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Brownian motion: Einstein's derivation !

Chapman - Kolmogorov equation (Markov process)

flz,t+ 7)de =dx T D(A)f(z+ A, t)dA

— 00

Taylor expanding: Ag
flz,t) + —T = / D(A)dA +— / AD(A)dA +7 /

—o0

unity = 0 for a symmetric random walk

Diffusion equation
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later we will see that D = mBiw' where ~ is the friction coefficient associated with the friction force m~v

Properties ( p(x,t) = f(z,t)/n, where n is the number of particles in the system):

(@, 8) > 0 T o, tyde =1 Jim p(z, 1) = 8()

—oo

1A. Einstein (1905). " Uber die von der molekularkinetischen Theorie der Wirme geforderte Bewegung von in ruhenden Fliissigkeiten suspendierten Teilchen".

Annalen der Physik. 322 (8): 549-560.
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Langevin treatment (microscopic treatment)?
Langevin equation

m% —67r77a + dF(t)

0F(t) is a fluctuating force causing the random motion (" Langevin force”).
KEY INSIGHT: (0F(t) - z(t)) = 02

d , 5 kgT 6mna
o = — t R
7t T > Srna —i—cexp( = ) , CE

So for t — oo:

(a?) - (af) = 221

3ﬂna
and we recover the same diffusive behaviour as with Einstein i.e. <x2> x t. Here:
T
p— e
3mna

ZImportant: (§F(t)v(t)) is NOT generally zero.
3"Sur la théorie du mouvement brownien”, C. R. Acad. Sci. (Paris) 146, 530-533 (1908)
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Solution to the diffusion equation®

Define the probability of finding a particle at position x at time ¢ when the position xg at time
to is known, as: P(x, to; z,t).
The diffusion equation tells us:

P(xo,to;:c,t)‘t L 0(x — xo) ,
=to
Transition probability
2
P(xo,to; 2, t) = \/ﬁeﬂ%_g(t@o)) '

Which leads to the following in one dimension:

Probability distribution
P(z,t) = [ dxog W(zo,to) P(zo,to; z,1) -
R S———

initial statistical distribution

4c.f. Script P. Martin, Chapter 1.
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Alternative: master equation derivation

Consider a discrete random walk in 1D of step size A, where a step is taken every 7 seconds. The
probability of finding the particle at nA at time k7 is given by P(nA, k7). The probability of jumping
to the right is given by p, to the left by ¢ = 1 — p.

Detailed balance
(1)J

PnA,(k+1)7)=p - P((n—1)A k) +q- P((n+ 1)A, k1)

Set now p=¢q = % and rearrange (defining ¢ = k7 and = nA) to obtain

Pla,t+71) — Plx,t) A% Pz +At) = 2P(z,t) + P(z — At)

T T A2 ’
~—
=D

Taking the limit 7, A — 0 we obtain the diffusion equation:
Diffusion equation
OP(z,t) D82P(:17,t)

ot Ox?
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Smoluchowski equation
How do you describe Brownian motion in a force field with the master equation approach?
Force field < p # q.
1 1
p:§+OzA; qzifaA

We can further assume that Brownian motion is spatially varying (e.g. in a gravitational field)
so that & = a(nA). Equation (1) becomes:

PnA,(k+1)7) =p((n—1)A) - P((n — 1)A k) + q((n+1)A) - P((n+ 1)A, k7).
Rearranging and taking the limit 7, A — 0 we obtain the Smoluchowski equation:
Smoluchowski equation

2P(z,t) = — 1 & (F(2)P(2,1)) + D25 P(z, 1)

sy

For dimensional reasons 4Da(z) = =
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Derivation of the diffusion constant

Consider n particles in a gravitational field §. Define n(x,t) = Np(z,t) and jp(z,t) = —D%n(m,t) -
the particle current. The diffusion equation reads:

2 n(z,t) = —LZjp(x,t); which is also a continuity equation.

Diffusion equation J

Equation of motion for the gas particles: m%v(t) = —mg — m~yv(t). From the stationary solution we
get v = —g/ and we define the current due to the gravitational force by jgray = —gn(z,t)/7.
Statistical mechanics predicts (V is the potential):

n(z,t) = n(xo) exp<_%> _ m(zo) exp (_ % )

Require jiot = jp + Jgrav = O (steady state condition), to obtain the familiar expression

Diffusion constant (Stokes—Einstein—Sutherland equation)
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Example of harmonic potential
We can solve the Smoluchowski equation in the case of a harmonic potential V' (z) = %mwsz.

Figure: In orange the harmonic potential and in blue the (gaussian) particle distribution.
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Langevin force correlator

Langevin equation (6 F(t) is the Langevin force):

dv B 0F(t)
T Yo(t) + o

Langevin made two hypotheses:

Q (0FL(t) =0,

Q@ (0FL(t1)0FL(t2)) =c-0(t1 —t2) , cER.
What is the value of ¢?
By studying the velocity correlations we can obtain:

<5FL(t1)5FL(t2)> = 2m'kaT . 5(t1 — tz)
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Paper for next week's presentation

Direct observation of kinesin stepping by optical trapping interferometry:
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Questions for the paper

@ Why do they use kinesin to monitor the random motion of a particle, and what is the
minimal step length that can be resolved in this experiment?

@ Explain the experimental setup they used to trap and monitor the kinesin.

@ Explain the calibration procedure for the optical tweezers trapping force vs the laser
intensity(Fig. 1b) and of the detector noise (Fig. 1c).

@ Explain the concept of noise power spectral density, and how it is obtained from the
voltage signal experimentally?

@ What is the requirement for the acquisition rate and trace length to obtain the shown

spectrum

What is the effect of the ATP load?
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