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Introduction

Dual recycled, Fabry-Perot Michelson Interferometer

Noise in the position of the test masses limits the sensitivity of the
measurement

24.03.2022 Internal thermal noise in the LIGO test masses:A direct approach 3 / 11



General Method

Reminder: Fluctuation Dissipation Theorem

|FL(ω)|2 = 4kBT R(ω)

SVV(ω) = 4kBT
R(ω)

|Z(ω)|2

where R(ω) := Re(Z(ω)), Z(ω) :=
F(ω)

v(ω)

This implies for the spectral density of the position:

SXX(ω) =
SVV(ω)

ω2 =
4kBT
ω2

R(ω)

|Z(ω)|2
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General Method

The read out variable of interest is:

x(t) =
∫

f (⃗r) y(⃗r, t) d2r

y(⃗r, t) : displacement of boundary along direction of laser beam at
time t

f (⃗r) : form factor dependent on monitoring laser beam, which full-fills:∫
f (⃗r) d2r = 1

We are interested in fluctuations in x(t).
Goal: Find the spectral density associated with these fluctuations,
SXX(f ).
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General Method

Apply the generalized fluctuation-dissipation theorem:

SXX(f ) =
kBT
π2f 2 |Re(Y(f ))|,

where Y(f ) := 1
Z(f ) is the complex admittance associated with x(t).

Consider an oscillating pressure at surface of test mass:

P(⃗r, t) := F(t)f (⃗r), where F(t) = F0cos(2πft)

Link the response of the system to the power dissipated into the
system Wdiss:

Wdiss =
F2

0
2
|Re(Y(f ))|
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General Method

One obtains:

SXX(f ) =
2kBT
π2f 2

Wdiss

F2
0

(1)

Thus, to calculate SXX(f ) one can follow these three steps:

(i) Apply an oscillatory pressure P(⃗r, t) = F0cos(2πft)f (⃗r)

(ii) Calculate the average power Wdiss dissipated in the test mass
when the oscillating force is applied.

(iii) Use equation (1) to calculate SXX(f ).
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Homogeneous damping

Application of derived method to fused silica test mass:

Youngs Modulus of fused silica: E = E0(1 + iϕ(f ))
ϕ(f ) : material’s loss angle

Assume a Gaussian beam profile: f (⃗r) = 1
πr2

0
e−r2/r2

0 ,

r0: radius of monitoring laser beam.

Calculated dissipated power via: Wdiss = 2π f Umax ϕ(f )
Umax : Energy of elastic deformation when test mass is maximally
contracted.
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Homogeneous damping

Result

SXX(f ) =
4kBT

f
1 − σ2

π3E0r0
I ϕ · (1 +O(

r0

R
))

E0, ϕ: from Young modulus of material
σ: Poisson ratio of material
R: Radius of test mass
I ≈ 1.87322 for a Gaussian beam

The analytic expression is more exact for small probe beam sizes
( r0

R → 0).

Result is in agreement with the result obtained using the normal
mode decomposition. E.g. SXX(100Hz) ≈ 8.7 · 10−40 m2/Hz.
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Surface Damping

Surface losses could play a role if the mirror coating dissipates energy
or if the mirror surface is polished inadequately.

The power dissipated at one point of the material is proportional to
the square of the stress (= force / area). Since we apply the force at
a finite surface, the dissipated power scales as:

Wdiss,coating ∝ (
F0

r2
0
)2 r2

0 =
F2

0

r2
0

This scaling is different than the scaling of the homogeneous case
(SXX,bulk ∝ 1

r0
). Surface losses could therefore be important for small

beam sizes.
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Conclusion

To compute the thermal internal noise
of the test mass, we can use the power
dissipated into the system if an
oscillation pressure is applied.

Numerical agreement in case of
homogeneous damping in a fused silica
test mass monitored by a Gaussian laser
beam with result obtained via normal
mode decomposition.

The size of the monitoring beam is
taken into account via the spatial
profile of the auxiliary pressure. This
gives an advantage over the normal
mode decomposition.
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