule sur un réseau 7, soient g,, = a et r,, = (6 V n les probabilités uniformes d’aller
a droite ou a gauche respectivement, alors ’équation maitresse de la marche aléatoire en
temps continu est

2 Palt) = P 1(0) + BPasa(t) = o+ 5)Pa). (4.18)

Cette équation maitresse peut étre résolue par la méthode de la fonction génératrice3

G(z,t) =Y 2"Pu(t). (4.19)

nez

Par conséquent P, (t) est naturellement donné par le coefficient du terme z" dans le déve-
loppement de Laurent de G(z,t). L’équation correspondante pour la fonction génératrice
G(z,t) est

) 9
5 Gt = ) "o Palt)
nez
(4é8) « Z ZnPn_l(t) +ﬁ Z ZnPn+1(t) _(a + ﬁ) Z ZnP”(t)
nez _ *1'P nez nez
=z2z" n—1(t) :%z"+1pn+1(t) N————
=G(z,t)
= (az + g —a— ﬁ) G(z,1). (4.20)

Pour déterminer une solution, il faut encore fixer une condition initiale. Si la particule se
trouve avec certitude au site ny en t = 0, la probabilité de transition P(n1|n,t) du processus
satisfait a P(ni|n,t = 0) = dp, », ce qui correspond a

G(z,t=0) = Z 2"0p o, = 2" (4.21)

nez

On en conclut que la fonction génératrice correspondante est

G(z,1) = 2Mmelozti-a=B)t, (4.22)

311 ne faut pas confondre la fonction génératrice des moments de la définition 2.7 & la page 25 avec (4.19).
Ce sont deux définitions différentes, mais qui ont néanmoins en commun de fournir les quantités d’intérét
comme coefficients de leur développement en série de puissances.
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Cas totalement asymétrique (5 = 0) En faisant le développement de Laurent de la
fonction génératrice (4.22), on trouve

t n
P(0|n,t) = e—at% = W(n,t), (4.23)
—at ()72
P(n1|n2,t) = { ¢ (ng—n1)!l> ng = ni, (4'24>
0, no < nj.

Il est facile de vérifier que W (n,t) et P(n;|ng,t) définissent un processus de Markov homo-
géne qui est le processus de Poisson.

Cas totalement symeétrique (o« = f = 1) Supposant la particule initialement a l'ori-
gine, on a de (4.22)

G(z,t) = e Helz+2)1, (4.25)

Or e*+1/2)t/2 st 1a fonction génératrice des fonctions de Bessel modifices I, (t) :

22 = N oL (). (4.26)
On en déduit
P(0n,t) = e 2 I,(2t), (4.27)

et on a P(0|n,t) = P(0] — n,t) en conséquence de la symétrie G(z,t) = G(1/z,t). I,(t) a
le développement en série (que 'on peut tirer de (4.26))

0o (£)2k+n
I,t)=) 2 > 4.2
() kzzok!(k+n)!’ n=0 (4.28)
d’ou i
P(O|n,t) < E t— 0. (4.29)
Du comportement I,,(t) =< \/‘;%, t — o0, on déduit
1
P(Oln,t) < t — o0. (4.30)

Vart ’

La probabilité d’occupation d’un site quelconque n tend vers 0 lorsque ¢ — oo : la particule
s’échappe donc & 'infini. o

Exemple 3 (Désintégration radioactive) Soit n(t) la population de noyaux radioac-
tifs, n € N. Il s’agit d'un modéle de perte uniquement avec g, = 0. Si v est le taux de
désintégration pour un noyau, et que les noyaux se désintégrent indépendamment les uns
des autres, on a r, = yn. L’équation maitresse du processus est

0

SEPult) = (1 + 1) Paga(t) = ynPa(t). (4.31)
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Cette équation maitresse peut également étre résolue par la méthode de la fonction gé-
nératrice (4.19), en établissant une équation différentielle pour G(z,t) avec une condition
initiale appropriée a P,(0). La fonction génératrice G(z,t) satisfait a

%G(z,t) =5 (Z(n +1)2" Py (t) — an"Pn(t)>
n=0

n=0

=1 - z)%G(z,t). (4.32)

La solution générale de (4.32) est une combinaison linéaire

G(z,t) = Z an ((z — 1)e_7t)n. (4.33)
n=0

La solution particuliére correspondant & P, (t = 0) = 6,5, c’est-a-dire G(z,t = 0) = 2"°,

est donnée par

Gpo(2,t) = ((z—1)e™ " + 1)”0
= (ze_% + (1 - e_”’t))no

L3 () e 34

n=0 n
On en déduit la probabilité
n _
P(ngln,t) = < 0> e (1— e_”’t)no " n < ng, (4.35)
n
de trouver n noyaux au temps ¢ si la population initiale était égale a ny. o

Exemple 4 (Equilibre des photons et de la matiére) Soit n(t) le nombre de photons
dans une enceinte au temps t, n(t) € N. On suppose que ces photons sont monochromatiques
et interagissent avec des atomes qui ont 2 niveaux énergétiques 1 et Es. La conservation
de I'énergie requiert £ — Fo = hw, ol w est la fréquence du photon. Les mécanismes de
gain et de perte sont dus & I’émission et ’absorption des photons.

Le terme de gain est
gn =An+ A= An+1), (4.36)
avec An traduisant I’émission induite et A I’émission spontanée.
Le terme de perte est

Tr = pn, (4.37)

qui décrit I’absorption par 'atome. On suppose de plus que les atomes émettent et absorbent
indépendamment les uns des autres, donc

A=79Ng,,  p=7Ng,, (4.38)

ou Ng, et Ng, sont les populations atomiques des niveaux E; et Ey. 7 est la probabilité
par unité de temps d’émission ou d’absorption par atome, grandeur qui doit étre calculée
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émission absorption

Es Es

transition g, : n —-n+1 transition r, :mn —n—1

F1G. 4.4 — Les photons émis par les atomes constituent un gain pour le systéme de photons n — n + 1,
tandis que ceux absorbés une perte n — n — 1.

par la mécanique quantique.? L’équation maitresse est donc

O Palt) = MPua(f) + uln + DPua () — ((u+ N+ N Palt). (4:39)
En réalité, on devrait tenir compte que les populations atomiques Ng, et Ng, sont aussi
aléatoires au cours du temps. Dans ce traitement on néglige les fluctuations ANg, de ces
populations, si bien que Ng, représentent les populations moyennes au cours du temps. Si
de plus on ne s’intéresse qu’a une solution stationnaire, ces populations atomiques moyennes
seront constantes. Dans ces conditions, A et u sont des constantes et la solution stationnaire

P73 est donnée par
A n
pP=C <—> , (4.40)
1

avec C' € R une constante de normalisation. En effet, en insérant (4.40) dans I’équation
maitresse (4.39) on a

A n—1 A n+1 A n
An | — +u(n+1 <—> —((u+A)n+A <—>
(3) +uen(3) -~ ennen (5

n )\n+1 )\n—i—l P

+(n+1) o

=n n—1

= 0. (4.41)

Supposons que cette solution stationnaire corresponde & 1’équilibre thermique des atomes
et des photons. On doit alors avoir en vertu de la statistique de Boltzmann

A @38 Neo _ pe-By) _ B (4.42)
H NEQ

Ainsi (4.42) dans (4.40) donne
Py = Ce Plen, (4.43)

ce qui permet de déterminer la constante de normalisation C' avec la condition Y2 PS = 1.
En utilisant la série géométrique
C=1-e P (4.44)

4Le calcul quantique montre que ces taux sont les mémes.
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et par insertion de (4.44) dans (4.43)
P = (1 . e_ﬁﬁ“’) o= Bhn., (4.45)

La valeur moyenne (n), du nombre de photons n dans I’état stationnaire est donnée par

(n), = inﬂf
n=0

= o (4.46)

ce qui est bien la distribution thermique d’un oscillateur harmonique quantique (statistique
de Bose-Einstein). L’effet purement quantique d’émission spontanée A\ dans (4.36) est abso-
lument nécessaire pour retrouver la statistique de Bose-Einstein des photons, comme ’avait
déja noté Einstein. o

.
Exemple 5 (Réaction chimique) On considére la réaction A= B avec taux de réaction

v et v/, et le processus n(t) = np(t) € N le nombre de particules de 'espéce B. On suppose
qu’on est capable de maintenir le nombre de particules n4(t) de 'espéce A a une valeur
constante n4(t) = na (par exemple par un flux de telles particules qui compense leur
variation occasionnée par la réaction A = B). On a alors g, = yn4 le taux de gain de
molécules B, et r, = 7'n le taux de diminution du nombre de molécules B. L’équation
maitresse est

0

EPn(t) =ynaP,_1(t) + 7' (n+ 1) Poi1(t) — (Yna ++'n)P,(t). (4.47)

On s’intéresse au régime stationnaire et on trouve alors la distribution de Poisson

Ps = %e‘A, A= %nA. (4.48)

En insérant (4.48) dans (4.47) on vérifie en effet

)‘n_l -\ ! )‘n+1 -\ / A" -\
TG o PTGy T Gk )t =0 0 (449)
soit
n . , )\n—l Y ,
T (MY —na) + I (Yyna—AY) =0, (4.50)

ce qui impose la valeur A\ = %n 4, qui est le nombre moyen de particules B. La production
de l'espéce B est ainsi d’autant plus élevée que v/4" est grand, un résultat intuitivement
évident. o
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Exemple 6 (Equation de Malthus-Verhulst) On considére une population de n
individus n = 0,1, 2,... occupant un territoire {2. Chaque individu a une probabilité par
unité de temps a de mourir et 3 de se reproduire. De plus, & cause de la compétition,
chaque individu a une probabilité supplémentaire de mourir (par unité de temps) égale a
~v(n — 1), proportionnelle au nombre des autres individus en présence. L’équation maitresse
"birth and death" est définie par les taux de perte et de gain r, et g, proportionnels au
nombre d’individus présents dans ’état n, soit

rn = an+yn(n — 1), (4.51)
gn = Bn, (4.52)

d’ou I’équation maitresse du systéme

%Pn(t) = Bn=1)Pp1(t)+(a(n + 1) +yn(n + 1)) Popa(6)=((8 + a)n +yn(n — 1)) Pu(t).

(4.53)
Cette équation est difficile & résoudre & cause du caractére non linéaire du taux r,. Dans
la limite ou le territoire ) est trés étendu, on peut bénéficier de ce grand paramétre pour
faire une étude asymptotique de (4.53).

On va établir une équation différentielle pour la densité de population et les fluctuations
de population en se basant sur (4.53). La population occupant un territoire 2 est extensive,
donc si (n(t)) est la population moyenne au temps ¢ dans le territoire,

- (n(t))
lim ——= = p(t 4.54
Jim T ) (154)
définit la densité de population au temps ¢t. On peut considérer ensuite les fluctuations de
la population dans € autour de la valeur moyenne p(t)Q2

Vi = p9)7) = 0 (V&) (4.55)

et on a admis que cette quantité est de I'ordre v/Q (par analogie avec les fluctuations
thermodynamiques d’équilibre). Remarquons que dans cette situation, le processus % n’a

plus de fluctuations dans la limite 2 — oo, c¢’est-a-dire

<<%t>>2> = (00— 007 _ <$> 0200 (456)

Examinons ’évolution du nombre moyen d’individus. Aprés un bref calcul (changeant n —
n—1et n — n+ 1 dans les sommes), on trouve & partir de (4.53)

o ) = 2”% Palt) = (8= ) (n(t)) = 7 (1)) (457)

Posons dorénavant v = %, X > 0: pour avoir une asymptotique bien définie, il est nécessaire
de supposer que le taux de compétition v est de I'ordre Q1. Divisant par €2 et tenant compte
de (4.56), I'équation (4.57) se réduit dans la limite Q — oo a

0

5 P(B) = (B = a)p(t) — Xp*(1), (4.58)
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qui est une équation différentielle déterministe pour la densité.
Supposons > «a (taux de natalité supérieur au taux de décés). En dehors du point
trivial p = 0, I’équation (4.58) a le point stationnaire
_P-a
Py =%
qui représente la densité d’équilibre de la population en présence d’'un taux de compétition
X. En linéarisant (4.58) autour de ce point d’équilibre avec p(t) = ps + X (f) on a

d
SX(1) = (8- )X (1), (4.60)
d'ou X (t) = e~ (B-a)t x (0), c’est-a-dire que 1'équilibre est approché exponentiellement vite.

Remarquons que si X =0 (3 > «), la solution de (4.58) est p(t) = P~ p(0), c’est-a-
dire qu’en absence de compétition la population croit exponentiellement vite (loi de Mal-
thus).

Si f < a (taux de décés supérieur au taux de natalité), le seul point stationnaire de
(4.58) est p = 0, et la population s’éteint.

Il est naturel au vu de (4.54) et (4.55) de poser
n(t) = Qp(t) + VQE(), (4.61)

ou £(t) est le processus des fluctuations d’ordre 1. La distribution des fluctuations II(¢, )
est définie par

>0 (4.59)

I1(¢,t) = P,(t) = Pﬂp(t)Jr\/ﬁg(t). (4.62)
Remarquons qu’avec le changement de variables (4.61)
0 d 0 0
SH(E ) =0 dtp( ) Palt) + 5 Pa(t)
0 0
f PO 7116 6) + 7 Palt). (4.63)

En introduisant (4.61), (4.62) et (4.63) dans (4.53), on peut écrire 'équation qui régit
I'évolution de la distribution des fluctuations II(, ). Il suit de (4.63) que

Pesa(t) = Py va(eey ) =11 (g + %t) . (4.64)

Ainsi (4.53) devient avec v = £ ott X' est fixé
TH6.1) = V5, 0) T ) = 6 (200 + VATE = 1) T (6= o)
+ [a (00() +VaE+1) + 5 (0) + VaIE) (Qplr) +VE2E + 1)] I <§+ %t)
- [(ﬂ +a) ((t) + V) + % (20(t) + V) (20(t) + Vare - 1)} TI(¢, ). (4.65)

Pour  grand on développe II en puissance de Q1/2

1 1 0% 1
H(fiﬁ,t>zﬂ(£,t) \/_86 (&, t) + 20 082 (5t)+0<93/2> (4.66)

Introduisant cette derniére expression dans (4.65), on identifie successivement les coefficients
des puissances de §2.
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Ordre ). Les termes se compensent.

Ordre vQ. On trouve
_\/ﬁ%n(g, t)% p(t) = \/ﬁa%ﬂ(ﬁ, t) (=Bp(t) + ap(t) + Xp*(1)) (4.67)

d’ot l'on retrouve ’équation déterministe (4.58) pour p(t).

Ordre Q°. On trouve

0 0 0
SE.0) = (8 — A)I(E.1) — (9 — W5 TIE B + 2Xp(0)S STIE
2
SAXPOTIE ) + 5 (o + plt) + X2(0) 51161
9 D(t) 0?
T (R(&,DII(E, 1)) + 2 o (&,1), (4.68)
W, 1) = (B — a — 2Xp(1))¢ (4.69)
D(t) = (B + a)plt) + X2(1). (4.70)

L’équation (4.68) est une équation de Fokker-Planck linéaire (& coefficients dépendant

du temps) qui décrit une distribution des fluctuations (gaussiennes) autour de la densité

moyenne de population p(t). En particulier, a I’équilibre %H({ ,t) =0, on a

4.59
hs(€) = (8- ) —22p) ¢ "2 —(8 - o (471)
et la constante de diffusion stationnaire (4.70)
D=Lt g+ ap) = 20 (4.72)
2 X
L’équation de I’état stationnaire s’obtient en insérant (4.71) dans (4.68)
0 D, &?
(5 = )5 (€M) + 55T (6) =0, (1.73)

que l'on multiplie par ¢2 puis intégre par parties pour déterminer ’écart quadratique

Dy
(&%) = )~ % (4.74)

Ainsi, pour 2 grand, les fluctuations autour de la population moyenne p;2 sont d’ordre

/ BQ
2X " &
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Exemple 7 (Equation d’évolution d’états quantiques) Soit un probléme quantique
dont la dynamique est décrite par I'hamiltonien H = Hy+V. L’hamiltonien non perturbé Hy
donne lieu a I’équation de Schréodinger stationnaire Hy¢, = E,¢,. Le calcul de perturbation
dépendant du temps permet de calculer les probabilités de transition de 1’état n vers n’ (régle
d’or de Fermi)

W(nln') = = [(¢n|V6w)]* p(En), (4.75)

avec p(E,) la densité d’états. En écrivant I’équation maitresse avec ces probabilités de
transition calculées pour de petits temps, on étend 1’évolution aux grands temps en faisant
I'hypothése de Markov. L’équation maitresse obtenue avec les taux W(n|n') de (4.75) est
I’équation de Pauli. o

=y
h

4.3 L’équilibre détaillé

L’équation maitresse est entiérement déterminée par la donnée des probabilités de tran-
sition W(\|\"). Avant d’étudier la dynamique, il est important d’examiner si ces derniéres
donnent lieu a un état stationnaire, qui doit satisfaire a

> (Py Wi — P Waw) =0, (4.76)
n’ex
avec W, v = W(n|n'). Par exemple, dans le cas ou le systéme est isolé (ou en contact avec
un réservoir thermique), il doit évoluer vers la distribution d’équilibre PS microcanonique
(ou canonique), selon le second principe de la thermodynamique.® Dans ce cas, les W

doivent étre tels que I'équation (4.76) admette une solution Pf. Une fagon possible de
satisfaire (4.76) (mais non la plus générale) est ’annulation terme a terme.

Définition 4.1 (Equilibre détaille) On dit que les W n satisfont au principe d’équilibre
détaillé relativement a [’état stationnaire P® si

Py Wy = Py W, Vn,n, (4.77)

ce qui implique (4.76).
L’équilibre détaillé signifie que pour chaque paire d’états n, n’, le nombre de transitions

de n a n’ doit équilibrer celles de n’ & n au cours du temps.

Dans le cas ol le systéme est en interaction avec un réservoir a température fixée, la
distribution stationnaire est celle de ’équilibre thermique

P =P¢=Q 'd,e Pbn, (4.78)

avec (Q la fonction de partition, F,, I’énergie de I'état n et d, sa dégénérescence. Ainsi,
I’équilibre détaillé prend la forme

dpe PEv Wy = dpe ™ PP W, 0y Vg, (4.79)

ce qui donne une relation bien spécifique entre les taux de transition et les énergies du
systéme.

5P désigne un état stationnaire en toute généralité, tandis que P est un état d’équilibre au sens de la
meécanique statistique de I’équilibre. Py est stationnaire, mais il existe beaucoup d’états stationnaires hors
équilibre.
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WA, A

n,n' n',n'

F1G. 4.5 — L’équilibre détaillé assure que les états sont en équilibre deux a deux, c’est-a-dire que P W,/ ,, =
PWy, oty Pry Wt it = PaWy i, et ainsi de suite.

Remarque (Fondement microscopique de 1’équilibre détaillé) La relation (4.79)
peut étre démontrée & partir de la mécanique (classique ou quantique) sous certaines condi-
tions, en particulier 'invariance sous le renversement du temps de la dynamique microsco-
pique (voir la section 5.1). Elle est caractéristique pour une équation maitresse qui conduit
a la thermalisation du systéme. o

4.3.1 Algorithme de Monte-Carlo Metropolis

L’équation maitresse est souvent utilisée comme outil pour décrire la distribution d’équi-
libre thermique Pf, considéré comme limite lim;_,o, P,(t) = P¢. On suppose que les états
d’énergie E), sont connus et on construit les taux W, ,,» et W, ,, de fagon a vérifier I'équilibre
détaillé. En supposant ici d, = d,y =1 on a

€
& _ Wn,n’ _ e_'B(Enl_En)‘ (480)
Pﬁ Wn/,n
Comme on ne s’intéresse qu’a ’état d’équilibre et non a son approche, on a toute liberté de
faire des choix judicieux des W, ,» (non nécessairement issus d’une théorie physique) avec

la seule contrainte que (4.80) soit satisfait. L'idée est alors de simuler les réalisations n(t)
du processus dont 1'équation maitresse décrit ’évolution, en respectant la relation (4.80).

Meéthode. Choisissons une fonction F' telle que

Flz) =2 F <1> , (4.81)

X

et posons

FlE) —w (4.82)
Pﬁ = n,n’- .

On vérifie alors 'équilibre détaillé (4.80)

Waw (452) F () sy P_nF<15;) (4583)
Wear () B E(HE) |
T
Deux choix simples de F sont
F(z) = min(z, 1), x>0, 4.84
Flz) = — 4.85)
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Le premier choix (4.84) donne lieu a l'algorithme de Monte Carlo Metropolis. En insérant
(4.80) dans (4.82) avec le choix (4.84) pour F', on obtient

1 E,—FE,<0
Wn’n/:{ ) n n =4Y

e_IB(En/—En)7 ETL’ _ En > 0 (486)

Ainsi, nous voyons que les taux W, ,» peuvent étre déterminés uniquement & partir de la
différences des énergies E, — E,, du systéme, grandeurs que le physicien a ’habitude de
calculer.

Algorithme.
(i) On génére un état n’ a partir d’un état préalable n, selon une régle déterminée ou
une procédure aléatoire.
(ii) On calcule AE = E,; — E,.
(iii) (a) Si AE <0, alors W, ,» = 1 et on retient le nouvel état n'.

(b) Si AE > 0, alors W,y = e PAE et on tire un nombre 7 au hasard dans I'in-
tervalle [0,1]. On retient I'état n’ si r > e #2F et on le rejette dans le cas
contraire.

(iv) On recommence la procédure en (i).

De cette fagon, on génére une réalisation n(t) du processus gouverné par I’équation mai-
tresse. Le tirage au sort de la grandeur r simule le c6té aléatoire du processus, par analogie
avec la marche aléatoire unidimensionnelle pour laquelle il n’existe que deux situations (un
pas a gauche ou a droite selon que r = 1/2). En effectuant cet algorithme un trés grand
nombre de fois, on génére un grand nombre de réalisations du processus stochastique. Les
moyennes prises sur les réalisations pour des temps suffisamment longs reproduisent par
construction les moyennes thermiques, et permettent en principe de trouver les probabilités
absolues W comme expliqué dans la section 2.1.1. Pour un systéme & grand nombre de
degrés de liberté, cette procédure est souvent plus efficace que le calcul direct des moyennes
par sommation sur toutes les configurations avec poids P¢ (4.78).

4.3.2 Dynamique stochastique du modéle d’Ising

e Configurations. Les états w € ¥ = {—1,1}" sont les 2V configurations de spins sur
un réseau de N sites, w = {o1,...,0n}, 0; = £1. Une réalisation du processus (mul-
tidimensionnel) consiste en I’évolution w(t) = {o1(t),...,on(t)} d’une configuration
des spins au cours du temps.

e Energie. Soient Jij > 0 les constantes de couplage telles que lim|;_; ., Ji; = 0, alors
I’énergie d’une configuration est donnée par I’hamiltonien d’Ising

N
H(w) = —% Z Jij0i0j~ (487)
i#]

o Configurations accessibles. On fait ’hypothése que I’évolution entre deux états suc-
cessifs w et w’ ne se fait que par retournement d’un seul spin a la fois. Soit w®) =
{o1,...,—0k,...,on} la configuration obtenue de w par retournement du spin k, alors
les taux de transition satisfont aux relations W(wlw') = 0 si w’ # w®) et

Wlo®) (ot
W) = BHEO)=H@) [ (0®)) - H(w) = 2mp(w), (4.88)
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ou
N
w) =Y Jijo (4.89)
J#k
est 'aimantation locale au site k dans la configuration w.

I’équation maitresse associée a ce processus est

N

%P(W 1) = > W®)P®,t) - W(wlw®)Pw,1)] . (4.90)
k=1

On applique ensuite 'algorithme de Metropolis, construisant ainsi I’évolution d’une configu-
ration w(t) au cours du temps. Lorsque ¢ est assez grand, on obtient ainsi une configuration
typique pour la distribution de Gibbs p(w) = ée_ﬁH @) ot @ est la fonction de partition.

Le probléme peut étre résolu analytiquement dans deux cas particuliers, celui de la
chaine de spins unidimensionnelle et dans I'approximation du champ moyen. Commengons
par spécifier les taux de transition plus précisément de la forme

W(w]w®) = % [1 — oy th (Bmx(w))], (4.91)

ot my(w) est I'aimantation locale (4.89), et 2/ détermine I’échelle de temps sur laquelle se
déroule le processus. Utilisant l'identité (1 —thz)/(1+th ) = exp(—2x) on vérifie aisément
que ces taux satisfont a I’équilibre détaillé (4.88). Ainsi I’équation maitresse (4.90) s’écrit

ngt i

a1 5 Z [ 1+ 0 th Bm;j(w))P(w,t) — (1 — o th Bm;j(w)) P(w, t)] . (4.92)

Formons la valeur moyenne du spin au site k
t)=> opP(w,t). (4.93)
w

Elle obéit a ’équation de mouvement

d

S ow) (0) = = [ow) (1) — {th ) (1) (494)

En effet, insérant (4.92) et isolant le terme j = k on obtient

t):ZUk%Pw t
:_Z (0 + th By (w)) P( )= > (o — th Bmg(w))P(w, t)
+5 Zo'kz [ 1+ 0jth fm;(w ))P(w(] t)

w JF#k
—(1 - 0 th fm; (w))P(w, t)] . (4.95)
On change la variable muette de sommation o en —oy, dans la premiére somme, qui devient

alors identique a la seconde (my(w) est indépendant de oy), d’ou (4.94). La troisiéme somme
est nulle car ses termes sont impairs sous le changement o), — —oy.
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Chaine de spins unidimensionnelle

On considére une chaine de spins ¢; unidimensionnelle infinie. Les spins sont numérotés
pari=...,—2,—1,0,1,2,... et couplés a leurs plus proches voisins : J;;_1 = J;;41 = J > 0,
Jik =0, k#1i— 1,7+ 1. Dans ces conditions, on observe que

1
mj(w) = J(O’j+1 + O'j_l), th ﬁmj(w) = 5(0']'-1—1 + Uj—l) th26J, (496)

si bien que (4.94) se réduit a I’équation aux différences finies

d

5 @0 == (000~ 3 (0 O+ (o) () 267 . aom

Le probléme est essentiellement le méme que celui de la marche aléatoire en temps continu
traité dans la section 4.2 et peut étre résolu par la méthode de la fonction génératrice G(z, t)
comme pour le second exemple. Cette derniére obéit ici a

5560 = [Tenan) (24 1) o] 6lean (1.98)

Si l'on prend la condition initiale (o;) (0) =0, i # 0, (0¢) (0) = 1, on trouve
—~t i 1
G(z,t) =e "exp B th(26J) | =+ 2 t, (4.99)

et avec (4.25)
(0:) (t) = e " I;[yth(28J)t]. (4.100)

Les comportements (4.29) et (4.30) de la fonction de Bessel modifiée (4.28) montrent que

() = cf,  i#0, CeR, (4.101)
(o) () t200 exp[—’yt(l—th2ﬁ,])]. (4.102)

2m(yth26J)t

Pour les temps petits, les spins voisins de o¢ s’orientent positivement & cause du couplage
ferromagnétique. Pour les temps longs la valeur moyenne de tous les spins tend exponen-
tiellement vite vers zéro quelle que soit la température T° > 0 en conséquence du fait qu’il
n’y a pas d’aimantation spontanée dans le modéle d’Ising unidimensionnel pour T" # 0.

Approximation du champ moyen

On choisit les constantes de couplage indépendantes de la distance, toutes de la forme
Jir = %, J > 0, et on considére I’ aimantation moyenne par spin en limite macroscopique
N — o0

N—o0

N
p(t) = lim (my) (t), mN(w):%ZUi. (4.103)
=1

On admet qu’a tout temps les fluctuations de m v (w) sont négligeables lorsque N — oo, a
savoir
lim ((mn)P) (t) = p(t)P, p=2,3,.... (4.104)

N—oo
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On remarque que 'aimantation locale (4.89) s’identifie & ’aimantation par spin & un terme
d’ordre 1/N prés

J _ 1
my(w) = Z N0 = J (mN(w) - N@;) . (4.105)
i#£k
Ainsi, tenant compte de (4.104), on déduit de (4.94) que dans la limite N — oo

S u(t) = —lu(t) — (th B0, (4.106)

Cette équation différentielle non linéaire a les points stationnaires solutions de u—(th 5J)u =
0, dont en particulier le point = 0. Avec le développement de Taylor thz ~ x — 23/3
autour de z = 0, I’équation s’écrit au voisinage de = 0

3
Sty = — |- gt + P20

w(t)?|. (4.107)
Sil—pJ >0, cest-a~dire T' > T, = J/kp, le point stationnaire ;= 0 est unique et stable,
et la relaxation est exponentielle

- T
B 7(T - Tc)'

2 0(0)e” ™M (1)

pu(t) (4.108)

SiT < T, le point u = 0 devient instable et apparaissent deux nouveaux points stables

3

qui sont les deux valeurs possibles de I'aimantation spontanée, T, étant la température de
Curie de la transition de phase ferromagnétique du modeéle d’Ising en champ moyen. Leur
approche est également exponentiellement rapide, mais on voit que le temps de relaxation
7(T) donné par I'Eq. (4.108) diverge lorsque T' — T.. Au point critique T' = T,, I'Eq. (4.107)
se réduit a

Sty =~ Lu(ey” (4.110)

30 e 2 (4.111)
2v1(0)2t + 3 2yt ’

La décroissance n’est plus exponentielle : c’est le phénoméne du ralentissement critique de
I’approche & I’équilibre au point de transition de phase.

dont la solution est

4.3.3 Résolution par la théorie spectrale

L’équilibre détaillé permet de résoudre ’équation maitresse par la méthode spectrale.
Pour utiliser cette méthode, nous posons les hypothéses suivantes.

Hypothése 4.1
(i) 1l existe un unique état stationnaire P >0 Vn.
(ii) L’équilibre détaillé est réalisé relativement a l’état stationnaire P*.
(iii) Le nombre d’états N est fini.
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L’hypotheése (iii) d’un nombre fini d’états est faite ici pour la simplicité mathématique.

Ecrivons I’équation maitresse
—Po(t) =Y (Pw(t)Wurn — Pu(t)Waw) (4.112)

sous la forme d’un systéme linéaire

d
—P(t) =M -P(), (4.113)

avec P(t) € RN un vecteur qui a pour éléments

Py (1)
P =| : |, (4.114)

et M € My(R) une matrice N x N réelle définie par ses éléments
N
My = myn 5m,n Z Wn,k- (4115)
k=1

Définition 4.2 (Matrice stochastique) Soit M € My(R), alors M est dite matrice
stochastique si elle satisfait aux deux conditions suivantes.

(i) Mpm >0Vn#m

(i) Sopy My =0 ¥Vm

On peut vérifier que M définie par (4.115) satisfait a ces deux conditions. Définissons

la matrice M par
—~ 1

_—Pﬁ

M/ P5,. (4.116)

Lemme 4.1 L’équilibre détaillé est vérifié si et seulement si la matrice M est symétrique.

Preuve (Lemme 4.1) Supposons que la matrice M soit symétrique, donc Mnm = M,
ce qui se réécrit compte tenu des définitions (4.116) et (4.115) et en examinant le cas non
trivial n #m

N

N
1 1
— Wm,n - 5m,n g Wn,k Pﬁl i ——— Wn,m - 5n,m E Wm,k \/ Pﬁ, (4117)

=0

qui est équivalent a 1’équilibre détaillé
Wi Py = WinmPy- (4.118)

Le méme calcul établit la réciproque, ce qui achéve la preuve. |
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La matrice M étant symétrique réelle, elle est diagonalisable et possede NN vecteurs

~ (k)

propres orthonormaux ¢~ € RV
~(k)
~ (k) !
o =1 |, (4.119)
~ (k)
N
ko)
avec valeurs propres A\, Kk = 1,..., N, et tels que < ‘(b( 2) > = Ok, ky- La variable k €
{1,..., N} désigne donc le numéro du vecteur propre, qui a lui-méme les N composantes

figurant dans (4.119). Les vecteurs qb(k) de composantes ng?(f) =/P3 5,(1]“) diagonalisent donc
M

M - " = \.o®), (4.120)
et on a la relation d’orthonormalité des (b(k)

N (k1) ,(k2)

> qbnTn = (&"|8")) = by (4.121)

Remarquons que M (ou M) posséde toujours la valeur propre zéro. En effet, si on pose
ng) = /P$, ou ¢$}) = P?, par définition méme de I’état stationnaire %PS =0, (4.113)
entraine que

M- =0, (4.122)

et donc la valeur propre associée est A\ = 0.

Lemme 4.2 Soient A\ les valeurs propres de la matrice M, alors A\, <0, k=2,...,N.

Preuve (Lemme 4.2) On montre que M définit une forme quadratique définie négative

(| M|d) < 0.

3
—_

™~
Iz
=
ﬁMZ ﬁMZ“ﬁMZ

nm \/ Qbm

Wmn\/ Ps ¢m - nm) (4123)
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Posant z, = -9, (4.123) devient
P
o N N
(BIM|B) = D wnzmWmnPi — Y 22WamP}
n,m=1 n,m=1
N 1 1 N
= Z Ly WPy, — = Z 2 WP —= Z 2 Wy PS
n,m=1 2 n,m=1 v 2 n,m=1
(4'1=18)Wm,npfn
"?”Zﬁm:l 22 Win n PS,
1 Y S 2 2
= -3 Z Wi Ps (—22020 + x5 + 77,)
n,m=1
1
= -3 Z Wi Py (zn, :rm)2
nm=l"30 >0 >0
< 0. (4.124)

De plus, la solution stationnaire étant supposée non dégénérée (hypothése (i) d’unicité de
la solution stationnaire), la valeur propre nulle est de multiplicité 1, donc les autres valeurs
propres A\ < 0, k=2,..., N, sont strictement négatives, ce qui achéve la preuve. |

Remarque Une condition suffisante pour garantir 1'unicité de ’état stationnaire est que
tous les taux soient strictement positifs : W,, ,, > 0V n, m. En effet, dans ce cas I’annulation

N _ I _a_di (z)n — ¢'m — 3 A
de (4.124) entraine x,, = x,, Vn,m, c’est-a-dire AR C est indépendant de n.

Ainsi an =C\/P: = 02;5,(}) est proportionnel au vecteur de valeur propre A1 = 0, cette
derniére est donc non dégénérée. o

Toute distribution initiale P(0) peut étre développée dans la base des vecteurs propres

¢(k)

P(0) =) o™, (4.125)
k=1

et en vertu de (4.121)

AT
I
]
%
3"
=2
»—'Q
I
WE
©-

=1. (4.126)
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Ainsi, la solution générale de (4.113) est

pr) 2V M op(g

1
= > —t"M™-P(0)
m!
m=0
@125) o= 1 0 O L
= Z%t M™-Y " cpp®
m=0 k=1
- 1 m g m
= Z%t > g
m=0 k=1
N
— Z¢(k)cke)\kt
k=1
N N (k)
(4~1_26) (k) Mgt ¢n Pn(o)
= kZ::l¢ e nz—:lips . (4.127)

On sait que A\ < 0 Vk = 2,...,N, ce qui implique 'approche & 1’équilibre de fagon
exponentielle
lim P(t) = c;0) = P* (4.128)

t—o00

pour toute condition initiale P(0).

La probabilité de transition P(n,0|m,t) du processus de Markov d’un état n & un état
m dans le temps t est obtenue en spécifiant la condition initiale Pp,(0) = 6,4, d’ott selon
(4.127)

N ¢(k) ¢(k)
P(n,0m,t) = ; mpﬁ" et (4.129)
La distribution jointe du processus avec état stationnaire W (n) = P2 est
N
W(n,0m,t) = Pg P(n,0lm,t) = Y ¢FeFe (4.130)
k=1

Calculons la fonction d’autocorrélation du processus, définie par

K(t) = (n(0)n(t)) — (n(0)) (n(t)) . (4.131)

Comme le processus est stationnaire

N N
m(0) = (n(t) = Yon Py = 6ll, (4132)
n=1 n=1
et
N
(nO)n(t)) = Y nmW(n,0/m,t)
n,m=1
N N
(4.130) Z nm Z¢§,’§)¢5f)em
n,m=1 k=1

N N 2
= ) oM (me) , (4.133)
k=1 n=1
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alors en insérant (4.133) et (4.132) dans (4.131)

N N 2
K(t)=) eM (Z n ¢§ﬁ>> . (4.134)
k=2 n=1

K (t) tend exponentiellement vite vers zéro lorsque t — 0o, ce qui signifie que les corrélations
temporelles du systéme décroissent exponentiellement vite.

4.4 Le théoréme "H"

Que 'équilibre détaillé soit vérifié ou non, I’équation maitresse posséde une propriété
générale et remarquable : il existe une fonctionnelle de ’état qui est monotone au cours
du temps. Une telle fonctionnelle est dite de Liapunov en mathématique. En physique, elle
fournit un modéle d’entropie hors équilibre.

Théoréme 4.1 ("H") Supposons que le nombre d’états est fini® et ’équation maitresse
admette une distribution stationnaire P) telle que P; > 0, n € 3. Soit f(z) une fonction
strictement conveze pour x > 0 (f"(z) > 0), bornée inférieurement pour x >0 (f(z) > a €
R), alors la fonctionnelle

H(t)=) P f <P;T@> (4.135)

ney

est monotone décroissante au cours du temps.

Preuve (Théoréme "H") Il faut voir que %H (t) < 0. Pour ceci, commencons par
établir que pour toute suite de nombres {an}n21 quelconques, on a

> Py Wmn(an — am) = 0. (4.136)

n,me3

En effet, (4.136) est la conséquence directe que la distribution Pj satisfait & 1’équation
majtresse stationnaire, c’est-a-dire

> PiWin(an —am) =Y an Y (PsWin — PiWym) = 0. (4.137)

n,mex nex mex

@12

Ceci évitera de traiter ici les problémes relatifs & la limite et la convergence des sommes infinies.
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P (t)

Posons x,(t) = et calculons (on omettra d’écrire la dépendance temporelle par la

suite)

d B Ld . (B()
g0 = Yegr (%)

ney

p 0
= Z f (an) Epn(t)

ned
(4.10) ST @) Y (Pa®Wan — Pa(t)Wam)
ney mex
= Z [ (@) Z P ()W — Z [ (@) Z P (6)Wnm
nex meX nex mex
= Z Pr(t)Wmn (f,(mn) - f/(xm))
n,me3
= Z PiWin (mf'(@n) — 2 f' (2m)) - (4.138)
n,me3
On fait maintenant le choix
an = f(2n) = znf'(2n), (4.139)
dans (4.137). Ce choix conduit a l'identité
D PiWin (f(@n) = f(@m) = (@t (@n) = 2 f' (2m))) =0, (4.140)
n,me
que l'on additionne a (4.138) pour obtenir
d
TH () = > ffn, Win ( f(@m) = f(2n) = (m — 20) f'(24) ) < 0. (4.141)

n,mey >0 >0 >0

En effet, le résultat f(z,,) — f(an) — (@m — 2n) f'(xn) > 0 est la définition méme de la
convexité stricte de f(x), comme le met en évidence la figure 4.6.

Corollaire 4.1 (Approche a I’équilibre) Si de plus tous les taux sont strictement po-
sitifs Wy > 0 ¥Yn,n', pour toute condition initiale P,(0) on a

lim P, (t) = Py, (4.142)

n

L’état stationnaire est alors unique.

L’hypothése du corollaire réclame que des transitions puissent se produire entre toutes
paires d’états. Elle est en fait trop restrictive. Le résultat reste vrai si toute pair d’états est
connectée (via d’autres états) par une chaine de taux de transition non nuls. Cette derniére
condition est nécessaire pour que toutes les composantes du vecteur P(t) puisse évoluer
vers celles du vecteur P® par transitions successives. Si elle n’est pas remplie, le systéme
peut posséder plusieurs distributions stationnaires ayant chacune son bassin d’attraction de
conditions initiales.
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F1G. 4.6 — De fagon géométrique, on voit que la convexité stricte se traduit par f(b) — f(a) > (b—a)f'(a),
et donc f(b) — f(a) — (b—a)f'(a) > 0, avec inégalité non stricte si f(z) n’est pas strictement convexe.

Preuve (Corollaire d’approche a 1’équilibre) Par le théoréme "H", H(t) est bor-
née inférieurement et décroissante, donc limy_.oo H(t) existe et limy_.o S H(¢) = 0. Par
conséquent, on tire de (4.141)

lim i J=—1lm > PiWmn (f(@m) = f(@n) = (Tm — 20) f'(xn)) =0, (4.143)

n,me;

d’ott comme chacun des termes de la somme de (4.143) est positif et Py, # 0, Wy, , # 0,

lim (f(xm) - f($n) - ($m - $n)f,($n)) =0. (4'144)

t—o0

Le développement de Taylor limité de f(z,,) en z,, = z,, donne

f(:Em) = f(xn) + f,(:pn)(xm - $n) %f ( )( - $n)27 Ty € [ﬂi'm,:En]
= f(zm) = f(n) = (@m — 20) f'(20) = %f (Zn) (@ — )%, T € [Tm,2n). (4.145)

=0>0

L’inégalité stricte 0 > 0 nous est assurée par ’hypothése de convexité stricte de f(z). En

insérant (4.145) dans (4.144) on obtient avec x,(t) = PI"D(:)

lim (2, —2,) =0

t—oo
. (Pa(t)  Pa(t)) _
— E&( Ps  Pps =0
Py,
— Jim (Pn(t)—P; PE”) 0. (4.146)
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En sommant sur les états n avec la condition de normalisation ) s Pn(t) =3 5 Pp =1
Vt, (4.146) devient

lim (an@)_Pg_jf)Zp;) =0

nexy M nex
=1 =1
P
= 1 m(?) 1
t—oo Pﬁz
= tlim P, (t) =Py, (4.147)
— 0
ce qui achéve la preuve. [

Remarque Nous supposons dans la preuve que l'existence de limy_,o, H(t) entraine

limy_.oo H(t) = 0. Ceci pourrait étre en défaut si H(t) = dH(t)/dt n'est elle-méme pas
monotone et présente des oscillations lorsque ¢ — oco. Dans ce cas, la démonstration reste
correcte a condition de remplacer dans la preuve H (t) par sa moyenne sur un intervalle de

temps 7 : 1 tt+T ds H(s) = w o

On peut faire un modeéle d’approche a 1’équilibre thermique qui est un analogue du second
principe de la thermodynamique. Supposons que ’état stationnaire P; = PS¢ soit 'état
d’équilibre du systéme, on fait le choix f(z) = xIn(x) et dans ce cas

H(t) = 3" Pu(t)n (P ;@) . (4.148)

ney

La fonction H (t) ainsi définie a les propriétés suivantes :
(i) H(t) est strictement décroissante.
(i) Extensivité : si ¥, et ¥j sont deux systémes indépendants (P, (t) = P2(t)P2(t)), on
a
H(Z,UXy) = H(X,) + H(Xp). (4.149)

(iii) limy—oo H(t) = 0.
Introduisons [’entropie d’équilibre S€ par la formule usuelle
S¢=—kg Y Piln(F;), (4.150)
nex

ou kp est la constante de Boltzmann. On définit alors la fonction d’entropie hors-équilibre
du processus par

S(t) = —kgH(t) + S°
= —kp (Z P,(t)In <P%(f)> +> Piln (Pﬁ)) : (4.151)
nex n ney

Par le théoréme "H", la fonction d’entropie hors-équilibre est monotone croissante, et on
vérifie bien que lim;_,o, S(t) = S°.
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Ces considérations ne constituent en aucun cas une démonstration de la validité du
second principe de la thermodynamique, car elles se basent sur une évolution régie par un
processus de Markov (déja irréversible) et non pas sur I’évolution microscopique réversible
dans le temps.






Chapitre 5

La microréversibilité

La microréversibilité est 'invariance sous le renversement du temps des équations du
mouvement au niveau microscopique. Dans ce chapitre, on établit une connexion entre
I’évolution classique déterministe et le processus stochastique qu’elle engendre pour les ob-
servables macroscopiques, puisque ce dernier est induit par le flot microscopique sous-jacent.
La microréversibilité va avoir des implications importantes sur ’évolution macroscopique,
en particulier 'équilibre détaillé et les relations de Onsager.’

5.1 Démonstration de 1’équilibre détaillé

5.1.1 Le processus des observables macroscopiques

Commengons par donner le cadre général de la description. On considére un systéme de

particules caractérisé par les hypothéses suivantes.

(i) Le systéme est classique avec N < oo degrés de liberté {qy, pk}]k,\[:]L =w € Q, Q étant
I’espace de phase.

(ii) L’hamiltonien H(w) est supposé une fonction paire des moments conjugués {p k}]kvzl.
Il engendre via les équations de Hamilton le flot ¢¢(w); ¢1(w) = w(t) est le point au
temps t sur la trajectoire dans ’espace de phase issue de w au temps t = 0. On a
dr—0(w) = w et Gy 11,(w) = 1, (¢, (w)), en particulier ¢; ' (w) = ¢_(w). De plus,
¢¢(w) laisse I’élément de volume de 'espace de phase invariant (théoréme de Liouville).

(iii) On se donne une famille x(w) = {z1(w),...,z,(w)} de v observables macrosco-
piques. Les z4(w), a = 1,..., v, sont supposées étre des fonctions paires des moments

Lo N
conjugués {pg},_;-
(iv) Il existe une distribution d’équilibre invariante au cours du temps

Pf(w) = P (d1(w)) (5.1)

par exemple P¢(w) = %e_ﬁH @) Q étant la fonction de partition.

'Du nom du physicien et chimiste norvégien Lars Onsager (1903-1976), prix Nobel de chimie en 1968.
Dés 1931 il pose les premiers fondements de la thermodynamique des processus irréversibles. En énongant
I’hypothése de réversibilité des phénomeénes d’interaction a I’échelle atomique, cela le conduit dans les années
1940 a I’établissement des relations de réciprocité qui portent son nom.

109
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Notons le processus avec condition initiale fixée wq par

x(t,wo) = x (¢t(wo)) - (5.2)

x(t,wp) représente donc I’évolution temporelle de la collection d’observables x pour une
condition initiale wg. Lorsque les conditions initiales sont aléatoires et pondérées par la
distribution d’équilibre P¢(w), on obtient un processus stochastique vectoriel & v dimensions
x(t) associé a ces observables, hérité de la mécanique, dont les fonctions de distribution
jointes sont :

W(x1,t15. .., Xp, ty) = /deo P (wp) d (x1 — x(t1,wp)) - . 0 (X, — X(t, wp)) - (5.3)

Dans (5.3), les arguments sont les vecteurs

Xj ={ja}nm (5.4)
et
v
8(x; —x(tj,wo)) = [ ] 0 (@ja — walts, wo))- (5.5)
a=1
Résumons la notation adoptée :
N = nombre de particules microscopiques, k=1,...,N
v = nombre d’observables macroscopiques, «a=1,...,v
n = nombre d’arguments de W, 7=1...,n.

Le probléme est d’obtenir autant d’informations que possible sur ce processus a partir
de la dynamique microscopique sous-jacente.

Montrons tout d’abord que ce processus est stationnaire. On a

W(x,t+71) = /deo P¢(wp) 6 (x —x(t + 7,wp))

_ / duwo P*(w0) 6 (x — x(1, (7)) . (5.6)
Q
Par le théoréme de Liouville la mesure de ’espace de phase ne change pas, donc
dwg = dw(7), (5.7)

et comme par I'hypothése (iv) de la page 109 la distribution d’équilibre est invariante au
cours du temps, alors en insérant (5.1) et (5.7) dans (5.6) on obtient

W(x,t+71) = /Q dw(7) P¢(w(7))d (x — x(t,w(T)))

= / dwo Pe(wO) ) (X - x(t,wo))
Q
= W(x,1). (5.8)
La méme démonstration s’étend a toutes les distributions (5.3). En particulier

W) = /Q dw P°(w) 3(x — x(w)) = P(x) (5.9)

est la distribution d’équilibre du processus x(t).
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5.1.2 Le renversement du temps et ses conséquences

Des conséquences importantes suivent de 'invariance sous le renversement du temps de
la dynamique microscopique. Le renversement du temps est défini par la transformation 7T°
telle que

t t
p P
et done T (w) = @ = {(gx, —pk)}{f:l.

Lemme 5.1 Supposons que [’hamiltonien H(w) soit une fonction paire des moments conju-
/ N .

gués {pr},_y, alors le flot ¢¢(w) se transforme de la facon suivante sous le renversement

du temps :

¢z (@) = ¢y (w). (5.11)

Preuve (Lemme 5.1) Commengons par montrer que

¢i(w) = (q(t), —p(t)) = (q(t),p(t)) (5.12)

et
¢7 (@) = (a(~1),p(=1)) = (a(®), (7)) (5.13)
satisfont & la méme équation du mouvement. En effet les équations canoniques %q(t) =

C%H(q,p) et %p(t) = —C%H(q,p) impliquent tout d’abord en changeant p en —p et utilisant

o_ 0. o_ 9 _
5= —%H(q,p), 5P = %H(q,p), (5.14)
ou bien en changeant t en —t
0 0 0 0
gl = a—pH(q,p% b= —8—qH(q7p)- (5.15)

D’autre part, les conditions initiales des deux trajectoires (5.12) et (5.13) sont les mémes

bi—0(w) = (ar, —pr) =W = ¢ (@) (5.16)

Par conséquent, en vertu de 1'unicité des solutions des équations de Hamilton
¢z (@) = by (w), (5.17)
ce qui achéve la preuve. |

Remarque (Lemme 5.1) L'’interprétation du lemme (5.1) est la suivante. Etant donné
que ¢; ' = ¢_; = ¢y, alors

¢ (@) = di(w) = @ =y (A1 (w))- (5.18)

La figure 5.1 donne une interprétation graphique la relation (5.18).
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(a(®),—p(t)) (a(t),—p(1))

— —
(a,—p)
t' €0, t’z t t' €]t,2t]
by (w)=(at"),pt")) & (w) = (a(t), —p(t)) ét(¢4(w)) =w=(a,—p)

F1c. 5.1 — Nous pouvons illustrer graphiquement la relation (5.18) qui est équivalente a celle (5.11) du
lemme 5.1. Pour ¢’ € [0, ¢[ on fait évoluer la condition initiale (q, p). En t' = ¢, on applique 'opérateur T de
renversement du temps et obtient (q(t), —p(t)) = ¢,(w). En prenant comme nouvelles conditions initiales
at (w), on fait évoluer le systéme durant ¢ jusqu’en ¢’ = 2t avec le méme hamiltonien, temps pour lequel on
a ¢ (Et (w)) =w = (g, —p). Pour tester I'invariance sous le renversement du temps il suffit donc de laisser
évoluer le systéme selon cette procédure et s’assurer que 'on revient au point initial au signe des vitesses
preés.

o

En vertu de 'hypothése (iii) de la page 109 on a x(w) = x(@), et donc la collection
d’observables x(t,wp) se transforme selon

x(t,w00) ) x(@n(wo)) T (@ (wo)) M T (@) ) x(—t,T0). (5.19)

Calculons de 1a la distribution a deux temps W (x1, 0;x2,t) :

W(x1,0;x2,1) = /deo P%(wp) d (x1 —x(0,wp)) 0 (x2 — x(t, wo))
duwo=do / dwo PE(T0) 6 (x1 — x(0,30)) 8 (%2 — x(t,T0))
Q

Pe(@o)=P*(wo) / dwo P(wo) 6 (x1 —x(0,wo)) 6 (x2 — x(t,W0))
Q

(5.19) /Q dwo P%(wo) & (x1 = x(0,w0)) & (x2 — x(—t,w0))

= W (x1,0;x9, —t). (5.20)

D’autre part, comme les W sont par définition symétriques par rapport a 1’échange des
variables {xj,t;}, on a W(x1,t;X2,0) = W(x2,0;x1,t) et (5.20) ainsi que la stationnarité
entrainent aussi

W(x1,0;x9,t) = W(x2,0;x1,1). (5.21)

Ce sont les conséquences fondamentales de la microréversibilité : dans W (x1,0;x2,t) on
peut soit changer ¢t en —t, ou permuter les arguments x; et Xs.
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De (5.20) et (5.21) il suit les relations de symétrie suivantes pour les corrélations des
observables ()

(xa(0)zp(t)) = /d”xl /d”X2 T1,0 T2.3 W(x1,0;%x2,1)
P2 (20 (0) (~t)) (5.22)
C2) (050)20(t)), Vo f=1,....0 (5.23)

5.1.3 L’équilibre détaillé

Quant aux probabilités conditionnelles P(x1,0|x2,t), elles satisfont I’équilibre détaillé
par rapport a la distribution d’équilibre P¢(x) :

W (x1,0;x2,1)
W(x1)
(5.21) Wi(xg,0;x1,t)
W(x1)
(x2) W(x2,0;x1,1)
(x1)  Wi(x2)
(x2)

— W(XI)P(X2,0|X1,t). (5.24)

P(X17 0|X27 t)

S S|=

sur (5.24) on obtient les taux de transition

En appliquant 'opérateur %‘ —0

0 0
EP(Xl, Olx2,t)|  W(x1) = aP(x2,0|x1,t) W (x2). (5.25)
t=0 t=0

W1 [x2) —W(xalx1)

Comme W (x) est la distribution d’équilibre de la famille d’observables macroscopiques (voir
(5.9)) on a finalement
W (x1 [x2) P€(x1) = W(x2[x1) P¢(x2), (5.26)

ce qui est bien la relation de ’équilibre détaillé. La démonstration fait usage des hypothéses
(i)-(iv) de la page 109. Notons que le processus x(¢) des observables macroscopiques n’est
en général pas markovien (voir la discussion de l'exemple 2 a la page 29). Si toutefois
la propriété de Markov en est une approximation raisonnable, la probabilité conditionnelle
P(x1,0|x2,t) obéira a I’équation maitresse et les conséquences de 1’équilibre détaillé étudiées
dans la section 4.3 seront valables.

5.2 Fluctuations thermodynamiques et relations de Onsager

La thermodynamique des processus irréversibles postule des lois linéaires entre courants
et forces thermodynamiques. Des exemples sont les équations de transport.

Loi de Fourier. Soit j, le courant de chaleur, T' la température, X la conductivité ther-
mique, alors

jo=—XVT. (5.27)
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Loi d’Ohm. Soit j. le courant électrique, ¢ le potentiel électrique, o la conductivité
électrique, alors
je=—0Vo. (5.28)

Loi de Fick. Soit jp le courant de diffusion, C' la concentration de particules, D la
constante de diffusion, alors
jp=—-DVC. (5.29)

Par extension de la terminologie mécanique, les quantités V1T, V¢, V', qui engendrent
des déplacements d’énergie, de charge et de matiére sont appelées forces thermodynamiques.
Les coefficients de proportionnalité entre courants et forces sont appelés coefficients de
transport. Les relations de réciprocité de Onsager établissent des liens remarquables entre
des coefficients de transport de nature apparemment trés différente, comme conductivité
électrique et thermique. Nous développons ici la théorie générale, des exemples concrets
seront présentés dans la section (5.3).

Nous considérons un systéme isolé, mais ne se trouvant pas a 1’équilibre. Par exemple
certaines de ses parties ont des températures différentes, des concentrations différentes ou
des charges électriques différentes. Le systéme est décrit par une famille de grandeurs ther-
modynamiques extensives x(w) = (z1(w),...,x,(w)). Les x4(w), a = 1,...,v, peuvent se
rapporter aux parties du systéme ou & des grandeurs physiques différentes, par exemple les
nombres de particules et les charges de ces parties. Leur évolution donne lieu au processus
x(t) définis comme dans (5.3) 2. Définissons les valeurs d’équilibre par

xe = / dw P(w)zq(w). (5.30)
Q
On s’intéresse par la suite au processus des déviations par rapport & I’équilibre
y(t) = x(t) — x5, (5.31
y© = 0. (5.32)
Les distributions de ce processus, encore notées W(yi,t1;...;¥Yn,tn), sont celles du pro-

cessus x(t) évaluées en x = y + x¢. Le processus est stationnaire de moyenne nulle. La
distribution d’équilibre P¢(y) et la probabilité de transition P(y1,0|y2,t) ne sont pas ex-
plicitement connues (en principe, elles devraient étre calculées a partir des mouvements
microscopiques). On va faire un certain nombre d’hypothéses en relation avec la thermo-
dynamique sur ces distributions. La thermodynamique affirme 'existence d’une fonction
entropie S(z1,...,x,) qui est concave et maximale pour ’état d’équilibre : la matrice sy-
métrique S d’éléments

82
08 = =gz SX) = Sin (5:33)
est définie positive, et la condition de maximum de ’entropie a 1’équilibre implique encore
iS (x) =0 (5.34)
oz T .

En remplagant x par y + x° on considérera désormais S(y) comme fonction des déviations
y.

2Pour avoir des évolutions non triviales de z(t), on élimine du choix des x4 (w) les grandeurs conservées
comme l’énergie totale ou le nombre total de particules du systéme.
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Hypothése 5.1 (Distribution des fluctuations d’équilibre) P¢(y) est donnée par la
formule de Einstein
Pely) = ~etn (5.35)
y - N 9 .

avec N un facteur de normalisation et kg la constante de Boltzmann.

Hypothése 5.2 (Faibles déviations) Les déviations a l’équilibre y sont faibles, de sorte
qu’on peut développer S(y) autour de'y =y® =0 en bonne approximation au second ordre

Yays + O (v°)
y=0

= 5% — 5 (yISly)- (5.36)

Le terme linéaire est nul a cause de la condition d’équilibre (5.34). Dans I’équation (5.36)
et par la suite on néglige les termes d’ordre supérieur. En insérant (5.36) dans (5.35) avec
la normalisation correcte on obtient la distribution gaussienne

e | detS — l(ylsly)
P(y) (27rk'B)”e B . (5.37)

Si on se donne des déviations initiales yo # 0, elles vont en principe évoluer selon la loi
a0y, = [ 4% va Pl30,01y.1) (5.39)

Hypothése 5.3 (Régression des fluctuations) On suppose que les fluctuations obéis-
sent en moyenne a un systéeme différentiel linéaire

% Wat)y, = = Gas (s(t))y, (5.39)
p=1

qui décrit le retour a l’équilibre y© = 0. En écriture matricielle

D)y, = -G (D), (5.40)

a la solution formelle
(y(t)y, = % - yo. (5.41)

La matrice G n’est en général pas symétrique, elle met en jeu les temps de relaxation
des déviations a l’équilibre. Remarquons que le systéme différentiel fermé (5.39) ne décrit
pas I’évolution exacte du processus x(t) (cette derniére nécessite la connaissance de toutes
les corrélations temporelles supérieures), mais peut en étre une bonne approximation pour
des temps excédant les temps caractéristiques de variation microscopique.

Pour établir un lien avec les équations de transport, on définit les grandeurs conjuguées
aux quantités extensives x,,

0

= 8—%S(y), a=1,...,v, (5.42)

Fu(y)
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qui sont aussi appelées forces thermodynamiques dans ce contexte. Au vu de (5.36), ces
forces sont linéaires dans les fluctuations

F=-S-y, (5.43)
et par inversion (S est définie positive donc S™1 existe)
y=-8"1.F. (5.44)

En insérant (5.44) dans (5.40) on obtient les équations de transport qui relient la variation
temporelle des grandeurs extensives aux forces thermodynamiques

L), = G-STFW),, = L-(F1),,. (5.45)

&
L=G.57] (5.46)

s’appelle matrice des coefficients cinétiques. En général, les coefficients cinétiques ne coin-
cident pas exactement avec les coefficients de transport des équations phénoménologiques
(5.27), (5.28) et (5.29), mais n’en différent que par des facteurs de proportionnalité, comme
les applications le montrent (voir la section 5.3).

La matrice

Relations de réciprocité de Onsager. Les relations de réciprocité de Onsager affirment
que sous les hypothéses 5.1, 5.2 et 5.3, la matrice des coefficients cinétiques est symétrique
Log = Lgaa-

Preuve (Relations de réciprocité de Onsager) Avec yo = (Yo1,---,Y%0p), ¥ =
(y1,---,Yy), NOUS aAvons

%wmw»:/wW/&wmwmwmm%w

. v W 70 7t

= /d”yo Yo.a W(yo)/d”y y3 P(yo,0ly, 1)

= [ %0 o Wis) a0y, (5.47)
Or par 'hypothése 5.3 de la régression des fluctuations, I’équation (5.41) donne pour ¢t — 0
(y(t)y, = e yo = (L-Gt)-yo+ 0 (), (5.48)
d’oll en négligeant les ordres supérieurs O (t2)
v
(Ws(t))y, = v0.8 =t Y Gy o (5.49)
=1

En insérant (5.49) dans (5.47) on trouve

(ya(0) yp(t)) = / d"y0 Yo.0 Yo,8 W (yo) =t > _ G, / d"yo Yo,a Yo,y W(¥o0)
=1

=(8"ap =8
-t(G-8™)

= (87 (5.50)

af Ba®
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Pour établir (5.50), nous avons utilisé le fait que la distribution W(y) = P¢(yq) est gaus-
sienne (voir (5.37)), donc que sa covariance est donnée par les éléments de la matrice inverse
de la forme quadratique (voir (2.71)). D’autre part, en intervertissant les indices « et 3 dans
(5.50)

(Y5(0) ya(t)) = (871) 4o =1 (G-571) 5 (5.51)
Finalement, une conséquence de la microréversibilité est la relation (5.23)
(Y (0) ys(t)) = (Ys(0) ya(t)) , (5.52)

qui permet d’égaler (5.50) et (5.51), et avec So3 = Sgo On en tire

(G-57Y),,=(G-57) (5.53)

Bo’

SERII SERP

ce qui achéve la preuve. |

Remarque Rappelons que la définition (5.21) a été établie sous I'hypothése que les gran-
deurs z,(w) = x4 (@) et 'hamiltonien H(w) = H (W) sont invariantes sous le renversement
du temps w — w. Ceci suppose ’absence de champ magnétique. En présence d’un champ
magnétique B, 'hamiltonien qui dépend de la combinaison v =p — eA (avec B=V A A)
a la symétrie H(w,B) = H(w,—B). De plus, on peut considérer des grandeurs z,(w),
comme par exemple les courants proportionnels aux vitesses, qui changent de signe sous le
renversement du temps. On écrira en général

To(w) = eqZa(@). (5.54)

£q = £1 selon que z,(w) est pair ou impair dans les vitesses. On laisse le lecteur vérifier
que la forme générale des relations de réciprocité devient

Laﬁ(B) = EocEﬁLﬁa(_B)‘ (5.55)

o

5.3 Exemple : effet thermo-électrique

La théorie de Onsager montre sa puissance dans des applications spécifiques. Nous illus-
trons la démarche & suivre pour I'appliquer correctement dans I’exemple de D'effet thermo-
électrique.

Le systéme fermé ¥ = 31 U Y9 étudié est schématisé par la figure 5.2. Il se compose de
deux jonctions Y7 et Y9 entre deux métaux A et B. Le circuit formé des deux métaux A et
B peut étre soit ouvert soit fermé grace a un interrupteur C'. L’état de 3; est caractérisé par
I’énergie interne U; et la charge ;. 3; est maintenu & une température T; et soumis a un
potentiel électrique ¢;. Lorsque ¥ n’est pas a I’équilibre, il peut y avoir transfert d’énergie
et de charge entre ses parties X1 et .
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21 2

Ur @ Uy Q2
T, ¢ Ty ¢

FIG. 5.2 — Schéma du systéme pour 1'étude de ’effet thermo-électrique.

(i) Trouver la fonction d’entropie et identifier les grandeurs x, pertinentes dont elle
dépend. Soient respectivement S, @) et U l'entropie, la charge et ’énergie interne du
systéme Y. L’extensivité impose

S =51+ 95,
Q= Q1+ Q2 (5.56)
U=U;+Us.
Comme X = Y1 U X9 est fermé, les grandeurs totales () et U sont conservées, donc
dQ =dU =0. (5.57)
La variation d’énergie de X; est
dU; = T;dS; + ¢; dQ;, (5.58)
et par (5.56) on a dS = dS; + dSs, donc avec (5.58)
ds = TildUl - %d@l + TigdU2 - %d@g. (5.59)

A cause des lois de conservation (5.57), les variations de Uy et Us (Q et Q2) ne sont
pas indépendantes. On a dUs = —dU; et dQ2 = —dQ1, donc (5.59) devient

(1 1 P2 P
ds = <ﬁ - E) AUy + (E - ﬁ) dQ;. (5.60)

On voit que dans la notation du formalisme général S = S(z1,x2) dépend de deux
variables que I'on peut identifier a

Tr1 = Ul, (5.61)

T = Ql. (562)

(ii) Trouver les forces thermodynamiques Fy,. Appliquant la définition (5.42) a (5.60),

elles sont

0 (5.60) 1 1

o 9 o 11 5.63

1 Oy ($1,$2) T T27 ( )
0 (5.60) P2 P

R =—-5 = = - —. 5.64

2 8$2 ('rla $2) T2 Tl ( )
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(iii) Trouver les équations du mouvement. Les équations du mouvement (5.45) définis-
sant la matrice L des coefficients cinétiques sont?3

d
X0 =L-F(), (5.65)

donc avec les équations (5.61) a (5.64) on obtient la forme explicite

. 1 1
Uy = LiuFi+LigsFy = L1 | = — = | + Lo @ — ﬂ , (5.66)
T T

) 1 1 ¢2 1
= Lot Fy+LogFy = L —— — L = - = .
Q1 21 F1 + Log F 21 <T1 T2> + Lo <T2 T1> , (5.67)

avec Lo = Loy par le théoréme de réciprocité de Onsager.

Effet Seebeck. Cet effet montre qu’un écart de température AT engendre un écart de
potentiel électrique A¢. Considérons les systémes ¥ et Yo en équilibre thermique & tem-
pérature T7 = 15 = T en absence de potentiel ¢1 = ¢o = 0. Donnons maintenant un petit
écart de température AT en maintenant le circuit ouvert de telle sorte que Q1 = 0. Notons
AT =Ty — Ty, Ap = ¢2 — ¢1, et linéarisons toutes les quantités vis-a-vis des déviations a
I’équilibre

1 1 -1 AT

T, nT 1% (>65)
ainsi que
P2 P 1 AT 1 1
= =~ — (Ti¢y — T = —— —A¢p = =A .
T, T T2 (Th¢2 — Tag1) T2 ¢+ T ¢ T ¢ (5.69)
puisque ¢ = 0 a I'équilibre. En insérant (5.69) et (5.68) dans (5.67) on obtient
AT Ad
= Log— + Loo— 7
0= La 72+l (5.70)
d’ou Lo AT
b=—1 T =0 (5.71)
Le coefficient 1
21
=2 72
a Ty T (5.72)

est dit coefficient Seebeck. (5.71) montre donc qu’il se crée une différence de potentiel aux
bornes proportionnelle a AT, ce qui est I’effet Seebeck.

Effet Peltier. Cet effet montre qu'un courant électrique s’accompagne d’un transfert de
chaleur. On maintient les températures égales AT = 0, donc Ty = T = T. On ferme le
circuit en introduisant une batterie entre les deux bornes qui produit un courant Q7. Le
rapport des équations (5.66) et (5.67) donne alors

Uy Ly

5= T (5.73)

3Bien évidemment, ici x(t) et F(t) désignent les valeurs moyennes comme dans (5.45), et non le processus
lui-méme.
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donc I
U, = L—”Ql =bQs. (5.74)
22
Le coefficient I
=12 5.75
T (5.75)

est appelé coefficient Peltier. Ainsi, on voit de (5.74) que le courant électrique s’accompagne
d’un transfert de chaleur Uy, ce qui est [’effet Peltier.

La relation de Onsager Lis = Loj implique au vu de (5.75) et (5.72)
b= —aT, (5.76)

ce qui est la relation de Thomson. Cette relation est remarquable car elle met en rapport des
phénomeénes (transport de chaleur et transport électrique) qui sont a priori de nature com-
plétement différente. Elle était connue expérimentalement dés le 19°™€ siécle, et le physicien
britannique W. Thomson (devenu par la suite Lord Kelvin (1824-1907)) en avait proposé
une dérivation (mais sur des bases erronées) en 1854.

Remarques

(i) Si on ne prend en compte que les phénomeénes thermiques, (5.66) se réduit a

L1y

au premier ordre dans les déviations : on obtient précisément la loi de Fourier (5.27).
En effet, il faut identifier 75 — T} au gradient de température entre les deux systémes

voisins Y et X1, et Uy a— Jg le courant de chaleur de ¥5 a ¥j. Ainsi, la conductivité

thermique est reliée au coefficient cinétique L1, par X = %
De méme pour un transport électrique, (5.66) donne
: Lo
Q1= T(@ - ¢1), (5.78)

. N -1 R
qui comparé a la loi d’Ohm (5.28) conduit a o = 2.

(ii) On peut avoir deux types d’actions sur le systéme. On peut amener les grandeurs x
a des valeurs hors équilibre xg # x° au temps initial ¢ = 0 et examiner la relaxation
y(t) = x(t) — x°¢ des déviations a l’équilibre gouvernées par (5.39). On peut aussi
soumettre le systéme & des forces selon (5.45) et créer ainsi un régime stationnaire
hors équilibre avec courants non nuls comme dans 'effet Peltier. Du point de vue de
la dynamique linéarisée des observables macroscopiques, le systéme ne fait aucune
distinction entre ces deux situations.

o



Chapitre 6

L’équation de Boltzmann

6.1 Introduction

Jusqu’a présent, dans notre étude des processus irréversibles, nous nous sommes toujours
intéressés & des systémes ouverts, susceptibles d’échanger de 1’énergie avec un environne-
ment. Un exemple standard est fourni par la théorie de Kramers, dans la formulation de
Langevin ou de Fokker-Planck, qui décrit le mouvement aléatoire d’une particule singula-
risée (particule test) dans le fluide qui joue le role de thermostat. Dans ces circonstances,
la température est définie & priori comme celle du thermostat, et la relaxation est due au
transfert d’énergie dissipée dans ce thermostat. Sur le plan mathématique, les équations
(Fokker-Planck, maitresse) qui régissent I’évolution de la distribution de probabilité dans
une telle situation sont linéaires.

La situation décrite par I’équation de Boltzmann est tout-a-fait différente. Il s’agit d’étu-
dier la dynamique d’un systéme fermé (sans échange d’énergie avec un environnement)
constitué d’un grand nombre de particules. Ce probléme est beaucoup plus difficile puis-
qu’a la place d'une seule particule test, il est nécessaire de traiter sur le méme pied N
particules identiques (N > 1), et les mécanismes de dissipation sont internes au systéme
de ces N particules. C’est Ludwig Boltzmann (1844-1906) qui le premier a proposé en 1872
sa fameuse équation décrivant 1’évolution d’un gaz dilué dans une enceinte thermiquement
isolée. Les seules interactions sont les collisions binaires entre particules gouvernées par
un potentiel de paires V(r; — r;) de courte portée.! Dans ce chapitre nous nous bornons
a présenter la dérivation de ’équation en termes physiques simples, suivant les lignes que
Boltzmann a tracées, et & en donner quelques conséquences élémentaires. Le développement
complet de la théorie ainsi amorcée, la théorie cinétique, nécessiterait un autre cours. La
théorie de Boltzmann, malgré les critiques qui lui ont été adressées, garde de nos jours
sa forme initiale et sa valeur de paradigme pour les questions touchant aux problémes de
transport.

Pour la simplicité de I'exposé, nous considérons un gaz monoatomique : les atomes sont
assimilés & des particules ponctuelles de masse m dont la dynamique est décrite par la
mécanique classique. La quantité sur laquelle porte ’équation de Boltzmann est la densité
f(r,v,t) dans Iespace de phase, c’est-a-dire f(r,v,t)d3rd®v est le nombre de particules

1 faut encore spécifier des conditions de bord & la surface de I’enceinte.

121



122 CHAPITRE 6. L’EQUATION DE BOLTZMANN

de vitesse v dans d3v qui se trouvent en d®r centré en r au temps ¢, avec la normalisation

/Ad3r /Rs B f(r,v,6) = N (6.1)

ou N est le nombre total de particules, et 'intégrale spatiale porte sur le volume A du
systéme.

Soient {ri(t,w),vi(t,w)}fil les coordonnées des particules au temps ¢ (le flot hamil-
tonien) correspondant a la condition initiale w = {r;, v;}*, et u(w) la distribution des
conditions initiales. La densité au temps ¢ est définie par

N

f(r,v,t) = /dw ww) Z d(r —ri(t,w))d(v —vi(t,w)). (6.2)

i=1

Notre probléme est d’établir une équation d’évolution pour f(r,v,t).

6.2 Evolution des particules non couplées

Supposons que les particules se meuvent indépendamment les unes des autres dans un
champ de force extérieur F(r), donc

d
mavi(t) =F(r;(t)). (6.3)

La contribution d’un terme de la somme (6.2) a la variation de f(r,v,t) est
(‘;)t /dw ww)d(r —ri(t,w)) (v — vi(t,w))
_ / dw p(w) (%5@ - ri(t,w))> 5(v — vit,w))
+ /dw wlw)d(r —ri(t,w)) <%5(v - vi(t,w))> . (6.4)

Utilisant (on omet d’écrire 'argument w dans la suite)

gté( ri(t)) = %Fi(t) Vit —ri(t))

= —wilt) Vedlr —i(t)), 65)
Db —vilt) = i) Vol — i)

@ EEO) gy i), (66)

et insérant (6.5) et (6.6) dans (6.4) on a
o [ v ul) o — vt ) 6y — wi(t.w)
dw p(w) vi(t) - (Ved(r —ri(t))) o(v — vi(t))

/ @ () T (9 s i) e~ i), (67
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Dans ces intégrales, r;(t) et v;(t) peuvent étre identifiés a r et v a cause des fonctions
0. Finalement en sommant sur ¢ = 1,..., N pour retrouver f(r,v,t) donné par (6.2) on
obtient

0 F(r
E (I‘,V,t)+V'Vrf(I',V,t)+ ( )
Si on se reporte a I’équation de Kramers (3.65) et que 'on y néglige l'effet de Ip du fluide
sur la particule test, on voit que P joue le méme rdle que f dans (6.8) (a la normalisation
prés) et obéit a la méme équation, due au flot induit par le mouvement des particules
indépendantes.

-V f(r,v,t) =0. (6.8)

6.3 Effet des interactions mutuelles

6.3.1 Ordres de grandeurs et hypothéses

Pour prendre en compte 'effet des interactions entre les particules, on introduit égale-
ment un second membre & I’équation (6.8) sous la forme

F(r)

-Vyf(r,v,t) = %f(r,v,t) , (6.9)

collision

%f(r,v,t) +v- Vrf(r7vvt) +

avec % f (r,v,t)‘collision le terme donnant le changement de f dii aux collisions. Comment
évaluer ce nouveau terme ? Les arguments qui vont suivre reposent sur certaines hypothéses
valables pour les gaz dilués. Pour un gaz d’hélium a température ambiante et pression
atmosphérique, on a les données suivantes

— portée de la force interatomique a ~ 3 A

— distance entre deux particules voisine A ~ 30 A

— vitesse moyenne d’un atome v ~ 1000 m/s

~ libre parcours moyen [ ~ 1500 A.
Le rapport de la durée moyenne d'une collision £ & celle du temps de vol moyen tau = %

qui s’écoule entre deux collisions
a/v
ajv 2.1073 (6.10)
l/v
donne la fraction du temps durant laquelle une particule est en cours de collision : le fait
que cette fraction est petite motive les approximation suivantes :

(i) Seules les collisions binaires sont prises en compte. Les situations ou plus de deux
particules sont simultanément dans un régime d’interaction commun sont rares et
négligeables.

(ii) Deux particules de position r(¢) et r1(¢) n’entrent en interaction que si |r(t) —ry(t)| <
a. Comme a est beaucoup plus petit que 1’échelle de variation A de la densité elle-
méme, on admettra que deux particules n’entrent en collision que si elles se trouvent
au méme point r au méme temps t.

(iii) Le nombre de paires de particules de vitesses v et vi qui entrent en collision dans un
volume d’extension d3r centré en r est approximé par f(r,v,t)f(r,vy,t) d®rd3v d3v;.

Cette derniére hypothése est appelée «chaos moléculaire» (ou «Stosszahlansatz» formulé
par Boltzmann). En toute rigueur ce nombre de paires est donné par une fonction de
distribution jointe des vitesses f(r,v,v1,t)d3r. Le "chaos moléculaire" signifie que I’on
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ne tient pas compte des corrélations des vitesses des particules qui entrent en collision :
on admet par exemple qu’a cause de la faible densité, les corrélations introduites par des
recollisions entre mémes particules sont négligeables.

Nous allons faire un calcul approché de % f ‘ sous ces hypothéses.

collision

6.3.2 Description d’une collision

Considérons deux particules de vitesses v et vi avec un potentiel d’interaction radial
V (Jr — r1]) et qui subissent une collision, avec vitesses finales v’ et v} respectivement (voir
la figure 6.1).

F1G. 6.1 — Collision entre deux particules de vitesses initiales v, vi et de vitesses finales v’, v} respective-
ment. Ces particules de trajectoires respectives r(t) et ri(t) interagissent par I'intermédiaire d’un potentiel
central V (Jr — r1]), dont la région d’interaction telle que V (Jr — r1|) # 0 a été représentée en foncé.

Il est utile de décrire le processus dans le référentiel de centre de masse & l'aide des
coordonnées relatives :

vitesse du centre de masse : V= % (v+vi)

vitesse relative : u=vy—v (6.11)
position relative : p=r|—r '
masse réduite : w= %m

Dans le référentiel du centre de masse on peut considérer le probléme équivalent de la diffu-
sion d’une particule de vitesse u par le potentiel radial V'(|p|). On a les lois de conservation
de la quantité de mouvement

v+vy=v + v, (6.12)

et de [’énergie

VI i = VP VAP (6.13)

qui donnent 4 relations entre les vitesses. Dans le référentiel du centre de masse, en remar-
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quant que la loi de conservation (6.13) donne

Vv = v+ v

VP4 i+ 2v v = VP V2V v
v-vi=v V]

V2 4+ [vi]? = 2v-vy = V2 ViR - 2v - v

v —vi]? = v = v} %, (6.14)

LEel

donc I’équivalent des relations (6.12) et (6.13) est

V=V, (6.15)
lu| = || (6.16)

La relation (6.15) signifie que le centre de masse est en translation uniforme, tandis que pour
(6.16) I'énergie relative (ou le module de la vitesse relative) est conservée. Le phénomeéne
de diffusion dans le référentiel du centre de masse est illustré par la figure 6.2. Il consiste
uniquement en un changement de direction de la vitesse relative.

<D
|u|dt

FIG. 6.2 — Phénomeéne de diffusion dans le centre de masse. La surface A est définie comme étant perpen-
diculaire & u, et ’angle solide est donné par Q = (0, ¢).

Si la vitesse incidente u est fixée et définit I'axe z, la vitesse aprés diffusion u’ =
([d,0,¢) = (Ju'|, ) est représenté en coordonnées polaires par rapport a cet axe. Comme
|u’| = |u| est fixée, la vitesse finale u’ est déterminée par I'angle solide 2 = (0, ¢) unique-
ment, qui dépend du potentiel d’interaction. L’information sur le processus de diffusion est
contenu dans le concept de section efficace o(§2) définie comme suit. Imaginons un flux de
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particules incidentes I de vitesse u, alors

7_ nombre de particules traversant une unité de surface
~ | perpendiculaire & u par unité de temps
Alu|dt
= n(u
(u) Adt
= n(w) ul, (6.17)

avec n(u) le nombre de particules par unité de volume qui sont de vitesse u. La section
efficace o(€2, |u|) est alors définie par la relation

nombre de particules diffusées dans I’élément d’angle solide df2
autour de € par unité de temps, quand le flux incident est I.

(6.18)
o(€, |u]) doit étre calculée de cas en cas a partir de la dynamique régie par le potentiel
V. Nous admettrons o(£2,|u|) connue. A cause de la symétrie sphérique du potentiel V,
o = o(0,|ul) ne dépend pas de I'angle .

[o(Q, |u)dQ = {

6.3.3 Bilan des collisions et équation de Boltzmann

Pour évaluer % f(r,v,t) |Collision on fait un bilan dans ’espace des vitesses de la variation
du nombre de particules de vitesse donnée v suite aux collisions. Selon I’hypothése (ii) de
la page 123, ces collisions ont lieu dans un petit élément de volume A(r) centré en r. Cet
élément de volume est petit vis-a-vis du volume total du gaz, mais contient suffisamment
de particules pour pouvoir décrire les collisions en terme de flux et de section efficace. Le
point r est maintenu fixe dans la discussion qui suit.

Plus précisément, on se donne un élément de volume A(v) centré en v dans l'espace des
vitesses et on écrit

0
Ef(r, v,t) = Cy — Oy, (6.19)

collision

avec (), le terme de perte

C, A(r) A(v)dt = nombre de collisions survenant entre ¢ et ¢ 4+ d¢ ot une particule
P ~ | dans A(r) de vitesse v acquiert une vitesse finale ¢ A(v)
(6.20)

et Cy le terme de gain

nombre de collisions survenant entre ¢ et ¢ + d¢ ot une particule de
vitesse quelconque v’ dans A(r) acquiert une vitesse finale € A(v).
(6.21)

CyA(r) A(v)dt = {

Terme de perte

Estimons tout d’abord le terme de perte qui est le plus simple. On peut penser que les
particules de vitesse vi forment un flux incident qui est diffusé par les particules cibles de vi-
tesse v et raisonner dans le référentiel du centre de masse. Etant donné que f(r,v1,t) A(vy)
est le nombre de particules par unité de volume qui ont la vitesse dans A(vy), selon analyse
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de la section 6.3.2 le flux incident de particules de vitesse vi entrant en collision avec une
particule de vitesse v dans A(r) est

flr,vi,t) A(vy) [v — vyl (6.22)

Le nombre de particules diffusées par unité de temps hors de A(v) lors de telles collisions
est

fr,vi,t) A(vy) |[v — vi| o (Q,|v — vi]). (6.23)

Le nombre total de particules diffusées par unité de temps hors de A(v) s’obtient en mul-
tipliant (6.23) par le nombre de particules cibles dans A(r) A(v), soit f(r,v,t) A(r) A(v),
et en sommant sur tous les vitesses initiales v et angles de diffusion 2. En considérant les
éléments A(r), A(vy) et A(v) comme des infinitésimaux dans cette sommation, on obtient

C,dPrd®v = /dQ / vy f(r,vi,t) f(r,v,t) dPrd®v v —vi|o(Q, |v —vi]), (6.24)
R3
et donc finalement
Cp = /dQ / vy |v —vi|o(Q, |v — vi]) f(r,v,t) f(r,v1i,1). (6.25)
R3

Dans cette dérivation, on a mis en jeu I’hypothése du chaos moléculaire : en place du produit
des densités dans (6.25) devrait figurer la distribution de paires f(r,v,v1,t).

Terme de gain

On s’intéresse a toutes les collisions (v/,v]) — (v,v1) dans A(r) de vitesses initiales
quelconques v/, v| telles que la vitesse finale d’'une des particules soit v € A(v). Par un
raisonnement analogue & celui fait pour le terme de perte, le nombre de telles collisions dans
A(r) par unité de temps avec v/ € A(v'), v| € A(v)) et donnant licu a une diffusion dans
I’élément d’angle d€2 est

fr, v t) f(r, v, t) A(x) ANV ) AWV [V = V| o(Q, |V — vi|) d. (6.26)

Il faut sommer sur toutes ces collisions avec la contrainte que v € A(v). Cela donne

Cy AV = / a0 / BV AV FE V) FEv ) [V — Vi (@, [V — A,
vv/ vi]€A(v)

(6.27)
ou la vitesse finale v[v’,v]] doit étre considérée comme une fonction des vitesses initiales
v/ et vi. La contrainte v[v/,vi] € A(v) signifie qu’il faut restreindre l'intégration aux
configurations des vitesses initiales v/, v} qui produisent une vitesse finale dans A(v).

Changeons de variables d’intégration en prenant v’ et v| comme fonction de v et vy.
Remarquons que pour {2 fixé, le jacobien de la transformation est égal a 1. En effet, puisque
le changement de coordonnées au référentiel du centre de masse est canonique, on a

d3v ddv, = d®V d3u, (6.28)
v d3v) = B3V’ du. (6.29)
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Or V = V’ implique d3V = d®>V’. De plus puisque |u| = [v’[, la transformation u — u’ est
une rotation qui laisse le jacobien invariant, a savoir d3u = d3u’ d’oii le résultat d3v d3v; =
d3v/ d3v]. Ainsi, avec |v — vi| = |v/ — v{| I'équation (6.27) devient

CyA(v) = /dQ / d3v, / Evv —vi|o(Q,|v —vi|)f (r,v.t) f(r,vi,t), (6.30)

R3 A(v)
d’ou finalement, en prenant A(v) infinitésimal
Cy = /dQ / dBvy v —vi|o( Qv —vi|) f (r,v',t) f(r,v],t). (6.31)
R3

En insérant (6.31) et (6.25) dans (6.9) on obtient I’équation de Boltzmann

F(r)

%f(r7vvt) +v- Vrf(r7vvt) + : va(r,v,t)

= [a0 [ @i v =vila @ v vl (V.0 30 = vt frv).

(6.32)
Dans cette écriture traditionnelle, on note simplement les arguments du terme de gain v’
et vi. Il ne faut pas oublier que ces vitesses sont & déterminer en fonction de v et vi. En
fait, dans le processus de diffusion (v/,v}) — (v,v1), v/ et v} sont entiérement déterminées
par la donnée de v, vy et  en utilisant les lois de conservation (6.15) et (6.16). En effet, v,
vy fixent Vet u, V' =V et u’ est déterminé par 2 (puisque |u| = |u’|), d’ou I'affirmation.
Nous ne donnons pas ici de formules explicites pour cette dépendance.

On appelle le membre de droite de I’équation de Boltzmann (6.32) le terme de collision

I¢(r,v,t) :/dQ /RBd?’vl v —vi|o(Q,|v—vy]) x
x (f(r,v',t) fx,v],t) — f(r,v,t) f(r,vi,t)) . (6.33)

Pour mettre en lumiére le bilan des vitesses, on peut écrire le terme de collision sous la
forme

I¢(r,v,t) :/1R3 d3vy /11{3 d3v/ /Rd A3y W(v,vi v, v))x
x (f(x,v',t) f(r,v],t) = f(r,v,t) f(r,v1,1)), (6.34)

avec

W(v,vi[v,v])=0¢ (acos (u—“/> , |u|> §(V-V')s (M) (6.35)

afju’|

les tauz de transition entre deux états de vitesse (v,vy) et (v/,v}). Bien entendu V =
v+ vy = V' = v/ 4+ v] est la vitesse du centre de masse, u = v — vy, u’ = v/ — v/ sont
les vitesses relatives. Les facteurs de Dirac manifestent les lois de conservation V.= V'

et lul = |u|, et § = acos %) est langle de diffusion. L’égalité entre le terme de

[u
collision (6.32) et (6.34) se voit si on fait le changement de variables (v/,v}) — (V' ,u’)
dans l'intégrale (6.34), qui est de jacobien 1, avec
12
v d3v) = B3V &Bu’ = BV WP dju’[dQ = ¥V o] d (%) ds. (6.36)
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Cette formulation faisant intervenir les taux de transition a l'avantage de permettre de
mettre en évidence les symétries. En observant (6.35), on en conclut les symétries évidentes

W(v,vi|[Vv,v]) = W(vy, vvi, V) = WHE, vi|v, vi). (6.37)

Bien qu’on puisse formuler le terme de collision a l'aide de taux de transition, la situation
differe profondément de celle de I’équation maitresse par le fait que I¢(r,v,t) dépend qua-
dratiquement de la distribution f et non linéairement comme dans le terme I p de I’équation
de Kramers (3.65). Cette non linéarité (qui suit de '’hypothése du chaos moléculaire) est
la manifestation du fait que nous traitons un systéme isolé de N particules en interaction
mutuelles au lieu d’une seule particule dans un environnement donné.

6.4 Systéme homogéne

6.4.1 La distribution de Maxwell

L’équation de Boltzmann (6.32) est intégro-différentielle partielle non-linéaire, et sa
résolution n’est pas élémentaire. Considérons la situation la plus simple ot la force extérieure
est nulle F = 0, et la distribution spatiale est homogéne f(r,v,t) = f(v,t), dans 'espace
infini. L’équation (6.32) se réduit alors a

(‘)at (v,t) = /dQ/ Py [v = vi|o(Q v —vi]) (F(V, 1) F(Vi, 1) = f(v, 1) f(v1,1))

= (6.38)

La premiére question est l’existence d’une distribution des vitesses stationnaire f(v). Il est
clair que f(v) est stationnaire si

fV)f(va) = F(V) (VD) (6.39)

ou de fagon équivalente si

In(f(v)) + In(f(v1)) = In(f(v)) + In(f(v1)). (6.40)

11 s’agit donc de déterminer la classe des distributions f(v) qui satisfont (6.40) en se souve-
nant que (v, vy) et (v/, v]) sont les vitesses initiales et finales d’une collision. En conséquence
des lois de conservation (6.12) et(6.13), il est évident que la fonction

In(f(v)) =a+b-v+cv? (6.41)

ol a, b et ¢ sont 5 constantes, vérifie (6.40). On peut montrer que c’est en fait la solution
générale (on peut avancer 'argument que s’il y avait un terme additionnel indépendant des
précédents dans (6.41), cela donnerait lors de la collision une loi de conservation supplé-
mentaire & (6.12) et (6.13). Cette loi additionnelle fixerait a ’avance les angles de diffusion
2, indépendamment du potentiel d’interaction, ce qui est physiquement absurde). Avec une
autre paramétrisation on peut réécrire (6.41) sous la forme

f(v) = Ae B0, (6.42)

ou A, B et vy sont 5 nouvelles constantes & dé terminer. A est fixée par la normalisation
de f(v), vo par la vitesse moyenne et B par les fluctuations de la vitesse; v représente
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une translation uniforme de tout le fluide et par changement de référentiel, on peut donc
prendre vg = 0 sans restriction. Introduisant le paramétre T relié aux fluctuations de la
vitesse par

3
m/ d*v [V f(v) = SpksT. (6.43)
ou p est la densité du gaz, on écrit f(v) sous la forme finale
3/2 1 mlv|2
= foUv) = p —2 e 2 FsT (6.44)
fv) =1 kT

C’est la distribution de Maxwell des vitesses relative & une température T'. Le point re-
marquable de ce résultat est que cette distribution ne suit pas du contact avec le réservoir
thermique (comme dans la théorie de Langevin), mais découle intrinséquement de la dy-
namique des collisions d’un grand nombre de particules entre elles. Le mécanisme d’équi-
libration thermique est dii aux interactions entre ces particules et non pas a un échange
d’énergie avec l'extérieur. La température est alors définie selon (6.43) comme l’énergie
cinétique moyenne.

Temps de collision

On peut faire une estimation simple du temps moyen 7 entre deux collisions lorsque le
systéme est homogéne et a ’équilibre thermique. Le terme de perte de3v (6.25) représente
le nombre de collisions par unité de volume et de temps qui conduisent une particule a
quitter 1’élément de volume d3v. Ainsi le nombre de collisions survenant par unité de temps
et de volume au point r est

:/ d3v/ d3vy /an(Q,|v1—V])]v1—V]f(r,v,t)f(r,vl,t). (6.45)
R3 R3

Pour un systéme homogéne de densité p a I'équilibre, la distribution f est la maxwel-
lienne (6.44), N est indépendant de r et ¢ et on peut donc définir le temps moyen entre
deux collisions de paires de particules par

P
2N
Pour estimer N faisons I’hypothése simplificatrice que I'on peut négliger la dépendance de
la vitesse relative |u| = |vq — v| dans la section efficace totale oyor = [ dQo (€, |ul). Ainsi

3 2 2
N = atoth <62_m> / d3v / d3vy |vi — v|exp (— Y > exp (— BT;“)l) . (6.47)
Y5 R3 R3

Pour effectuer les intégrales on passe aux variables de centre de masse (6.11) avec d3vd3v; =
dBVdiu et v2 +0v? =2V2 +u?/2:

3 2
N = oy p? <62—7::> /RS A3V e=BmV? /RS dBuvexp <—ﬁ7zu > . (6.48)

La premiére intégrale vaut (m/ ﬁm)3/ 2 et la seconde aprés le changement de variable Bmu?/4 =
z vaut (327/(8m)?) [;° doze ™. Tous comptes faits,

T = (6.46)

1 1/2
N = 4oy p? (w—m> : (6.49)



6.4. SYSTEME HOMOGENE 131

et donc

. . 1 1/2
(6.46) p (6.49) <7rm> ‘ (6.50)

W SPUtot k‘BT

En mettant les valeurs typiques des grandeurs pour un gaz dilué on trouve l'ordre de
grandeur de 7 ~ 10710 4 10711 [s].

6.4.2 Le théoréme "H"

Comme pour les équations maitresse, il existe une fonctionnelle de I’état qui est mono-
tone sous 1’évolution.

Théoréme 6.1 (Théoréme "H" de Boltzmann) Supposons qu’il n’existe pas de forces
extérieures (F = 0) et que le systéme soit homogéne dans tout 'espace (Vi f(v,t) = 0).
Définissons

1) = [ & ) m(fv.0), (6.51)
]R3
alors pour tout t > 0
d
TH(B) <0. (6.52)

Preuve (Théoréme "H" de Boltzmann) Pour alléger la notation, on omet dans cette
démonstration I’écriture de la variable t de f.

GHO 2 [ dv L (rem )
= [ @ G i)+
O3 [ @y Ip(v,t) (n(f(v)) + 1) (6.53)
R3
(6:34)

" v divy v v W(v,vi [V, v)) (F(V) F(v)) = F(v) f(v1)) x
x(In(f(v))+1)  (6.54)

= /Rm v divy &V &V W(v,vi [V, v)) (F(V) F(v)) = F(v) f(v1)) %

x (In(f(v1))+1). (6.55)

La derniére égalité provient du changement de variables muettes (v,v’) S (vq,v]) en

utilisant les symeétries (6.37) des taux de transition. En prenant la demi-somme de (6.54)
et (6.55) on a

GHO =3 [ Vi@V @y W V) () F(4) = 1) £(v)
x (I (f(v) f(v1)) +2). (6.56)
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Dans cette intégrale, on fait le changement de variables (v,vi) < (v/,v]) et utilise les
symétries (6.37) des taux de transition de sorte que

—H(t)=—= /]RSX4 d*vdivy &V vy W(v,vi|[v/, V) (F(V) F(v]) = F(v) f(v1)) x
x (In (f(v') f(v})) +2), (6.57)
et prend & nouveau la demi-somme de (6.56) et (6.57) pour obtenir

iH(t) _ 1 /]R3X4 v d3vy d3v' A3V, W(v,vl\v',va)(f(v’) fvy) = f(v) f(vl)) X

x (I (f(v) FOVD) = (F(v) (V1) ). (658)

Etant donné que W(v, v1|[v’,v}) > 0, cette derniére expression est négative suite a 1'inéga-
lit¢ (z — y)(In(x) — In(y)) > 0, ainsi L H(¢) <0, ce qui achéve la preuve. [

Sous des conditions appropriées, on obtient comme corollaire (comme pour les équations
maitresses) que f(v,t) évolue vers I’équilibre. Précisément, si la distribution initiale fo(v) =
f(v,t =0) a une énergie cinétique finie

/ v [v]2fo(v) < o0 (6.59)
R3
et si o(Q, |ul) > 0, alors

Tim f(v,1) = F4(v). (6.60)

6.5 Systéme inhomogéne

6.5.1 Lois de conservation locales

La puissance de I’équation de Boltzmann se révéle pleinement lorsqu’on I'applique & la
description locale d’un fluide non homogéne. La premiére observation concerne les gran-
deurs conservées. Puisque chaque collision conserve le nombre de particules, I'impulsion et
I’énergie cinétiques des particules en jeu, il doit y avoir des lois de conservation correspon-
dantes au niveau hydrodynamique pour la densité volumique, la densité d’impulsion, etc.
On appelle invariant de collision au point r toute fonction x(r,v) telle que

X(I‘,V) —I—X(I‘,Vl) = X(I‘,V’) —{—X(I‘,V’l), (6'61)

ou (v,vy) et (v/,v)]) sont les vitesses initiales et finales d’une collision.

Un invariant de collision satisfait a
/ d*v x(r,v) I;(r,v,t) =0, (6.62)
R3

ot I¢(r,v,t) est le terme de collision (6.34). La démonstration de (6.62) s’effectue comme
celle du théoréme "H". On fait les changements de variables v < vy puis v S v/, vi S v,
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puis v 55 v, vi 5 v/ et on utilise les symétries de W(v, vi|v/,v]). En additionnant les 4
formes de (6.62) ainsi obtenues, il vient

3 3 3 3 / 3,/
/]Rgdvx(r,v) (r,v,t) /1de /devl/]RSd /]RddV1WVV1|V V)%
< (f(V)(v1) = F(0) F(v)) (x(v) + x(v1) = x(¥)) = x(v1)) = 0, (6.63)
ce qui établit (6.62).

Multipliant ’équation de Boltzmann par x(r,v), intégrant sur v et utilisant (6.61) on
obtient

3 9 1 _
/RBd v x(r,v) <8t+v V:+ F( ) Vv> f(r,v,t) =0. (6.64)

Comme illustration, dérivons de 1a la loi de conservation de la masse qui correspond au
choix de x(r,v) = m dans (6.64) qui se réduit alors &

& oe.1) + Ve (ple, ulr, 1)) = 0 (6.65)

si on définit la densité de masse par

p(r,t)=m [ d3 f(r,v,t) (6.66)
RS
et le champ de vitesse par
m
u(r,t) = d?’vvf r,v,t). 6.67
0.0 = o fpu e ¥ I (097

(6.65) est précisément 'équation de continuité exprimant la conservation locale de la masse.
On déduit les autres lois de conservation avec des choix appropriés de la densité d’impulsion
et d’énergie cinétique.

6.5.2 Entropie et production d’entropie

La théorie de Boltzmann permet de donner une définition de ’entropie hors équilibre
et de son évolution. Supposons qu’il n’y ait pas de forces extérieures (F = 0). On identifie
alors la densité d’entropie au point r &

S(r,t) = —k:B/ d3v f(r,v,t) In(f(r,v,t)). (6.68)
R3
Utilisant ’équation de Boltzmann (6.32), on obtient
25wt %k [ v 2 rv) ((fv.0) +1)

(6§2) kp Ad dSV (V : Vrf(rv v, t)) (ln(f(r,V, t)) + 1)

—kB/ a*v I;(r,v,t) (In(f(r,v,t)) +1). (6.69)
R3
Introduisons le courant d’entropie

js(r,t) = —kp /]R?’ v v f(r,v,t) In(f(r,v,1)), (6.70)
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On remarque alors que la divergence de j4(r,t) est
Ve bilnt) = <k [ e Ve () In(7rv.0)
= —kp /]R?v v (v Vef(r,v,t) (In(f(r,v,t) +1)). (6.71)

Définissons encore le terme de production d’entropie par
os(r,t) = —kB/ a*v I;(r,v,t) (In(f(r,v,t)) +1). (6.72)
RS

os(r,t) est identique (au facteur —kp prés) a l'expression (6.53) avec la seule différence
que (6.72) est local au point r. Toutes les manipulations qui passent de (6.53) a (6.58)
peuvent étre reproduites identiquement en ajoutant I'argument r a I(v,t) et f(v,t), et on
en conclut que o5(r,t) > 0. En introduisant (6.72) et (6.71) dans (6.69) on obtient

0 .

ES(I‘,t) + V - js(r,t) = o4(r,t) > 0. (6.73)
Cette derniére équation est bien identique au bilan d’entropie obtenu en thermodynamique
des processus irréversibles (équation de continuité d’entropie), si on interpréte js(r,t) comme
le courant d’entropie et o4(r,t) comme la production d’entropie. Cette production d’entropie
est due aux collisions comme le montre la définition (6.72), et elle est toujours positive.

Pour le systéme total qui est isolé et n’échange donc pas d’entropie avec l’extérieur,
'entropie totale S(t) = [ A d3r S(r,t) obéit au second principe de la thermodynamique

d .. G
sy LY / &r o, (r,1) > 0. (6.74)
dt A

Les mémes remarques faites dans la section 4.4 s’imposent ici aussi. Il ne s’agit en aucune
fagon d’'une démonstration du second principe a partir des lois de la mécanique microsco-
pique puisque nous utilisons ici la dynamique de Boltzmann sujette & 'hypothése du chaos
moléculaire. Nous obtenons cependant dans ce cadre un modéle qui présente toutes les
caractéristiques de la thermodynamique des processus irréversibles.

6.5.3 L’équilibre local et ’approximation du temps de relaxation
Lorsque le systéme est inhomogeéne, on observe que la distribution de la forme (6.42)
fl(r, v, t) = A(r, t) e~ BEH(v—vo(r)® (6.75)

annule encore le terme de collision (6.34). La démonstration est la méme que (6.39) a (6.41),
ol maintenant les constantes dépendent de r et t. On peut & nouveau écrire (6.75) sous la
forme

oc m 3/2 Im(v—v (r,t))2
fl(x, v, t) = p(r, 1) <m> exp [—5 kBT((;',t) , (6.76)

définissant ainsi un champ de vitesse local v (r,t) et une température locale T'(r, ).
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Si le systéme est soumis & des conditions extérieures qui imposent par exemple un
gradient permanent de densité ou de température, on peut construire une solution approchée
de I’équation de Boltzmann de la forme (6.76) ot la dépendance en r et ¢ n’intervient que par
Ientremise de p(r,t), vo(r,t) et T'(r,t). En particulier, en régime stationnaire on aura aussi
un modeéle d’état hors équilibre correspondant & une situation de transport. Localement,
chaque partie du systéme a une distribution d’équilibre de densité p(r) et de température
T'(r). Néanmoins on peut avoir dans un tel état des phénomeénes de transport de masse ou
de chaleur puisque Vp(r) et VTI'(r) sont non nuls.

On considére que lorsque la distribution hors équilibre f(r,v,t) différe peu de la dis-
tribution d’équilibre local f1°¢(r,v,t), le premier effet du terme de collision est de la faire
relaxer vers cette derniére dans un temps 7 beaucoup plus court que 1’échelle de variation
des grandeurs thermodynamiques locales. Une estimation de ce temps a été donnée par
I’'Eq. (6.50)2. On écrit dans ces conditions

2 (r,v,t) +v-V.f(r,v,t) = _f(r7V,t) — floc(r,v,t)

5 . (6.77)

ol le membre de droite est 'approximation du temps de relaxation de I'opérateur de colli-
sion.

Conduction thermique dans un gaz

Nous illustrons 'usage de cette équation approchée par le calcul de la conductivité
thermique k£ d'un gaz. Celle-ci est définie par la loi de Fourier

jo=—kVT (6.78)

qui relie le courant de chaleur jo au gradient de température. Le probleme se formule
comme suit. On considére un gaz homogéne dans les directions x, y soumis & un gradient de
température o = d7'(z)/dz constant dans la direction z de telle sorte que la température au
point r = (x,y,2) est T(z) = T + az. Le gaz est décrit par 'équation de Boltzmann dans
I’approximation du temps de relaxation, dont on va chercher une solution stationnaire. La
distribution d’équilibre local dépend des densités et températures inhomogénes p(z) et T'(z)
respectivement :

F1o°(2,v) = p(2) <ﬁm>w exp (-%) . (6.79)

On suppose que la pression du gaz est uniforme et est donnée en chaque point par I’équation
des gaz parfaits

P = p(2)kpT(2). (6.80)
On cherche alors une solution stationnaire de (6.77) au premier ordre en « de la forme
It
f(z,v) = [z, v)(1 + ag(v)) (6.81)
2Une étude plus précise des temps de relaxation implique Panalyse de Péquation de Boltzmann linéarisée

autour de la distribution d’équilibre et des ses valeurs propres (voir [RL, Wa]) ; les prédictions en ordre de
grandeur sont les mémes.
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ou ag(v) est la déviation a la distribution maxwellienne locale due au gradient de tem-
pérature a 'ordre linéaire en a (g(v) est indépendant de z & cet ordre). En développant

poc(eon) = pio) =) mivl? (6.5
= _ xXp| ———— .
’ P 21kp(T + az) P 2kp(T + az)
on trouve au premier ordre en «
2
loc = f€d 1 % m _ §
reen) = o) 145 (B - 2. (6.53)

ot f¢4(v) est la distribution d’équilibre homogeéne (6.44) avec densité p = p(z = 0). On
forme ensuite la distribution (6.81) toujours au premier ordre en «

Fz,v) = f(v) [1 + % (;’gﬁ - g) + ag(v)} : (6.84)

ce qui conduit &

Tt = e = e (2

0z T \2kgT 2
F(2,¥) = (2, v) = af9(v)g(v). (6.85)
En introduisant (6.85) dans 1’équation stationnaire (6.77) on détermine finalement
CTu. (5 mlv|?
g(v) = T <§ — 2k3T> . (6.86)

Le courant de chaleur est défini comme le transport d’énergie cinétique dans la direction z
moyenné par la distribution stationnaire (6.81) :

jo = [ 0+ agv).

2
- af dv 1oc(z, v)g(vye, 2L
]R3 2

mlv?
2

2
mlv
= a/ d3v fea(v)g(v)v, V]
R3 2
La deuxiéme égalité résulte du fait que seul contribue le terme proportionnel & « puisque
f1°¢(z,v) est de symétrie sphérique en v, et dans la troisiéme on peut remplacer f1°¢(z,v)
par f®4(v) au premier ordre en «. En substituant l'expression (6.86) on trouve avec le

changement de variable /m/2kpTv = u, v = |v| :
Tpk%T
m

(6.87)

Jjo=—c¢ Q, (6.88)

ou la constante ¢ se calcule en coordonnées sphériques
2 2 5
c = — Bue ¥ u? (u? - =) u?
\/71‘3 R3 2

8 2 b 2
— d 8 —u* Y d 6 _—u

35 25

4
(6.89)

[\DIOT%
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Finalement on peut utiliser le résultat (6.50) pour le temps de relaxation, d’ott la formule

3 1/2
PR <7TkBT> (6.90)

N ].6O't0t m

qui exprime le coefficient de transport x en terme de la section efficace de collision.






Chapitre 7

Théorie de la réponse linéaire

Ce chapitre a pour but d’étudier comment réagit un systéme a de faibles perturbations.
La théorie développée est dite linéaire dans le sens que 1'on ne retient l'effet de la pertur-
bation sur le systéme qu’a ’ordre linéaire. Le fait que les observables du systéme possédent
un développement en puissances du paramétre de couplage de la perturbation n’est pas
évident et nécessite une preuve qu’il n’est pas toujours aisé d’apporter. Nous le tiendrons
pour acquis, au moins pour le premier ordre. Nous exposons la théorie dans le cas quantique.
Il existe une version classique tout-a-fait analogue.

7.1 Réponse a des champs extérieurs

Une fagon habituelle d’étudier un systéme est d’examiner son comportement en présence
de champs extérieurs. Avant de définir précisément le formalisme de la théorie de la réponse
linéaire, présentons deux applications illustratives de cette théorie.

Exemple 1 (Spins sur réseau) Soit un systéme ¥ comprenant N spins sur un réseau
A en absence de champ magnétique extérieur. L’énergie totale du systéme est alors décrite
par un hamiltonien!

N
Hy=— Z JijO'Z"O'j—I—HR. (71)
1<jEA
La premiére partie est '’hamiltonien de Heisenberg avec J;; > 0 les constantes de couplage
entre les spins ¢ et j et

1 ) 1 O TR | S

les matrices de Pauli (au facteur g prés) décrivant le spin au site i. Hp représente I'énergie
des autres degrés de liberté du systéme ainsi que leur interaction avec les spins.

On s’intéresse a 'aimantation totale, c’est-a-dire & la valeur moyenne de

N
M=) o (7.3)
=1

'L’indice dans Hy signifie ’absence de champ extérieur.

139
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L’équilibre thermique du systéme est caractérisé par la matrice densité d’équilibre de Gibbs

po = %e_ﬁHO, Q="Tr (e_ﬁHO) . (7.4)

Pour t < tg, on suppose que le systéme se trouve a 1’équilibre par conséquent
<M>0 =Tr (po M) =0, t <tp. (75)

En effet, Hy est invariant sous les rotations étant donné qu’il n’existe pas de direction
privilégiée, d’ott la nullité de la valeur moyenne de I’aimantation.

En t = ¢y on enclenche un champ magnétique extérieur B(t) homogéne, mais dépendant
du temps. L’hamiltonien d’interaction est

Hy(t) = —pM - B(2), (7.6)
et ’hamiltonien total devient
H(t) = Ho+ Hy(t). (7.7)
La matrice densité quantique obéit & la loi d’évolution
p(t) = Ult,to) po UT(t,t0), (7.8)

avec Ul(t,tg) opérateur d’évolution associé¢ & I'hamiltonien (7.7). L’équation différentielle
correspondante (équation de von Neumann) est

d

ih-p(t) = [H(2), p(1)], p(t = to) = po. (7.9)

La valeur moyenne de ’aimantation n’est plus nulle pour ¢ > ty & cause du brisement de
symétrie de rotation. On écrit

(M) (t) = Tr (p(t) M) = F (B(-), 1), (7.10)

ou l'on considére la valeur moyenne de M comme une fonctionnelle F (B(-),t) du champ
appliqué B(t). La mesure de (M) (¢) pour diverses configurations du champ magnétique
fournira donc des informations sur le systéme. Remarquons que (M) (t) = (M), = 0 si
B(t) = 0. Si’amplitude de B(t) est faible, et qu’on peut développer F (B(+),t) en puissances
de B(t), on ne retient alors que le terme linéaire, nécessairement de la forme?

3
(M) (1) = Fa (B(), 1) = 3 / At xas(t, ') By(t'). (7.11)
p=1"R

Les fonctions x,s(t,t") ainsi définies sont appelées fonctions de réponse, ou susceptibilité
généralisée (tenseur de susceptibilité).

Plus généralement, on peut avoir un champ extérieur inhomogeéne B(j,t), avec j qui
indique la valeur de B au site j. Dans ce cas, I'hamiltonien d’interaction Hy(t) prend la
forme

N
Hy(t) = 1 3 o5 B b) (7.12)
Jj=1
2Dans la suite du chapitre, i, 5, k, . .. indexent les sites du réseau ou bien les particules, et o, 3,7, ... les

composantes des vecteurs dans R>.
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La réponse de la composante « du spin au site j sera alors

(0 ) = rapog + 35 [ xalictid ) Boit) ()
j=1p=1
Le tenseur de susceptibilité x,s(7,t; 7,t") dépend alors des sites i et j. o

Exemple 2 (Gaz d’électrons) Soit un systéme ¥ comprenant N électrons dans un
volume A en absence de champ électrique.

L’hamiltonien total du systéme est

HO_Z +ZV r; — ;) + Hpg. (7.14)

i=1 1<j

p; sont les quantités de mouvement des électrons, V' (r) le potentiel de Coulomb, et Hp
comprend I’énergie des autres degrés de liberté du systéme, tels que les phonons, et leur
interactions avec les électrons.

Pour t < ty, le systéme est a I'équilibre thermique. En ¢ = ¢y on enclenche un champ
électrique &(r,t), de sorte que dans 'approximation dipolaire ’hamiltonien d’interaction
est

Z—GZ“' (r1,1), (7.15)

et 'hamiltonien total devient H(t) = Ho + Hy(t). Le champ &(r,t) engendre un courant
électrique dont la densité au point X au temps ¢ est

N
Z ) Vi 4+ v;d(x — rl)) (7.16)

=1

l\.’)I(‘b

La réponse linéaire de la composante o du courant j au point x en t est
3
o)) = oy + > [ 4% [ At oplxitix' ) Eaxt)  (7a7)

et définit le tenseur de conductivité électrique o,5(x,t;x’,t'). (7.17) est la loi d’Ohm géné-
ralisée au cas anisotrope et inhomogéne. o

Comme nous 'avons vu par ces exemples, la situation peut étre résumée comme suit.
(i) Pour t < tp on a un systéme 3 a ’équilibre thermique dont I’hamiltonien microsco-
pique est Hy, et on s’intéresse & une observable A = AT de ce systéme :

e_IBHO

(A)y = Tr (po A). (7.19)

po = (7.18)
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(ii) Lorsque t > tg, une force extérieure dépendant du temps agit sur le systéme donnant
lieu & une interaction génériquement de la forme (voir (7.12) et (7.15))

N
Hi(t) == B;f;(t), (7.20)
j=1

ot B; sont des observables du systéme et f; des amplitudes classiques dépendant du
temps. A l'ordre linéaire, les contributions des termes de la somme (7.20) & la fonction
de réponse sont additives. On peut donc sans perte de généralité prendre

Hy(t) = —Bf(t),  H(t)= Ho+ Hy(t), (7.21)

ot B = BT est une observable du systéme couplée a la force extérieure réelle f (t) =
f*(t) de petite amplitude, enclenché au temps to (f(¢) peut en principe étre modu-
lée par 'expérimentateur). La théorie de la réponse linéaire caractérise l'effet de la
perturbation —B f(t) sur le systéme. On définira la fonction de réponse x ap(t) de
I'observable A sous la perturbation —B f(t) par :

(A) () = (A)y + /R At xap(t.t) () + O (12) (7.22)

On supposera également (A), = 0 sans restriction a la généralité (sinon remplacer partout
(A) (t) par (A) (t)—(A),). La dépendance temporelle de x ap(t,t’) est régie par ’hamiltonien
H), et caractérise donc la dynamique propre du systéme X en absence de champs extérieurs.

La perturbation est précisément de la forme simple (7.21) quand le champ extérieur
est homogéne. Par exemple, dans le cas des spins sur réseau avec champ appliqué B(t) =
z By cos(wt) on a de (7.5)

Hi(t) = — p M, Bycos(wt), (7.23)
=B =£(t)

et on peut prendre A = M,. Les observables A et B sont alors identiques et représentent
toutes deux l'aimantation dans la direction z. Dans le cas des électrons soumis & un champ
appliqué £(t) = z & cos(wt) on a de (7.15)

N
Hi(t)=—e> 7 & cos(wt), (7.24)
im1 N———
—_—— =)
=B

et on peut choisir A = e ZZ]\L 1 Vi, avec v; ., la composante dans la direction z de la vitesse
de I'électron i. L’observable A est donc le courant total dans la direction z, tandis que B
est le moment dipolaire selon Z.

7.2 Propriétés générales de la fonction de réponse

7.2.1 Homogénéité dans le temps

xas(t,t") = xap(t—1t) (7.25)
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Cette propriété traduit le fait que x 4p(t,t") ne dépend pas de l'origine du temps. Ceci
résulte de 'hypothése que I'’hamiltonien propre du systéme Hy ne dépend pas du temps
(systéme conservatif). On considérera alors x 4op(t) comme fonction d’une seule variable ¢.
Ainsi

Ay = jggn'XABu——ﬂ>f@U

t—t/::t// /I;Ldt, XAB(t,) f(t o t,) (7.26)
7.2.2 Causalité

xap(t—t) =0, t<t (7.27)

En effet, la valeur de (A) (¢) ne peut dépendre que des effets de la "force" f(t') pour des
temps antérieurs a ¢, car 'effet ne peut pas précéder la cause. Par exemple, si on applique
une impulsion instantanée f(t) = 6(t — o) en t, alors (A) (t) — (A), = x(t,to) qui est nul
pour t < tg.

Une conséquence importante de la causalité est que la transformée de Fourier de x ap(t)
(au sens des distributions)

Xap(w) :/ dt xap(t)e™',  weR, (7.28)
0

a un prolongement holomorphe dans le plan complexe supérieur des fréquences wi + iws,
wo > 0. En effet, I'intégrale

X(wi +iwg) = / dt e1te w2ty (1) (7.29)
0

est uniformément absolument convergente pour wo > 0, et donc analytique dans le plan
complexe supérieur. Ceci suit du théoréme d’analyse complexe qui dit que si f,(z) est
analytique dans D C C et f,(z) converge uniformément dans D vers f(z), alors f(z) est
analytique dans D. En effet, en prenant la suite de fonctions analytiques de w

Tlw) = [ ateix) (7.30)
0
et utilisant

IXn(w) — X(w)] < / dt [x(t)|e™® — 0, n— o0, wy>6>0, (7.31)

on satisfait aux conditions du théoréme en question.

7.2.3 Reéalité

Comme f(t) et (A) (t) sont des quantités physiques réelles, il suit de (7.22) que x ap(t)
est réelle. Ceci entraine

Xap(wi +iws) = XaB(—w1 + iwg). (7.32)
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7.2.4 Dissipation

S’il y a dissipation dans le systéme X, ’observable A retourne & 1’équilibre lorsqu’on dé-
clenche la perturbation f(¢). C’est dire que si f(t) = 0, ¢ > t1, alors (A) (t) = tt)l dt’ xap(t—
t")f(t") — 0 lorsque t — oo, et donc lim;_,o, xa5(t) = 0. On fait 'hypothése que 'approche
a I’équilibre est suffisamment rapide de sorte que x 4p(t) soit intégrable

/000 dt |xap(t)] < co. (7.33)

Ceci assure l'existence de la transformée de Fourier (7.28) au sens d’une fonction bornée et
continue puisqu’alors pour w réel

_ 00 N 00 (7.33)
IXaB(w)| g/ dt ‘XAB(t)e t‘ :/ dt |xap(t)] < oo. (7.34)
0 0

La relaxation de (A) (t) est due au fait que les quantités d’intérét (spins, électrons)
sont couplées via Hp (voir (7.1) et (7.14)) a d’autres degrés de liberté du systéme qui
jouent le role de réservoir thermique. L’hypothése de la dissipation (sous la forme (7.33))
équivaut donc a dire que la valeur sur l'axe réel Y ap(w) = lim._oxap(w + i€) est une
fonction continue de w. Si par contre x 4p(t) a des modes propres non dissipatifs (x ap(t) ~
Cape ™ t — 00, wg € R), xap(w) peut présenter des poles en w_lwo sur I'axe réel, ou
d’autres types de singularités. En général, il est nécessaire de garder € > 0 pour éviter ces
éventuelles singularités de la transformée de Fourier de la fonction de réponse, et de prendre

la limite € — 0 a la fin du calcul.

7.2.5 Relation de la fonction de réponse avec la dissipation d’énergie

On considére ici le cas A = B. Soit E(t) = Tr (p(t) H(t)) I'énergie du systéme perturbé
par une amplitude de la forme f(¢) = Re ( foe_i(“+i5)t) avec € > 0, alors la variation de
I’énergie moyenne du systéme est reliée a la partie imaginaire de la fonction de réponse par
d 2 -

—E(t) = lim MwIm (Xaa(w +1ig)). (7.35)
dt e—0 2

C(t) désigne la moyenne temporelle de C'(t) sur une période.

Preuve A cause de la perturbation extérieure —A f(t), le systéme étudié n’est pas conser-
vatif. La variation de son énergie moyenne est

d d

P = 5 Tr(p(t) H(t))
d d
- Tr( o) H(t)> +Tr <p(t) EH(t))
=—FIH(1).p(2)] =i Hi(®)

= T (B0 0) HO) — pl0) H) HO) +T0 (50) H()) . (730)
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En vertu de la cyclicité de la trace Tr(C1Cs) = Tr(C2C4) le premier terme du membre de
droite de (7.36) est nul. Ainsi, avec H;(t) = —Af(t) 'équation (7.36) devient

G50 = =1 (s 4 570)
=~ (A) (1) LT (737
Considérons une perturbation de la forme
F(8) = 3¢t (foe ! 4 fre!) = Re (foe—“““@t) , >0, (7.38)

et

telle que lim,_ f(t) = 0. L’existence du facteur e** assure un enclenchement "doux"

de la force pour t < 0 et évite les effets transitoires en ¢ > 0 inévitablement dus & un
enclenchement soudain. Ainsi

(7.26)

mm>:/wmwmww
R
(738) Re </ d¢’ XAA( )fOe i(wie)(t— t’)>
R

— <f0€ i(wie)t / dat XAA(t/) ei(w-i—ia)t/)
R
729 Re (foe_l(““r“) Xaa(w + za)) (7.39)

En insérant (7.39) dans (7.37) on a

: d
%) i(wie)t i(wie)t

Re (foe XAA(w + Z€)) = Re (foe ) . (7.40)
On prend alors la limite € — 0 de (7.40) de sorte que

d 2 ~ )
EE(t) ‘fz| whmz(XAA(w+ze) Xaa(w + ig))

=2Im(Xa4(w+tic))

1 _ . _ .
—H’wz lin%] (fg Naalw +ie)e®™ — (£ Xialw + ia)e_2""t) . (7.41)
E—>

En faisant une moyenne sur une période T = 27” par intégration selon % fOT dt, on voit de
(7.41) que les deux derniers termes donnent une contribution nulle par 27-périodicité de
I'exponentielle e**, et on obtient le résultat (7.35). [

S’il y a dissipation, I'action du champ extérieur f(¢) ne peut que contribuer & accroitre
I’énergie du systéme en augmentant sa température (par exemple 'effet Joule : sous I'effet du
champ électrique le déplacement des électrons produit de I’énergie thermique par interaction

(collisions) avec le réseau ionique), on en conclut donc %E(t) > 0, et par suite de (7.35)
I'importante conséquence

lin%] Im (xa4(w)) >0, w >0, (7.42)
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positivité qui caractérise le caractére dissipatif du systéme.

Le fait que la moyenne de ’énergie du systéme soit reliée & la partie imaginaire de la
transformée de Fourier de la fonction de réponse a une conséquence importante. En effet,
comme la variation d’énergie totale du systéme peut étre mesurée, on a expérimentale-
ment accés a la partie imaginaire de X g4 (w). Or, grace aux équations de Kramers-Kronig
qui relient parties imaginaires et réelles de x 44(t), cette connaissance suffit a déterminer
entiérement la fonction de réponse. En principe, la mesure de la dissipation d’énergie du sys-
téme pour différentes fréquences de la perturbation extérieure détermine donc entiérement
la fonction de réponse du systéme.

7.2.6 Les relations de Kramers-Kronig

Théoréme 7.1 (Relations de Kramers-Kronig) On suppose l'intégrabilité (7.53) de la
fonction de réponse et que |x(w)| < % dans le demi-plan complexze {w = w1 + iwa|wa > 0},

alors les parties réelles et imaginaires de X(w) sont liées par les relations de Kramers-
Kronig (1927)

Re (§(wo)) = %7( dw % (7.43)

L Re(w)

w — W

Im (X(wo)) = —%f d (7.44)

ot 7 dénote la partie principale de Uintégrale

fdw J©@) i tim </w0_6dw UC) +/WR ) ) (7.45)

w — Wwo R—o00e—0 R w — Wwo 0-+e w — Wo

Preuve La condition de causalité x(t) = 0 V¢ < 0 pour la susceptibilité, jointe au fait
que x(t) est une fonction réelle, implique les relations de Kramers-Kronig. Considérons la
transformée de Fourier

) = /0 " dt ey () (7.46)

et le plan complexe des fréquences w = w1 +iws. La causalité, comme on I’a vu, entraine alors
que Y (w) est une fonction holomorphe (analytique) dans le demi plan complexe supérieur
wo > 0. Considérons une fréquence réelle wq et le contour Cr de rayon R dans le demi plan
complexe supérieur (voir la figure 7.1).

Comme Y(w) est holomorphe dans le plan supérieur le théoréme de Cauchy entraine

/ daw X (7.47)
C

W — Wwo

Décomposons l'intégrale (7.47) sur le chemin C =Cgr Vv C(Ll) VC:V C(L2)

/C de+/ de+/wO_Edw X(w) —I—/wR dw X(w) =0. (7.48)

w — W w — W _R w — W o+e W — W

/

@ ©) ®
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Cr

Ce

1 2
¢ /@ c?
> > > wi

7
wop—€ wp wote

FI1G. 7.1 — Chemin C =Cr Vv C(Ll) VCeV Cf) dans le plan complexe supérieur, avec pole en wo € R.

(1) Dans la limite R — oo ce terme s’annule sous ’hypothése |(w)| < \UM\ = %, w € Cp.

En utilisant |a — b| > |a| — |b| on a

lim / o X&) | Mg, L
R—oo Cr w — Wo R—oo R Cr |w — CUO|
1
S Rh—r>nooE CRdwR—UJO
= lim % 2l
R—x R R— wo
= 0. (7.49)

@ Soient les changements de variables w — wy — w puis w = e, dw = iee’?dy,
@ € [m, 0], alors cette intégrale donne dans la limite ¢ — 0

lim [ dw M = —ilim dp x (wo + Eew)
e—=0 Je, W — wo e—=0 Jo
= —imx(wo). (7.50)

(3) On définit la limite de ce terme lorsque R — oo et &€ — 0 par la notation définie
dans (7.45), c’est-a-dire

lim lim </w0_gdw X(w) +/WR do X&) >:y{dw Xw) (7.51)

R—o0e—0 R w — W o04-e w — W w — Wo
En insérant (7.51), (7.50) et (7.49) dans (7.48) on obtient
7{ dw Xw) = imx(wp)- (7.52)
W — Wwo

Notons x(wo) = X1(wo) + iX2(wp), alors en prenant les parties réelles et imaginaires de
(7.52)

%1 (wo) = %f dw 2@ (7.53)

W — Wy

Talen) = —1 f do % (7.54)
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qui sont les relations de Kramers-Kronig (7.43) et (7.44), ce qui achéve la preuve. [

7.3 Expression microscopique de la fonction de réponse

Le but est de trouver une formule explicite pour la fonction de réponse x 4p(t) sous une
perturbation H(t). La démarche consiste dans un premier temps a appliquer la théorie des
perturbations non stationnaires au premier ordre en Hy(t) pour obtenir I'expression de la
valeur moyenne de 'observable A et d’identifier ce terme & la définition de la fonction de
réponse

(A) (1) = / At xap(t — ) F(t), (7.55)

0

pour en tirer 'expression de x ap(t).

L’hamiltonien total est de la forme H(t) = Ho + H(t) avec Hy I’hamiltonien sans
perturbation et H;(t) = —Bf(t) la perturbation. Pour calculer

(4) (t) = Tr (p(t)A) (7.56)

au premier ordre en f(t), il faut tout d’abord trouver p(¢) au premier ordre en f(t). La
matrice densité p(t) en présence de la perturbation est donnée par

p(t) = U(ta tO) PO UT(tv tO)v (757)

ol po I'état initial d’équilibre thermique (7.4) et U(¢,to) I'opérateur d’évolution total satis-
faisant

z’h%U(t,to) — H) U 1y). (7.58)

Pour obtenir p(t), il faut donc réaliser le développement perturbatif de U(t,tp). Nous ne
donnons pas ici le développement pour tous les ordres, mais déterminons plutét 'ordre
linéaire tout en donnant la démarche permettant d’obtenir les ordres supérieurs. L’opérateur
d’évolution libre

Up(t) = e~ Ho, (7.59)

jouit des propriétés de groupe
Uo(t1) Up(ta) = Ug(ts +t2),  Ud(t) = Up(—t) (7.60)

qui seront souvent utilisées dans la suite. On introduit 'opérateur d’évolution dans la re-
présentation d’interaction

Us(t, to) = U3 (1) U(t, to) Uo o), (7.61)
et 'hamiltonien de perturbation en représentation d’interaction défini par

HY(t) = U (t) Hi(t) Uo (1), (7.62)
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Ur(t,tg) vérifie 'équation

d d d
ingUs(t.t)) = ih ZU(t) Ultto) Us(to) + Uy (t) ihz-Ult,ta) Us(to)
N—_—— N—————
RELEV N0 T2V H() Ultto)

= (U@ H(t) — HoUJ(1) )U(t,to) Un(to)
N——
20 () Ho
= UI(t) Hi(t) Ut to) Up(to)
N—————
T8 o (U1 (1,20

7.62
T {1 Ust, 1o). (7.63)

En mettant (7.63) sous forme intégrale et en retenant la premiére itération (donc le terme
lindaire dans HY), on obtient

et
1
Ur(tito) = 1— E/ ds1 HO(s1) U (51, to) (7.64)
to
ot
=1- %/ ds1 H{(s1) + O (H}) . (7.65)
to

En revenant a U(¢, o) par inversion de (7.61)

U(t,to) = Uo(t — to) — %/tt dsy Uo(t — s1) H(s1) Ug(s1 — to) + O (H7) (7.66)

qui est le résultat final. En poursuivant 'itération de I’équation (7.64) on peut trouver les
corrections aux ordres supérieurs.

Avec V'expression Hy(t) = —Bf(t) et (7.66), opérateur d’évolution U (t,tg) s’écrit au
premier ordre dans la perturbation

Ut to) = Uo(t — to) — %/j ds Up(t — 5) (=Bf(s)) Uo(s — to)

— Uyt —to) +%/t ds f(s)US (s — £) BUo(s — 1) Uo(t — to)

to

= ]l—l—i tdsf(s)Bo(s—t) Uo(t — to), (7.67)
(13 )

to

avec la définition By(t) = Ug(t)BUo(t). En insérant (7.67) dans (7.57) on a

p(t) = (11 +%/tds F(s) Bo(s —t)> Uo(t — to) po Ul (t — to)

to

X (11 _%/j ds f(s)*Bg(s—t)>. (7.68)

0
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Comme f = f* By(s—t) = B(T)(s —t) et Up(t —to) po Ug(t —to) = po (car I'état d’équilibre
po est stationnaire sous Up(t)),® (7.68) devient

7
p(t) = po+ =

[ s 105) 1Buls Bl +0 (7). (7.69)

0

En insérant (7.69) dans la définition (7.56) de la valeur moyenne de l'observable A on a
(avec (A)y = Tr (poA) = 0)

(4) () = Te(o()4) = 5 [ s 1) Te (Bols = )] 4)+ 0 (). (7.70)

Par identification de (7.70) et de la définition (7.55) de la fonction de réponse on en tire

%Tr ([Bo(t' —t),p0] A), t>1,

xap(t—t) = (7.71)
0, t<t,
et en utilisant la cyclicité de la trace ainsi que (7.60) on obtient finalement
Z'Tr([Bp]A(t)) t>0
. s PO 0 ) )
xap(t)=4 h (7.72)
0, t <0,

avec Ag(t) = Ul (t) AU (1).

7.4 Le théoréme de fluctuation-dissipation

On a vu que la fonction de réponse est liée & la dissipation dans le systéme. La for-
mulation du théoréme de fluctuation-dissipation nécessite 'introduction des corrélations
temporelles & I'équilibre. Soit po 'état d’équilibre thermique (7.4) et A = AT, B = BT une
paire d’observables de moyenne d’équilibre nulle (A), = (B), = 0. On définit la corrélation
temporelle a 1’équilibre de A et B par

Gap(t) = 3Tr (po (ABo(t) + Bo(t)A) ) = 5 (ABo(t) + Bo(t) ), (7.73)

ou By(t) = Ug (t) BUy(t) est I’évolution de B engendrée par I'hamiltonien du systéme Hy
(en absence de toute perturbation extérieure).

Cette définition est l'analogue quantique des corrélations temporelles d’un processus
stochastique, par exemple (v(0)v(t)) dans la théorie de Langevin. En général, A et B ne
commutent pas, ¢’est pourquoi on introduit le produit symétrisé dans (7.73).

Si A et B ne sont pas de moyenne nulle, il faut remplacer A par A — (A), et B par
B — (B), dans la définition (7.73) (qui devient alors I’analogue de la fonction d’autocorré-
lation). Comme dans le cas d’un processus stochastique, on s’attend a la décorrélation des

30n peut le voir formellement car po = %efﬁHO et Uo(t) = efi%H0 dépendent tous deux du méme
opérateur Hy, donc po et Up(t) commutent.
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observables A et B lorsque t — oo, c¢’est-a-dire limy_,o Gaop(t) = 0. Si cette décorrélation
est suffisamment rapide, G sp(t) posséde une transformée de Fourier réguliére

Gap(w) = /]R At Gap(t) e (7.74)

Notons quelques propriétés de symétrie de Gap(t) et Gap(w). Puisque (ABy(t))l =
By(t)A, Gap(t) est réelle ce qui entraine

Gp(Ww) = Gap(—w). (7.75)

Gréce a la cyclicité de la trace et en exploitant la stationnarité de la distribution d’équi-
libre pg on a

1
Gap(t) = 5 Tr (Po (A Bo(t) + Bo(t) A))
1
= 5T (pOAUOTBUO +p0UOTBU0A)
1 1
= Eﬂ(poUg Up AUS BUy) + §TT(p0UgB U AUY Up)
~—— ~——
=Ao(-t) =Ao(-1)
1 1
= 5 Tr (UO Lo UOJr AQ(—t) B) + 5 Tr (UO L0 UOJr B AQ(—t))
N—_—— N—_——
=pPo =Po
1
=5 (Po (Ao(—t)B+ B Ao(—t)))
On en conclut
Gaplw) = / dt Gpa(—t)e™ = Gpa(—w), (7.77)
R
et donc, avec (7.75) N N
Gap(w) = Gpa(w). (7.78)

En particulier, Ga A(w) est réelle et positive. La positivité se voit en remarquant que
G a4 (t) est définie positive : pour toute suite de coefficients ¢; € C on a

n n n T
Z ¢icf Gaalti —t;) = Tr |po (ZciAo(ti)> (ZciAo(ti)> > 0. (7.79)
=1

ij=1 i=1
En effet, utilisant la stationnarité de pg comme dans (7.76)
GAA(tl - tg) = %TI‘ (,00 (Ao(tl)Ao(tQ) + Ao(tg)Ao(tl)) ), (780)

ce qui conduit & (7.79).

Il est maintenant possible d’énoncer le théoréme de fluctuation-dissipation sous sa forme
la plus générale :

~ ~ hw\ ~
;i_r% % (XBA (w+ie) — Xap (w+ ZE)) = %th <ﬁ7> Gap(w). (7.81)
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Dans le cas particulier A = B, on trouve

1
lir%lm (xaa(w+ig)) = 7 th <%> Gaa(w) >0, w > 0. (7.82)

On sait que la partie imaginaire de la fonction de réponse est liée a la dissipation d’énergie,
donc I'équation (7.82) relie la dissipation (membre de gauche) aux fluctuations (membre
de droite). De plus, on retrouve le fait que lim._oIm (x44(w + i€)) > 0, c’est-a-dire que le
systéme absorbe de I’énergie sous effet de la perturbation, comme discuté a la page 145.
L’importance de la relation (7.81) vient du fait qu’elle lie la réponse (elle-méme liée aux
coefficients de transports) aux propriétés des fluctuations a 1’équilibre.

A ce propos, citons la remarque de Onsager (1931) : Si un systéme est dans un état
hors-équilibre au temps tg, il "ne sait pas" si cet état hors équilibre résulte d’une action
extérieure ou d’une fluctuation spontanée. Son évolution de retour & I’équilibre sera la méme
dans les deux cas (pour peu que la déviation de 1’équilibre soit suffisamment petite).

En principe, on pourrait calculer Im (X44(w)) a partir de la fonction de corrélation
d’équilibre G44(w) et retrouver Re (Y a4(w)) par les relations de Kramers-Kronig, et ainsi
réduire le calcul de la fonction de réponse & celui des fluctuations a I’équilibre. La difficulté
est que le calcul de G44(w) nécessite celui de I’évolution microscopique, ce qui n’est en
général pas possible, et on doit faire des approximations et des modéles a ce niveau.

Preuve (Théoréme de fluctuation-dissipation) Lorsque le volume du systéme étudié
est fini le spectre de I'hamiltonien Hy est discret. Soit une base {|n)}, qui diagonalise Hy,
Hy |n) = E, |n).* En développent 'expression microscopique (7.72) de la fonction de réponse
dans la base {|n)}, on a

xan(t) = + 37 (B, po] Ao(t)}n). (7.83)

n

Insérons une relation de fermeture ), |m) (m| =1 dans (7.83), alors avec py = %e‘ﬁH@ et
Q="Tr (e_ﬁH‘))

xan(t) = + 3 (nl (B, po] [m) Gl g (1) )

= %Z (<”|Bpo|m> - <n!poBlm>) (m|U§ (1) AUs(t)|n)

~~

Q

= = (nlBlm) (m|Aln) e‘i%(E”‘E"L%e‘ﬁE” (e —1)

n,m

=(n|B|m) X (e—ﬁEm _e—ﬁEn) =<m|A|n>ei%(Em_E")

= 5 3 (nlBlm) (ml ) e e (e 1), (T

n,m

4n est une notation générique pour I'ensemble des nombres quantiques nécessaires a la caractérisation
du spectre. Les énergies E,, sont répétées autant de fois que leur multiplicité l'exige.
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ol on a posé Wy, = %(En — E,,) dans le dernier passage. Ainsi la transformée de Fourier
de la fonction de réponse est

)A(JAB(LU + iE) = /0 dt ei(w+i5)tXAB(t)
(7.84) 1 L BB, (. phw / o i(wie—wnm )t
=V 2N B Aln) =e=BEn (fhwnm _ 1) [ qy -
- 2 (n|B|m) (m|A|n) Qe (e ) ; e
= 25" (nlBlm) (m|Ajn) =cPEn (e 1) — L (s)
h & Q W+ i€ — Whm '

L’équation (7.85) implique

1 1 -1
Xip(w + ie) hgm: (| AJm) {m| Bln) g (e ) oo (180
ainsi que
Coa(w +ic) = 5" (n|Alm) (m|Bln) L o (eﬁf‘ww - 1) =t (787
B h Q W+ i€ — Wnm '

Avec (7.86) et (7.87) on obtient

1/ . ~x ;
lim —.(XBA (w+ie) — Xap (w +z5))
e—0 27

1 1
= gm%] . E (n|Alm) (m|B]|n) Qe (e 1) X

n,m

1( -1 1 >
X — - + -
20 \ w1 —Wpm W—1E — Wnm

1 1 €
=7 E (n|Alm) (m|B|n) =e (e 1) ;m% R P

n,m

= (W—wnm)

= 7 (& 1) 3 (nl Alm) (| Bln) %e_ﬂE” 5(w — Wam)- (7.88)

n,m

Pour achever la preuve, il faut montrer que G Ap(w) a une forme similaire au membre de
droite de (7.88). En procédant de facon analogue

Gap(t) = Iy (Po (ABo(t) + Bo(t) A) )

2
1 1 .
=3 > " (n|Ajm) (m|B|n) ae_ﬁE"e_“""’"t
n,m
1 1 .
+§Z (n|B|m) (m|A|n) ae—ﬁEnewﬂmt, (7.89)
n,m
en intervertissant dans le deuxiéme terme du membre de droite de (7.89) les indices de
sommation muets n < m et avec l'identit¢ —(GE,, = —fE, + fhw,y, 'équation (7.89)
devient St
1 : 1 nm
Gag(t) = (n|Ajm) (m|Bn) ée_ﬁE”e_“"”mt (%) . (7.90)

n,m
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La transformée de Fourier de G 4p(t) est donc
éAB(w) = / dt ethGAB(t)
R

(7.90) 1 1 + effwnm o
=" " (n|Ajm) (m|B|n) 0° PEn <f /]Rdte( nm )t

n,m

=216 (w—wnm)

= (1+™) Y (nlAm) (m|Bln) %e_ﬁEn 50— wrm)- (7.91)

n,m

En comparant (7.88) a (7.91) on trouve

1 ., , 1efw 1 - 1 Bhw\ ~
lim % (XBA (w+ig) — Xap (w +ie) ) = ﬁmGAB(W) =7 th (T) Gap(w)
(7.92)
qui est la relation (7.81), et achéve la preuve. |

Remarque Cette démonstration s’applique a un systéme quantique enclos dans un vo-
lume fini. Le caractére discret du spectre se manifeste alors par le fait que G sp(w) n’est
pas une fonction réguliere de w, mais une somme de fonctions de Dirac centrées sur les
différences d’énergies propres wyy, (voir (7.91)). Pour recouvrer la régularité de Gap(w) et
la décroissance temporelle mentionnée avant (7.74), il est nécessaire de prendre la limite du
volume infini (limite thermodynamique) de l'expression (7.91). Ce n’est que dans l'idéali-
sation d’un systéme infini que ’on peut obtenir une relaxation temporelle des fluctuations
au sens strict (I’énergie peut alors étre dissipée a U'infini). Ainsi il faut comprendre le théo-
réme de fluctuation-dissipation dans le sens suivant : les expressions en jeu doivent d’abord
étre calculées & volume fini puis il faut prendre la limite thermodynamique et finalement la
limite € — 0. o

7.4.1 Exemple : théorie de Langevin

Il n’est pas aisé de donner un exemple explicite & la théorie générale, car il faudrait
pourvoir résoudre la dynamique microscopique & grand nombre de degrés de liberté. On
peut cependant lillustrer dans le cadre de la théorie de Langevin pour lequel toutes les
grandeurs d’intérét peuvent étre calculées explicitement. On considére une particule soumise
a un bruit blanc f(t) et & une force extérieure donnée F'(t)

%v(t ,/ 7 1)+ F (7.93)

(F(t1)[f(t2)) = 0(t1 — tz (7.94)

avec 3 = (kgT)~!. On définit la fonction de réponse x(t) de la vitesse & la force extérieure
(la mobilité) par

(v(t)>:/Rdt’ x(t—t)F(t). (7.95)
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Le systéme ¥ consiste donc en la particule environnée du fluide dans laquelle elle se meut : sa
dynamique est le processus d’Ornstein-Uhlenbeck et la perturbation est la force F'(¢). Notons
qu’ici la dissipation est introduite phénoménologiquement par le coefficient de friction ~.

(i) On va commencer par montrer que

1 1

w) = /R dt () = - = (7.96)

Pour cela remarquons que la vitesse moyenne obéit a I’équation

— () = _7<U(t)>+%F(t)v (7.97)

car {f) = 0. Ecrivons les relations (7.97) et (7.95) dans la représentation de Fourier

~ ~ 1

—iw()(w) = —7(v>(w)+%f(a}), (7.98)

(V)W) = X(W)F(w). (7.99)

Le résultat (7.96) suit lorsqu’on résout ces équations pour y(w).
(ii) Montrons & présent la relation de fluctuation-dissipation

Im (Y(w)) = g—:é(w), (7.100)

Glw) = /R dt & ((1)v(0) (7.101)

est la transformée de Fourier de la fonction d’autocorrélation des vitesses. Pour cela,
on se souvient que la fonction d’autocorrélation des vitesses dans la théorie de Lan-
gevin est donnée par (voir (3.30))

1

— e M, (7.102)

(w(Ep(0) = 5~

d’ou
Gw) = i/ dt ete M
pm Jr
- L/O dt et i/oo dt e~ (Y—iw)t
B Bm —00 5771 0
1 1

1
= —— — + .
Bm <'y~|—zw fy—zw>

2
_ 7.1
pmy? + w?’ (7.103)
or de (7.96) on a
- 1 1 1 w
I =—1I =—— 104
m () = ot (L) = Lo (7.104)

ce qui conduit par comparaison de (7.103) et (7.104) au résultat (7.100).
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(iii) On définit le coefficient de diffusion D par

(#*(1))

tliglo TR D. (7.105)
On va voir que D = lé(w = 0), ce qui va permettre de retrouver la relation de

Einstein D = ﬁ . Pour ce faire, puisque z(t) = 2(0) + fg dt1 v(ty), alors
—~—

=0

.’1}'2 ‘
( 2&’5» _ l/ dt, / dty (v(t1)v(t2))

| = l\.’)

t
/dtl dtg U tl_t2)>
0 0

/0 "ty /0 "ty w(0)u(ta). (7.106)

L 22 0) (7

| =

d’ott en prenant la limite t — oo

/ T at (w(0)u(t))
0

t—oo 2t
w2 [ at won)
2 Jr
(r.100 %é(w:()). (7.107)

D’ott en insérant (7.103) dans (7.107)

o (2*)) 1
Jim s = ﬁmv_D' (7.108)

On voit clairement dans ce cas comment le théoréme de fluctuation-dissipation généralise
la relation de Einstein trouvée au début du cours.

7.4.2 Microréversibilité et symétries de la fonction de réponse

L’invariance sous le renversement du temps de la dynamique microscopique, qui entrai-
nait la symétrie Log = Lg, des coefficients cinétiques (voir le chapitre 5), a des conséquences
analogues sur la fonction de réponse : elle implique que ’on peut interchanger les roles de
A et B. Pour le voir, on va briévement définir 'opération de renversement du temps en
mécanique quantique. De fagon analogue a la définition classique (5.10), elle est réalisée par
un opérateur T sur I'espace des états quantiques tel que

TqT = g,
{TTpT _ (7.109)

Lorsqu’il n’y a pas de spin, on peut définit 7' = C' comme la conjugaison complexe des
fonctions d’onde dans la représentation de Schrodinger

Cp =~ (7.110)
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On en conclut que C' est antilinéaire
CAp+ ) = X Cp+ u . (7.111)
I’adjoint d’un opérateur antilinéaire A est défini en général par

WAp) = (ATylp)" = (p|Aly). (7.112)

En appliquant (7.112) a T on obtient pour tout ¢

[aevce) = [arwre = [ angr(clu, (7.113)
R R R

ce qui montre qu’également

Clyp = op*. (7.114)

Ainsi C = COT est autoadjoint, (anti)unitaire CCT = CTC' = 1, et idempotent C? = 1.
Puisque p = —ih% est purement imaginaire et que ¢ = x est purement réel, on vérifie que
C a bien 'action (7.109).

Un hamiltonien est invariant sous le renversement du temps si
CTHC =H. (7.115)
L’évolution U (t) = e~int engendrée par H se transforme donc comme

ctu@)Cc =u(-t). (7.116)

Si la particule porte un spin S, on désire que S se transforme comme un moment
angulaire p A q, donc S — —S sous 'opération de renversement du temps. Par exemple,
pour un spin 1/2 dans la représentation des matrices de Pauli o = (04,0y,0;) ol 04, 0,
sont réelles et o, est imaginaire pur, on a avec (7.110)

Clo,C = oy,
Clo,C = -0y, (7.117)
Clo,C= o,

. . . N . T
Pour changer globalement le signe de o, on peut encore adjoindre & C une rotation e "2
d’angle w autour de la direction ¢ qui transforme o, 0, en —o,, —0,. Dans ce cas I'opérateur

de renversement du temps est
T =e "2, (7.118)

et satisfait aux mémes propriétés déja énoncées pour C.

Considérons des observables A et B qui ont des parités bien définies sous 'application
de l'opérateur de renversement de temps T

TTAT = e 4A, T' BT =epB, €A, 6B = 1, (7.119)
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par exemple une densité (¢ = 1) ou un courant (¢ = —1). En utilisant 717 = 1, TT po T = po
ainsi que TT Uy (t) T = Up(—t)
1
Gap(t) = 5 Tr{po (ABo(t) + Bo(t) A))
~Tr (71

poT TH(AT T B(t) + B(t) T T' A)T)
W—/

—EAA =epA

Tr (poeaf ATTUTT BT U T+ T U T T BT T U, T A))

Tr (po (TTAT TVU BUT + TT U BU, T TTAT))
—Uo _eBB :Ug —Up =epB :Ug

= 5T (pocacn(ABo(—1) + Bo(~1) 4) )
= ec4ep Gap(—t), (7.120)
puis en tenant compte de (7.76)
Gap(t) =ecaepGpa(t), (7.121)

et finalement aprés transformée de Fourier

Gap(w) =eaepGpa(w). (7.122)
Le théoréme de fluctuation-dissipation (7.81) et (7.122) impliquent
N e . s ) 1 Bhw ~
;I_I)%Z<XBA(M+ZE)—XAB(M+ZE)) = hth( 5 > caepGpa(w), (7.123)

en échangeant les roles de A et B dans (7.123)

1/ . s .
EAERB lim—,(XAB(w—i—za)—XBA(w—i—za)) = —th
e—

Bhw
027 h <

2>Gw() (7.124)

Le membre de droite de (7.124) étant égal a celui de I'équation (7.81) du théoréme de
fluctuation-dissipation, on égale les membres de gauche pour obtenir
Kpa(w+ie) = Xap (w+ie) = eacp (Xap (w+i2) = Vpa (w + ie) ). (7.125)
Par la suite, on entend comme d’habitude que xap(w) = lim._,g xpa(w + i€), w € R.
(i) eaep = 1. L’équation (7.125) implique
XBA (W) + Xpa (W) = XaB (w) + Xap (W)

=2Re(Xpa(w)) =2Re(XaB(W))
— Re(XBa (w)) = Re(XaB (v)), (7.126)

et comme il y a égalité des parties réelles les équations de Kramers-Kronig (7.43) et
(7.44) impliquent 1'égalité des parties imaginaires

Im (Xpa (w)) = Im (XaB (w)), (7.127)

d’ou
XAB (W) = XBa (W) . (7.128)
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(ii) eaep = —1. L’équation (7.125) implique

T64 () = T (@) = (245 ) — Tip ()
=2iIm(Xpa(w)) =2iIm(xXaB(w))
= Im(Xpa (w)) = —Im(XaB (w)), (7.129)

et comme il y a égalité a la parité prés des parties imaginaires les équations de
Kramers-Kronig (7.43) et (7.44) impliquent que les parties réelles sont également
antisymétriques
Re (XBa (w)) = —Re(XaB (), (7.130)
d’ou
XAB (W) = —XpBa (W) . (7.131)
Pour résumer, et incluant encore l'effet d’un champ magnétique B,

| Xap(w, B) = eaepXpalw, —B), (7.132)

relations analogues a celles (5.55) pour les coefficients cinétiques. Il y a toutefois une diffé-
rence dans la nature de leurs dérivations. Les relations (5.55) sont trés générales, incluant
des transports de chaleur et de masse qui ne sont pas générés par des champs extérieurs,
mais par des forces thermodynamiques. Par contre, leur démonstration est soumise a cer-
taines hypothéses sur la dynamique macroscopique et les fluctuations. La démonstration
de (7.132) a partir de la dynamique microscopique ne fait appel & aucune hypothése in-
termédiaire, mais les relations (7.132) ont une application plus limitée dans le sens que les
observables A et B doivent pouvoir étre couplées a des champs extérieurs (par exemple
électrique, magnétique) dans ’hamiltonien microscopique.

7.5 Formules de Kubo

La formule de Kubo exprime & nouveau la fonction de réponse xap(t) en terme des
corrélations temporelles de A et B & I'équilibre. La forme est un peu différente que le théo-
réme de fluctuation-dissipation, mais il s’agit d’une variation sur le méme théme. L’idée est
d’exploiter Panalogic entre les formes exponentielles de 'opérateur statistique e 7?7 et 'évo-
lution quantique Uy(t) = e~nM0 ot Hy désigne ’hamiltonien (conservatif) du systéme en
I’absence de perturbation extérieure. On voit que le premier s’obtient comme prolongement
analytique du second au temps imaginaire t = —ih7, T € R,

e THo — Uy (—ihir). (7.133)
Si By(t) = Ug(t)BUo (t) est 'évolution temporelle de I'observable B, son prolongement est
By(—iht) = e"Ho Be~Ho, (7.134)

dont on intégre par rapport a 7 sa dérivée respective & 7 pour obtenir

/ﬁd dp (—ihr) = B(—ih7)|P
; T Epa T = 7)o

= fope Pt _p (7.135)
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En multipliant (7.135) & gauche par pg = ée_ﬁH‘) on a

Po /Oﬂ dr %BO(—ihT) = [B,po], (7.136)
et apreés le changement de variables s = —iht
o d i
po /0 dr LB =Bl (7.137)

En multipliant 'opérateur (7.137) par Ao(t) on a

?

Ao(t) 5

s=—iht

[B, polAo(1). (7.138)

p d
PO/O dr &BO(S)

Finalement, on prend la trace de (7.138) en se rappelant de I’expression (7.72) de la fonction
de réponse

xag(t) = /Oﬁ dr <%Bo(8)

Ao(t)> : (7.139)

s=—iht

ot (---) désigne la moyenne prise sur I’état d’équilibre pg, et Up(t) = e~intlo, Ao(t) =
Ug (t) AUy(t). C’est la formule cherchée, elle donne x 4p(t) en termes d’une valeur moyenne
d’équilibre, sans distinguer entre partie réelle et imaginaire comme dans le théoréme de
fluctuation-dissipation.

7.5.1 Exemple : la conductivité électrique

Nous revenons a I’exemple 2 de la section 7.1, avec IN particules de charges e,, et positions
d, soumis & un champ électrique extérieur £€(t) homogéne. La perturbation s’écrit (voir
(7.15))

H(t) = —D- &(t), (7.140)
avec
N
D=> e¢q; (7.141)
=1

le moment dipolaire total. Nous regardons la réponse du courant total J au champ extérieur

N
J= Z €;V;. (7.142)
i=1

La relation linéaire

3
Jo(t) = dt’ oa5(t —t') E5(t) (7.143)
> IREECUL

définit le tenseur de conductivité o,5(t). En appliquant la propriété que la transformée de
Fourier du produit de convolution est le produit des transformées de Fourier

3
Ja(w) = Gap(w)Es(w). (7.144)
B=1
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Nos deux observables sont donc
A=17, B =D, (7.145)

avec f(t) = £(t). En remarquant que

N N
d (7.141) d (7.142)
P08 = ;21 cig,qi(s) = ;:1 eivi(s) =" Jo(s), (7.146)

la formule de Kubo fournit donc I’expression

Carlt) = /Oﬁdf <%Do,a<s> Jo,v(t)>

s=—iht

B
T [ oal=ibr) o (0 (7.147)

La fonction de réponse s’exprime donc en termes des corrélations courant-courant du sys-
téme & I’équilibre. En passant & la transformée de Fourier

o0
Garlw) =l | dt i@t (1)

g 00 ) )
(7.147) lim / dr / dt e T (Jo (—ihr)Jo4 (1)) . (7.148)
e—~vJo 0

Dans la limite classique h — 0

[o¢]
Goy(w) = Blim | dt WO (T 0 (0)Joq (1)) . (7.149)
E— 0
La conductibilité électrique est donc la transformée de Fourier des corrélations courant-
courant. Les formules (7.148) et (7.149) sont le point de départ du calcul de la conductivité
sur une base microscopique, la difficulté résidant encore dans I’évaluation des corrélations
courant-courant.
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