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Statistical Physics IV: Non-equilibrium statistical physics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Exercise No.9

9.1 Quantization of an electrical LC circuit

We will quantize the excitations of a parallel inductor-capacitor (LC) circuit. A
capacitor is a circuit element which stores a charge Q(t) = CV(t) proportional
to the voltage across its ports (C is the capacitance). The inductor is a circuit
element which develops a voltage when the current I(t) is changing through
it: VL(t) = L∂t I(t) where L is the inductance. One can also define the magnetic
flux Φ(t) =

∫ t
0 V(t′)dt′. The inductor stores a flux proportional to the current

through it: I(t) = Φ(t)/L.

(a) Write down the classical Hamiltonian (total energy) of the system in terms of the charge Q
and the magnetic flux Φ.

(b) For quantization, we promote the conjugated variables Q and Φ to be quantum mechanical
operators, satisfying the canonical commutation relation [Φ̂, Q̂] = ih̄. We can define the cre-
ation and annihilation operators â and â† such that Φ̂ ∝ â + â† and Q̂ ∝ â − â† and their
commutator is [â, â†] = 1. Write down the expressions for these operators with consistent
normalization and also rewrite Φ̂ and Q̂ in terms of them. Express the Hamiltonian in terms
of â and â†.

(c) Find the zero-point vacuum fluctuations for the flux and the charge (defined as ∆Qzpf =√
⟨0|Q̂2|0⟩ − ⟨0|Q̂|0⟩2 for the charge and similarly for the flux, with |0⟩ the ground state of

the harmonic oscillator) and show that they satisfy the Heisenberg uncertainty relation.

9.2 The Sudarshan-Glauber representation of a density matrix

The coherent states,

|α⟩ = eαâ†−α∗ â |0⟩ = e−|α|2/2 ∑
n

αn
√

n!
|n⟩ ,

have unique properties that enable them to be used as a valid basis to represent operators in
Hilbert space.

(a) Show that the set of coherent states over the entire complex α−plane provides a resolution of
the unity, ∫ d2α

π
|α⟩ ⟨α| = 1;

here and henceforth, we denote d2α = d(Re[α])d(Im[α])

(b) Owing to the non-orthogonality of coherent states, they form a linearly dependent set. Show
that in fact any coherent state can be expressed in terms of other coherent states as,

|α⟩ = e−|α|2/2

π

∫
e−|β|2/2+β∗α |β⟩ d2β.

Thus, the coherent states form an overcomplete basis.

(c) Now show that any operator O has the following representation in terms of coherent states,

Ô =
∫

O(α, β) |α⟩ ⟨β| d2α d2β,

where O(α, β) = π−2 ⟨α|O |β⟩ is a complex function corresponding to the operator Ô.
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(d) However, owing to the linear dependence of coherent states, the function O(α, β) is not unique.
In fact, show that the set of possible functional correspondences satisfy the relation,

O(α, β) =
e−(|α|2+|β|2)/2

π2

∫
O(α′, β′)e−(|α′|2+|β′|2)/2+α∗α′+β(β′)∗d2α′ d2β′

(e) If further the operator Ô is hermitian, i.e Ô† = Ô, we must have O(α, β)∗ = O(β, α). To
remove the redundancy arising from the overcompleteness, we insist now that O(α, β) is a real
function; then the function must be a function of a single variable, and should thus furnish a
diagonal representation in terms of coherent states. Thus, we must have a function P such
that,

O =
∫

P(α) |α⟩ ⟨α| d2α.

Prove now that this representation is unique by inverting it:

⇒ P(β) =
∫

O(−α, α)e|α|
2+|β|2+α∗β−β∗α d2α.

This is the Sudarshan-Glauber P-representation1 for hermitian operators – in particular, this is
profitably employed for the density operator.

9.3 Quantum Langevin equation for a harmonic oscillator interacting with a heat bath
2

Consider a harmonic oscillator coupled to a heat bath, consisting of a large ensemble of harmonic
oscillators. The Hamiltonian of the system and the bath can be expressed as

Ĥsys = h̄ωs

(
â† â +

1
2

)
(1)

Ĥbath = ∑
k

h̄ωk

(
b̂k

†
b̂k +

1
2

)
(2)

Here, â and (â†) are the annihilation and creation operators which satisfy the commutator relation

[â, â†] = 1 and can be related to the position operator via x̂sys =
√

h̄
2mΩm

(â† + â). Assume that the
bath and system are interacting in a bilinear way, i.e. that the interaction Hamiltonian takes the
form:

Ĥint = h̄ ∑
k

gk(âb̂†
k + b̂k â†) (3)

We also assume that the heat bath is in thermal equilibrium and has a finite temperature. This
implies that ⟨b̂†

k (0)⟩ = ⟨b̂k(0)⟩ = 0, as well as ⟨b̂†
k (0)b̂l(0)⟩ = δk,l n̄k and ⟨b̂k(0)b̂†

l (0)⟩ = δk,l(n̄k + 1)
where n̄k is the effective occupation number of the kth mode. Finally, we assume that the bath
modes are initially uncorrelated with each other, i.e. ⟨b̂k(0)b̂†

l (0)⟩ = 0 for k ̸= l.

1. The interaction between two harmonic oscillators - analogously to the coupling of two clas-
sical harmonic oscillators - is given by: Ĥint = Gx̂sys p̂bath, where x̂sys is the position operator
of the system and p̂bath the momentum operator of the bath mode. State precisely under
which assumptions â†b̂†

k and b̂k â which arise in this case, can be neglected (which is termed
the rotating wave approximation).

2. Derive the Heisenberg equations of motion for the bath and system operators separately.

1E. Sudarshan, Phys. Rev. Lett. 10, 277 (1963); R. Glauber, Phys. Rev. 131, 2766 (1963)
2See e.g. Scully, Quantum Optics, Chapter 9 or Gardiner and Collet, “Input and output in damped quantum systems:

Quantum stochastic differential equations and the master equation’’, Physical Review A (1984)
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3. Next, eliminate the bath operators from the equation of motion for â(t) by inserting the
equation of the bath. Moreover, introduce the density of states D(ω) (that is, the number of
modes in a given volume between ω and ω + dω) of the bath modes and convert the sum-
mation over k to an integral over ω, assuming that the coupling is frequency independent,
i.e. gk = g(ωk) = g (this is called the 1st Markov approximation). Carry out the integration
over ω using

∫ ∞
−∞ dωe−iω(t−t′) = 2πδ(t − t′).3

4. Transform the equations of motion to a frame rotating with ωs with respect to the original
Hamiltonian H0 = Hsys + Hbath. Show that the equation of motion for the system operator
obeys the Quantum Langevin Equation:

d
dt

â(t) = −κ

2
â(t) + F̂(t)

Give an expression for the Langevin noise term F̂(t) in terms of the bath operators.

5. Show that the noise operator F̂(t) satisfies

⟨F̂(t)† F̂(t′)⟩ = κn̄thδ(t − t′),

⟨F̂†(t)⟩ = 0 and show that the system’s decay rate is given by: κ = 2πD(ωs)|g|2.

6. Show that the quantum Langevin equation - despite containing now dissipation and damp-
ing of the system operator - preserves the commutator, [â(t), â†(t)] = 1. We have achieved a
quantum mechanically consistent description of damping.

7. Derive and solve the equations of motion for the mean field ⟨â(t)⟩.

8. How does the (average) number of photons evolve in time? Calculate d
dt N̂ = d

dt

(
â† â

)
and

d
dt

〈
N̂
〉
= d

dt

〈
â† â

〉
.

9.4 Quantum Langevin equation for a two-level system interacting with a harmonic
oscillator heat bath(*)4

In this exercise, we derive the quantum Langevin equations for a two level system, coupled to
a harmonic oscillator heat bath. This model can serve to describe the decay of an excited atom
(to its electronic ground state) via the phenomenon of spontaneous emission. You will derive the
spontaneous emission rate (using the Wigner-Weisskopf theory of spontaneous emission). The
bath modes are the modes of the electromagnetic field around the atom. The Hamiltonian of the
system, the bath and the interaction are given by:

Hsys =
h̄ωs

2
σ̂z

Hbath = ∑
k

h̄ωk

(
b̂†

k b̂k +
1
2

)
Hint = ∑

k
h̄gk(b̂†

k σ̂− + σ̂+b̂k)

Here {σ̂−, σ̂+, σ̂z} are the Pauli-operators for the spin-1/2 (two level) system and gk is the coupling
coefficient between the atom and the electromagnetic field5.

3Note that this property also gives rise to the equality
∫ t

t0
c(t′)δ(t − t′)dt′ = 1

2 c(t), which is needed to derive the
exact form of the quantum Langevin equation (see next point).

4This model describes e.g. the irreversible decay of an excited atom, i.e. spontaneous emission See e.g. Scully,
“Quantum Optics”, Chapter 6.

5The coupling coefficient is given by gk =
−ρ12

h̄ Ezpf where ρ12 is the off-diagonal matrix elements of the dipole
operator p̂ = er̂ and Ezpf is the zero point fluctuation of the electromagnetic field mode (k)

3



Prof. T.J. Kippenberg
Spring Term 2024

1. Repeat the adiabatic elimination procedure outlined in class and derive the quantum Langevin
equations.

2. Derive the equations of motion for the expectation values of the system operators ⟨σ̂z⟩, ⟨σ̂+⟩, ⟨σ̂−⟩
and show that the equations of motion lead to a system that is not closed.
HINT: Solve the equations for the bath modes formally. Use this and the expected value to
eliminate some terms, then convert the sum over k to an integral. Use the Markov approxi-
mation.

3. Use these equations to calculate the spontaneous emission rate of an atom - the rate at which
it spontaneously decays from an excited state to its ground state by emitting a photon -, a
seminal result in the quantum theory of light-matter interaction. For this, solve the equation
of motion by considering that the bath modes are at zero temperature ⟨b̂k(t)†b̂k(t)⟩ = 0
and by assuming that the atom is initially in the excited state, i.e. ⟨σ̂z(0)⟩ = 1. Derive the
spontaneous emission rate Γe→g. Consider only a two level system!
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