

Stat. Phys. IV: Lecture 1

Spring 2025

Brownian motion: Einstein's derivation ¹

Chapman - Kolmogorov equation (Markov process)

$$f(x, t + \tau) dx = dx \int_{-\infty}^{\infty} \Phi(\Delta) f(x + \Delta, t) d\Delta$$

Taylor expanding:

$$f(x, t) + \frac{\partial f}{\partial t} \tau = f \underbrace{\int_{-\infty}^{\infty} \Phi(\Delta) d\Delta}_{\text{unity}} + \frac{\partial f}{\partial x} \underbrace{\int_{-\infty}^{\infty} \Delta \Phi(\Delta) d\Delta}_{= 0 \text{ for a symmetric random walk}} + \frac{\partial^2 f}{\partial x^2} \int_{-\infty}^{\infty} \frac{\Delta^2}{2} \Phi(\Delta) d\Delta$$

Diffusion equation

$$\Rightarrow \frac{\partial f}{\partial t} = D \frac{\partial^2 f}{\partial x^2} ; D \equiv \frac{1}{T} \int_{-\infty}^{\infty} \frac{\Delta^2}{2} \Phi(\Delta) d\Delta^a$$

^alater we will see that $D = \frac{k_B T}{m \gamma}$, where γ is the friction coefficient associated with the friction force $m \gamma v$

Properties ($p(x, t) = f(x, t)/n$, where n is the number of particles in the system):

$$p(x, t) > 0$$

$$\int_{-\infty}^{\infty} p(x, t) dx = 1$$

$$\lim_{t \rightarrow 0} p(x, t) = \delta(x)$$

¹A. Einstein (1905). "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen". Annalen der Physik. 322 (8): 549–560.

Langevin treatment (microscopic treatment)³

Langevin equation

$$m \frac{d^2x}{dt^2} = -6\pi\eta a \frac{dx}{dt} + \delta F(t)$$

$\delta F(t)$ is a fluctuating force causing the random motion ("Langevin force").

KEY INSIGHT: $\langle \delta F(t) \cdot x(t) \rangle = 0^2$

$$\Leftrightarrow \frac{d}{dt} \langle x^2 \rangle = \frac{k_B T}{3\pi\eta a} + c \exp\left(-\frac{6\pi\eta a}{m}t\right), \quad c \in \mathbb{R}$$

So for $t \rightarrow \infty$:

$$\langle x^2 \rangle - \langle x_0^2 \rangle = \frac{k_B T}{3\pi\eta a} t,$$

and we recover the same diffusive behaviour as with Einstein i.e. $\langle x^2 \rangle \propto t$. Here:

$$D = \frac{k_B T}{3\pi\eta a}$$

²Important: $\langle \delta F(t)v(t) \rangle$ is NOT generally zero.

³"Sur la théorie du mouvement brownien", C. R. Acad. Sci. (Paris) 146, 530–533 (1908)

Solution to the diffusion equation⁴

Define the probability of finding a particle at position x at time t when the position x_0 at time t_0 is known, as: $P(x_0, t_0; x, t)$.

The diffusion equation tells us:

$$P(x_0, t_0; x, t) \Big|_{t=t_0} = \delta(x - x_0) ,$$

Transition probability

$$P(x_0, t_0; x, t) = \frac{1}{\sqrt{4\pi D(t-t_0)}} \exp\left(-\frac{(x-x_0)^2}{4D(t-t_0)}\right) .$$

Which leads to the following in one dimension:

Probability distribution

$$P(x, t) = \int_{\mathbb{R}} dx_0 \underbrace{W(x_0, t_0)}_{\text{initial statistical distribution}} P(x_0, t_0; x, t) .$$

⁴c.f. Script P. Martin, Chapter 1.

Alternative: master equation derivation

Consider a discrete random walk in 1D of step size Δ , where a step is taken every τ seconds. The probability of finding the particle at $n\Delta$ at time $k\tau$ is given by $P(n\Delta, k\tau)$. The probability of jumping to the right is given by p , to the left by $q = 1 - p$.

Detailed balance

$$P(n\Delta, (k+1)\tau) = p \cdot P((n-1)\Delta, k\tau) + q \cdot P((n+1)\Delta, k\tau) \quad (1)$$

Set now $p = q = \frac{1}{2}$ and rearrange (defining $t = k\tau$ and $x = n\Delta$) to obtain

$$\frac{P(x, t + \tau) - P(x, t)}{\tau} = \underbrace{\frac{\Delta^2}{\tau}}_{\equiv D} \frac{P(x + \Delta, t) - 2P(x, t) + P(x - \Delta, t)}{\Delta^2}.$$

Taking the limit $\tau, \Delta \rightarrow 0$ we obtain the diffusion equation:

Diffusion equation

$$\frac{\partial P(x, t)}{\partial t} = D \frac{\partial^2 P(x, t)}{\partial x^2}$$

Smoluchowski equation

How do you describe Brownian motion in a force field with the master equation approach?
Force field $\Leftrightarrow p \neq q$.

$$p = \frac{1}{2} + \alpha\Delta ; q = \frac{1}{2} - \alpha\Delta$$

We can further assume that Brownian motion is spatially varying (e.g. in a gravitational field) so that $\alpha = \alpha(n\Delta)$. Equation (1) becomes:

$$P(n\Delta, (k+1)\tau) = p((n-1)\Delta) \cdot P((n-1)\Delta, k\tau) + q((n+1)\Delta) \cdot P((n+1)\Delta, k\tau) .$$

Rearranging and taking the limit $\tau, \Delta \rightarrow 0$ we obtain the Smoluchowski equation:

Smoluchowski equation

$$\frac{\partial}{\partial t} P(x, t) = -\frac{1}{m\gamma} \frac{\partial}{\partial x} (F(x)P(x, t)) + D \frac{\partial^2}{\partial x^2} P(x, t)$$

For dimensional reasons $4D\alpha(x) = \frac{F(x)}{m\gamma}$

Derivation of the diffusion constant

Consider n particles in a gravitational field \vec{g} . Define $n(x, t) = Np(x, t)$ and $j_D(x, t) = -D \frac{\partial}{\partial x} n(x, t)$ - the particle current. The diffusion equation reads:

Diffusion equation

$$\frac{\partial}{\partial t} n(x, t) = -\frac{\partial}{\partial x} j_D(x, t); \text{ which is also a continuity equation.}$$

Equation of motion for the gas particles: $m \frac{d}{dt} v(t) = -mg - m\gamma v(t)$. From the stationary solution we get $v = -g/\gamma$ and we define the current due to the gravitational force by $j_{\text{grav}} = -gn(x, t)/\gamma$. Statistical mechanics predicts (V is the potential):

$$n(x, t) = n(x_0) \exp\left(-\frac{V(x - x_0)}{k_B T}\right) = n(x_0) \exp\left(-\frac{mg(x - x_0)}{k_B T}\right)$$

Require $j_{\text{tot}} = j_D + j_{\text{grav}} = 0$ (steady state condition), to obtain the familiar expression

Diffusion constant (Stokes–Einstein–Sutherland equation)

$$D = \frac{k_B T}{m\gamma}$$

Example of harmonic potential

We can solve the Smoluchowski equation in the case of a harmonic potential $V(x) = \frac{1}{2}m\omega^2x^2$.

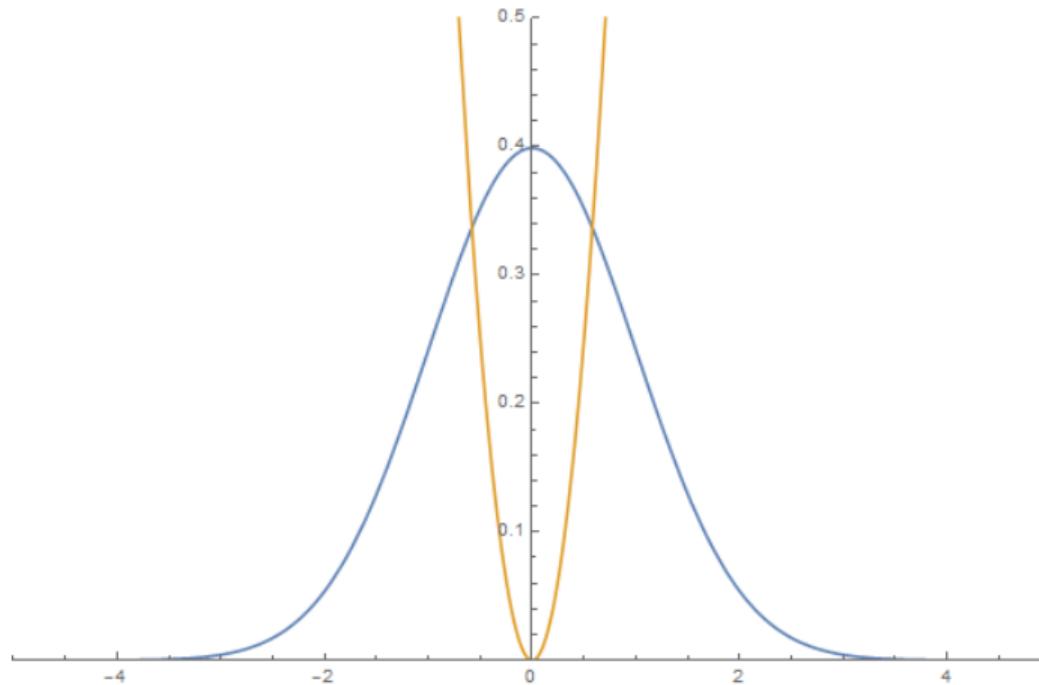


Figure: In orange the harmonic potential and in blue the (gaussian) particle distribution.

Langevin force correlator

Langevin equation ($\delta F_L(t)$ is the Langevin force):

$$\frac{dv}{dt} = -\gamma v(t) + \frac{\delta F_L(t)}{m}$$

Langevin made two hypotheses:

- ① $\langle \delta F_L(t) \rangle = 0$,
- ② $\langle \delta F_L(t_1) \delta F_L(t_2) \rangle = c \cdot \delta(t_1 - t_2)$, $c \in \mathbb{R}$.

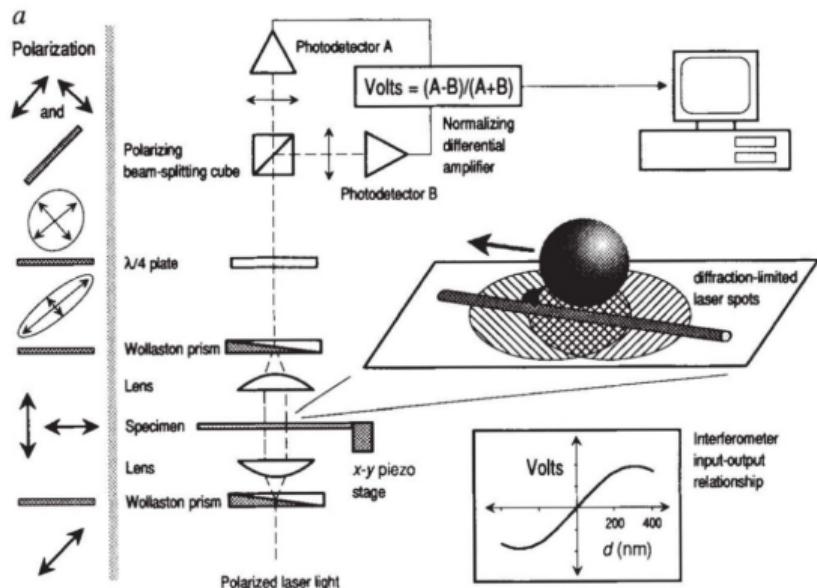
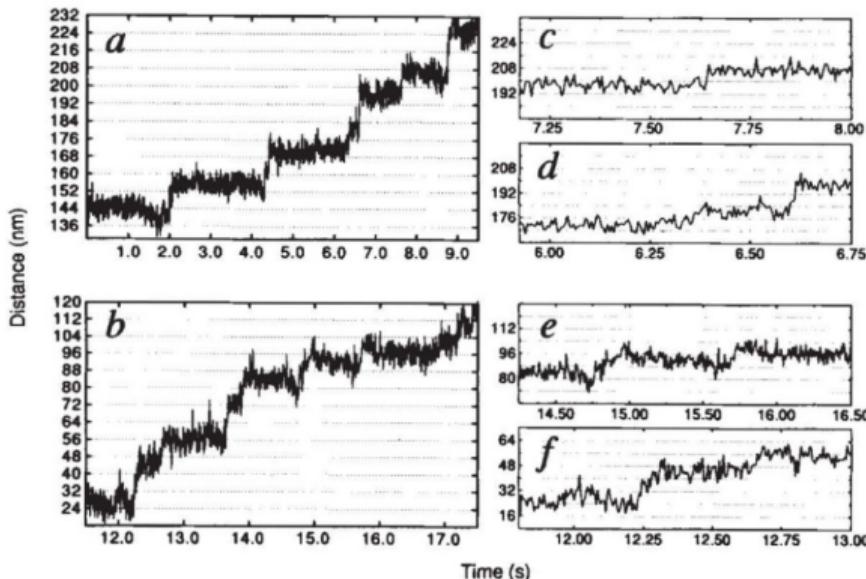
What is the value of c ?

By studying the velocity correlations we can obtain:

$$\langle \delta F_L(t_1) \delta F_L(t_2) \rangle = 2m\gamma k_B T \cdot \delta(t_1 - t_2)$$

Paper for next week's presentation

Direct observation of kinesin stepping by optical trapping interferometry:



Questions for the paper

- Why do they use kinesin to monitor the random motion of a particle, and what is the minimal step length that can be resolved in this experiment?
- Explain the experimental setup they used to trap and monitor the kinesin.
- Explain the calibration procedure for the optical tweezers trapping force vs the laser intensity (Fig. 1b) and of the detector noise (Fig. 1c).
- Explain the concept of noise power spectral density, and how it is obtained from the voltage signal experimentally?
- What is the requirement for the acquisition rate and trace length to obtain the shown spectrum
- What is the effect of the ATP load?

