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Brownian motion: Einstein’s derivation 1

Chapman - Kolmogorov equation (Markov process)

f(x, t+ τ)dx = dx
∞∫

−∞
Φ(∆)f(x+∆, t)d∆

Taylor expanding:
f(x, t) +

∂f

∂t
τ = f

∞∫
−∞

Φ(∆)d∆

︸ ︷︷ ︸
unity

+
∂f

∂x

∞∫
−∞

∆Φ(∆)d∆

︸ ︷︷ ︸
= 0 for a symmetric random walk

+
∂2f

∂x2

∞∫
−∞

∆2

2
Φ(∆)d∆

Diffusion equation

⇒ ∂f
∂t

= D ∂2f
∂x2 ; D ≡ 1

T

∞∫
−∞

∆2

2
Φ(∆)d∆a

a
later we will see that D =

kBT

mγ
, where γ is the friction coefficient associated with the friction force mγv

Properties ( p(x, t) = f(x, t)/n, where n is the number of particles in the system):

p(x, t) > 0
∞∫

−∞
p(x, t)dx = 1 lim

t→0
p(x, t) = δ(x)

1
A. Einstein (1905). ”Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen”.

Annalen der Physik. 322 (8): 549–560.
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Langevin treatment (microscopic treatment)3

Langevin equation

md2x
dt2

= −6πηadx
dt + δF (t)

δF (t) is a fluctuating force causing the random motion (”Langevin force”).
KEY INSIGHT: ⟨δF (t) · x(t)⟩ = 02

⇔ d

dt

〈
x2

〉
=

kBT

3πηa
+ c exp

(
−6πηa

m
t

)
, c ∈ R

So for t → ∞: 〈
x2

〉
−
〈
x20

〉
=

kBT

3πηa
t ,

and we recover the same diffusive behaviour as with Einstein i.e.
〈
x2

〉
∝ t. Here:

D =
kBT

3πηa
2Important: ⟨δF (t)v(t)⟩ is NOT generally zero.
3”Sur la théorie du mouvement brownien”, C. R. Acad. Sci. (Paris) 146, 530–533 (1908)
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Solution to the diffusion equation4

Define the probability of finding a particle at position x at time t when the position x0 at time
t0 is known, as: P (x0, t0;x, t).
The diffusion equation tells us:

P (x0, t0;x, t)
∣∣∣
t=t0

= δ(x− x0) ,

Transition probability

P (x0, t0;x, t) =
1√

4πD(t−t0)
exp

(
− (x−x0)2

4D(t−t0)

)
.

Which leads to the following in one dimension:

Probability distribution

P (x, t) =
∫
R
dx0W (x0, t0)︸ ︷︷ ︸
initial statistical distribution

P (x0, t0;x, t) .

4c.f. Script P. Martin, Chapter 1.
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Alternative: master equation derivation
Consider a discrete random walk in 1D of step size ∆, where a step is taken every τ seconds. The
probability of finding the particle at n∆ at time kτ is given by P (n∆, kτ). The probability of jumping
to the right is given by p, to the left by q = 1− p.

Detailed balance

P (n∆, (k + 1)τ) = p · P ((n− 1)∆, kτ) + q · P ((n+ 1)∆, kτ) (1)

Set now p = q = 1
2 and rearrange (defining t = kτ and x = n∆) to obtain

P (x, t+ τ)− P (x, t)

τ
=

∆2

τ︸︷︷︸
≡D

P (x+∆, t)− 2P (x, t) + P (x−∆, t)

∆2
.

Taking the limit τ,∆ → 0 we obtain the diffusion equation:

Diffusion equation

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
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Smoluchowski equation

How do you describe Brownian motion in a force field with the master equation approach?
Force field ⇔ p ̸= q.

p =
1

2
+ α∆ ; q =

1

2
− α∆

We can further assume that Brownian motion is spatially varying (e.g. in a gravitational field)
so that α = α(n∆). Equation (1) becomes:

P (n∆, (k + 1)τ) = p((n− 1)∆) · P ((n− 1)∆, kτ) + q((n+ 1)∆) · P ((n+ 1)∆, kτ) .

Rearranging and taking the limit τ,∆ → 0 we obtain the Smoluchowski equation:

Smoluchowski equation

∂
∂tP (x, t) = − 1

mγ
∂
∂x(F (x)P (x, t)) +D ∂2

∂x2P (x, t)

For dimensional reasons 4Dα(x) = F (x)
mγ
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Derivation of the diffusion constant
Consider n particles in a gravitational field g⃗. Define n(x, t) = Np(x, t) and jD(x, t) = −D ∂

∂xn(x, t) -
the particle current. The diffusion equation reads:

Diffusion equation
∂
∂tn(x, t) = − ∂

∂xjD(x, t); which is also a continuity equation.

Equation of motion for the gas particles: m d
dtv(t) = −mg −mγv(t). From the stationary solution we

get v = −g/γ and we define the current due to the gravitational force by jgrav = −gn(x, t)/γ.
Statistical mechanics predicts (V is the potential):

n(x, t) = n(x0) exp

(
−V (x− x0)

kBT

)
= n(x0) exp

(
−mg(x− x0)

kBT

)
Require jtot = jD + jgrav = 0 (steady state condition), to obtain the familiar expression

Diffusion constant (Stokes–Einstein–Sutherland equation)

D =
kBT

mγ
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Example of harmonic potential
We can solve the Smoluchowski equation in the case of a harmonic potential V (x) = 1

2mω2x2.

Figure: In orange the harmonic potential and in blue the (gaussian) particle distribution.

For more details refer to the Mathematica script on Moodle.
Stat. Phys. IV: Lecture 1 Spring 2025 8 / 12



Langevin force correlator

Langevin equation (δFL(t) is the Langevin force):

dv

dt
= −γv(t) +

δFL(t)

m

Langevin made two hypotheses:

1 ⟨δFL(t)⟩ = 0 ,

2 ⟨δFL(t1)δFL(t2)⟩ = c · δ(t1 − t2) , c ∈ R.
What is the value of c?
By studying the velocity correlations we can obtain:

⟨δFL(t1)δFL(t2)⟩ = 2mγkBT · δ(t1 − t2)
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Paper for next week’s presentation

Direct observation of kinesin stepping by optical trapping interferometry:
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Questions for the paper

Why do they use kinesin to monitor the random motion of a particle, and what is the
minimal step length that can be resolved in this experiment?

Explain the experimental setup they used to trap and monitor the kinesin.

Explain the calibration procedure for the optical tweezers trapping force vs the laser
intensity(Fig. 1b) and of the detector noise (Fig. 1c).

Explain the concept of noise power spectral density, and how it is obtained from the
voltage signal experimentally?

What is the requirement for the acquisition rate and trace length to obtain the shown
spectrum

What is the effect of the ATP load?
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