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Statistical Physics IV: Non-equilibrium statistical physics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Solutions to Exercise No.7

7.1 Solution: Master equation for an asymmetric random walk

1. The asymmetric random walk is a birth death process with gn = α and rn = β. Then, the
master equation for the continuous-time random walk is given by

∂

∂t
Pn(t) = αPn−1(t) + βPn+1(t)− (α + β)Pn(t) (1)

This master equation can be solved by the method of the generating function 3

G(z, t) = ∑
n∈Z

znPn(t) (2)

Consequently, Pn(t) is given by the zn coefficient of the Laurent series of G(z, t). The corre-
sponding equation for the generating function G(z, t) is given by

∂

∂t
G(z, t) = ∑

n∈Z

zn ∂

∂t
Pn(t)

Eq.(1)
= α ∑

n∈Z

znPn−1(t)︸ ︷︷ ︸
=zzn−1Pn−1(t)

+β ∑
n∈Z

znPn+1(t)︸ ︷︷ ︸
= 1

z zn+1Pn+1(t)

−(α + β) ∑
n∈Z

znPn(t)︸ ︷︷ ︸
=G(z,t)

=

(
αz +

β

z
− α − β

)
G(z, t).

2. To solve this equation, we have to fix an initial condition. If the particle is in n1 at t = 0,
the transition probability P (n1 | n, t) of the process satisfies P (n1 | n, t = 0) = δn1,n, which
corresponds to

G(z, t = 0) = ∑
n∈Z

znδn,n1 = zn1

In conclusion, the corresponding generating function is

G(z, t) = zn1e
(

αz+ β
z −α−β

)
t (3)

3. With β = 0 we can expand the generating function Eq.(3) in the form of a Laurent series, we
find:

G(z, t) =
∞

∑
n=0

zn+n1
e−αt(αt)n

n!
=

∞

∑
n2=n1

zn2
e−αt(αt)n2−n1

(n2 − n1)!

where for the last step we have made a change of variable with n2 = n+ n1. Now comparing
to the generic of Eq.(2) we conclude:

P (n2, t) =

{
e−αt (αt)n2−n1

(n2−n1)!
, n2 ≥ n1,

0, n2 < n1.
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7.2 Solution: Equilibrium between photons and atoms

1.From the transition rate we can easily get the master equation:

∂Pn

∂t
(t) = nγN2Pn−1(t) + (n + 1)γN1Pn+1(t)− [γnN1 + γ(n + 1)N2]Pn(t) (4)

For steady state ∂Pn
∂t = 0, and the steady state solution has the form

Ps
n = cqn (5)

Using the equation (1) and (2), we obtain

nN2 + (n + 1)N1q2 − [nN1 + (n + 1)N2]q = 0 (6)

For q = N2
N1

, we indeed have

nN2 + (n + 1)N1

(
N2

N1

)2

− [nN1 + (n + 1)N2]
N2

N1
= 0 (7)

The constant c can be determined by the condition that

∞

∑
n=0

Ps
n =

c
1 − N2

N1

= 1 (8)

and therefore

Ps
n =

(
1 − N2

N1

)(
N2

N1

)n

(9)

2. If the atoms are in thermal equilibrium, it follows from the Boltzmann statistics that N2/N1 =
e−h̄ω/kBT. Then the steady state solution is

Ps
n =

(
1 − e−h̄ω/kBT

)
e−nh̄ω/kBT (10)

Define β = 1
kBT , the average number of photons ⟨n⟩ in the steady state is given by

⟨n⟩ =
∞

∑
n=0

nPs
n

=
(

1 − e−βh̄ω
) ∂

∂(−βh̄ω)

∞

∑
n=0

e−βh̄ωn

=
1

eβh̄ω − 1

(11)

which follows the Bose-Einstein statistics.

7.3 Solution: Master equation for a chemical reaction (Dimer formation)

1. —

2. —

3. —

4. The equation in hands

KD(1 − z2)
d2

dz2 G(z) + K−(1 − z)
d
dz

G(z)− K+(1 − z)G(z) = 0 (12)
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can be transformed to the modified Bessel equation by the appropriate change of variable
and function. Correspondingly, the two linearly independent solutions of it are proportional
to the modified Bessel functions of the 1-st and 2-nd kind (I and K)

G1(z) = C1(z + 1)(1−2β)/2 · I2β−1[
√

8α(z + 1)],

G2(z) = C2(z + 1)(1−2β)/2 · K2β−1[
√

8α(z + 1)].

In general, for the equation (12) there are no boundary conditions to select a unique solu-
tion. Instead, the choice between G1 and G2 can be made basing on a physical argument.
The suggested argument is that in order to define a probability distribution G(z) and all its
derivatives should stay finite at z = −1. Indeed, e.g.

G(z)|z=−1 =
∞

∑
n=0

(−1)nPn ≤
∞

∑
n=0

Pn, (13)

where the last sum is finite and equal to 1. Asymptotes for G1 and G2 as z → −1 can be
found from the definitions of In, Kn in terms of Jn and Taylor expansion for Jn, which can be
looked up on Wikipedia.

G1(z)|z→−1 ∼ const,

G2(z)|z→−1 ∼ (z + 1)1−2β.

We see that there is a problem with G2, since it, or one of its derivatives necessarily di-
verges as z → −1 for any positive β. We conclude thus that G(z) = C1(z + 1)(1−2β)/2 ·
I2β−1[

√
8α(z + 1)], where C1 is found from the normalization condition G(1) = 1.

For the numerical calculation of the averages and dispersions see the Mathematica sheet in
the same folder. α = 0.1, β = 1:

⟨n⟩ = ∂G
∂z

∣∣∣∣
z=1

= 0.094,

σ =
√
⟨n2⟩ − ⟨n⟩2 =

√
∂2G
∂z2 +

∂G
∂z

−
(

∂G
∂z

)2
∣∣∣∣∣∣
z=1

= 0.30,

α = 1, β = 0.1:

⟨n⟩ = 1.09,
σ = 0.89.

5. Relative fluctuations of n are small when ⟨n⟩ ≫ 1. This happens when the influx of monomers
is sufficiently large compare to the loss, K+/K− ≫ 1 and monomer formation rate K+/KD ≫
1.

6. In the assumed approximation the dimer formation term in Eq. ?? can be neglected and the
solution is

G(z) = exp
(

K+

K−
(z − 1)

)
, (14)

which results in relative fluctuations

σ

⟨n⟩ =

√
K−
K+

. (15)

So, for σ/⟨n⟩ < 0.1, one needs K−/K+ < 0.01.
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