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Exercise No.8

8.1 Crooks fluctuation theorem and Jarzynski equality

The Crooks fluctuation theorem gives a relation between probabilities Pr and Pg to produce work
W in the process of forward and reversed (in time) changes of a system under the influence of an
external perturbation:

whereby the initial and final (equilibrium) states of the system are thermal states at temperature T
separated by a free energy AG. Note that from the Crooks theorem the Jarzynksi equality follows

as well,
_ LG — W
exp ks exp ks .

where the average is taken over a large set of repeated measurements.

1. The Crooks fluctuation theorem was experimentally verified by Collin et al. in Nature 437,
231 (2005) “Verification of the Crooks fluctuation theorem and recovery of RNA folding free
energies”. Explain how the Crooks fluctuation theorem is applied to the probability distri-
bution of the forward and backward work (cf. Figure 2 and 3 of the reference).

2. Within the context of the experimental determination of folding energies (i.e. free energy
differences), explain the experimental advantages of demonstrating the Crooks fluctuation
theorem over the Jarzynski equality.

8.2 Validation of Crooks equality with Metropolis Monte Carlo simulation*

This exercise is an investigation of the Crooks” equality based on the PRE article: G. Crooks, Phys.
Rev. E 60, 2721 (1999). The aim is to reproduce the numerical simulations presented in figures 1
and 2 of the aforementioned paper by using the mesoscopic master equation in combination with
the metropolis algorithm along with the definition of entropy.

We ask you to provide all your code for the exercise. All the numerical simulations should be
implemented yourself with only minimal use of pre-packaged solvers such as those found in
Matlab or Scipy. You may use the programming language of your choice, though we recommend
using Python, C++ or Matlab.

1. Simulate using the Metropolis Monte Carlo algorithm the probability distribution P, () in
equilibrium without movement of the energy landscape (c.f. Fig 1).

2. Next, assuming that the potential moves to the right every 8th time step (i.e. taking the
system far out of equilibrium as described in the article), re-simulate the resulting probability
distribution for various speeds (e.g. 2 times faster or slower and original case). Remove the
time dependence of the probability distribution by switching to a frame moving with the
energy landscape.

3. Starting from the equilibirum non-moving energy landscape, and using the results form the
previous simulations, construct the work probability distribution for a different number of
cycles (i.e. reproduce Fig. 2).
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8.3 Quantization and coherent states !

Electromagnetic modes, vibrational or magnetic excitations in solids are all examples of harmonic
oscillators. The quantization of the underlying canonical variables (e.g. position and momentum,
quadratures of the electric and magnetic field, etc...) leads to a quantum mechanical harmonic
oscillator. We consider here the quantum mechanical excitations that are closest to classical states:
coherent states
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where « is a complex parameter and |n) are states of the oscillator with occupation equal to 7.
(a) Show that the average occupation (f1) = (a'4) of the coherent state obeys (71) = |a|?. Calculate
the variance in the number of quanta(A?) — ().
(b) Show that the unnormalized coherent states (or “Bargmann states”) |a) = ). %\n) obey

at) = gla)

ISee e.g. “Stochastic Methods”, C. Gardiner, Chapter 10
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