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Statistical Physics IV: Non-equilibrium statistical physics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Exercise No.7

7.1 Master equation for an asymmetric random walk

Consider a random walk discrete in space and continuous in time. The probability rates to jump
from n to n ± 1 are given by α and β, respectively.

1. Write the master equation. Derive an equation of motion for the generating function G(z, t) =
∑n znP(n, t).

2. Find a solution for the generating function with the initial condition P(n, 0) = δn1,n (the
system is initially in the state n1 at time t = 0).

3. Show that for the fully asymmetric case β = 0, we get the Poisson distribution P(n2, t) =

e−αt (αt)n2−n1

(n2−n1)!
for n2 ≥ n1 and 0 for n2 < n1.

7.2 Equilibrium between photons and atoms

Consider an ensemble of atoms with two states E1 and E2, resonant with a mode of the radiation
field of frequency ω = |E2 − E1|/h̄. The numbers of atoms in the ground and excited state are N1
and N2. According to the quantum theory of light the energy of the radiation field is quantized
and obeys E = h̄ωn, where n is the number of photons in the radiation field. Transitions from the
ground state to the excited state of the atoms absorb a photon, and happen at a rate rn = nγN1.
Transition from the excited to the ground state create a photon, and happen at a rate gn = (n +
1)γN2. The extra factor of one originates from spontaneous emission. We assume the numbers of
atoms in each state N1 and N2 to be fixed by some other process and stay constant, so that we only
consider the fluctuations of the photon number n.

1. Derive the master equation and solve it in the steady state.

2. Assume that the atoms are Ammonia for instance (as used in a maser1), whose energy spac-
ing is in the GHz range (thus at room temperature kBT ≫ |E2 − E1| = h̄ω). If the atoms
are in thermal equilibrium, it follows from the Boltzmann statistics that N2/N1 = e−h̄ω/kBT.
Derive an expression for the steady state distribution of Ps

n and calculate ⟨n⟩. Show that this
yields the Bose-Einstein statistics.

7.3 Master equation for a chemical reaction (Dimer formation)

Assume you have a reservoir with influx of monomers at a rate K+. The monomers that enter
the reservoir can also exist with a rate K−(with unit inverse monomers per time). Assume that in
the reservoir the monomers can react to form dimers at a rate 2KD (with unit inverse monomers
squared per time).

1. Show that the master equation for the number of monomers (n) is given by:

∂pn(t)
∂t

= K+pn−1(t) + K−(n + 1)pn+1(t) + KD(n + 2)(n + 1)pn+2(t)

− [K+ + K−n + KDn(n − 1)]pn(t)
(1)

and explain what each term in the right hand side of the equation corresponds to.

1Microwave amplification by stimulated emission of radiation. The maser was was the first oscillator providing
a coherent source of electromagnetic radiation. Later worked showed the principle could be extended to the visible
domain, leading to the Laser.

1



Prof. T.J. Kippenberg
Spring Term 2024

2. By taking the moments of the Master equation show that the mean number of molecules that
have not formed molecules (mono-mers) evolve according to the deterministic rate equation:

d
dt
⟨n⟩ = K+ − K−⟨n⟩ − 2KD⟨n(n − 1)⟩.

3. Show that the generating function G(z, t) = ∑∞
0 znPn(t) satisfies the equation:

∂

∂t
G(z, t) = KD(1 − z2)

∂2

∂z2 G(z, t) + K−(1 − z)
∂

∂z
G(z, t)− K+(1 − z)G(z, t) (2)

4. Given the steady solution of this differential equation, G(z) = ( z+1
2 )(1−2β)/2 × I2β−1[

√
8α(z+1)]

I2β−1[
√

16α]
,

in the limit of small fluxes, numerically find the value of mean ⟨n⟩ and standard deviation
σ =

√
⟨n2⟩ − ⟨n⟩2 of the monomer number. Assume values of α = 0.1, β = 1 as well as

α = 1, β = 0.1. Here β = K−
2KD

, α = K+
2KD

and Iv denotes the modified Bessel function of the
first kind of order ν.

5. For the rest of the exercise we consider the reaction in steady state. Qualitatively, under
what conditions (expressed as relations between K+, K− and KD) do the relative fluctuations
in the monomer number n become small? (hint: fluctuations are small in macroscopic limit,
when average particle numbers are large)

6. Assuming that the dimer formation rate KD⟨n(n − 1)⟩ is small compare to both the influx
K+ and the loss K−⟨n⟩ of monomers, what should be the value of K−/K+ in order to keep
the fluctuations σ/⟨n⟩ in the monomer number below 10%?

7.4 The use of the Monte Carlo Metropolis in Bayesian statistical analysis: Spectral
line problem2∗

This problem illustrates the close connection and the use of Monte Carlo Metropolis algorithm,
originally conceived to compute probability distributions of thermodynamical configurations3 in
the context of statistical data analysis, notably Baysian statistical analysis (the method referred to
as Monte Carlo Markov Chains, MCMC). Baysian statistical analysis is a powerful method used
in parameter estimation or model validation. At the heart of the method lies the fast sampling of
the posteriori probability distribution, which is often computationally costsly, and therefore relies
on numerical simulations (for which various software tools are widely available, see for example
EMCEE4).

In this problem, we analyze the distinguishability of a spectral line from the Orion nebula de-
tected with an astrophysical spectrometer. Given the spectrometer data, we have two models (M1
and M2), one in which a line exists with prior established bounds on its strength and a second
one, in which no such line exists. Prior estimates of the line strength expected according to theory
1 range from Tmin = 0.1mK to Tmax = 100mK.

Theory 1 also predicts the line will have a Gaussian line shape of the form

T · exp
{
−(νi − ν)2

2σ2

}
= T · fi (3)

where the signal strength is measured in temperature units of mK and T is the amplitude of the
line. The frequency, νi, is in units of frequency channel number.

2cf. Chapters 3.6 and 12.6 of ”Bayesian Logical Data Analysis for the Physical Sciences” P. C. Gregory
3Equation of State Calculations by Fast Computing Machines, N. Metropolis et. al. 1952
4GitHub repository: https://github.com/dfm/emcee
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To test this prediction, a new spectrometer was mounted on the James Clerk Maxwell telescope
on Mauna Kea and the spectrum shown in Figure 1 (Figure 3.3 from the referenced book) was
obtained. The spectrometer has 64 frequency channels. All channels have Gaussian noise charac-

Figure 1: Measured spectrum

terised by σ = 1mK and the noise in separate channel is independent so that each acquired data
is in the form

di = T · fi + ei (4)

where ei is a zero mean Gaussian random variable with variance σ = 1mK.
This theory (or model) then is characterized by two parameters: Y = {T, ν}, and we are therefore
faced with a parameter estimation problem.The aim here is using Metropolis Hastings to estimate
marginal posteriors of the line strength and center frequency, which are probability distributions
of parameters T and ν0, given that our theory, M1, is true, some prior knowledge about the dis-
tributions before having any data set and finally a data set on measurement of the spectral lines
strength (given on the table 3.1 of the book cited). The credible regions of the estimated parameters
can then be computed by ”marginalization” of the joint probability distribution of the parameters
(e.g. the 95 percent credible regions).

According to Bayes theorem for posteriors we get

P(Y|D, M1, I) =
P(Y|M1, I).P(D|M1, Y, I)

P(D|M1, I)
(5)

• D: Data set

• Y: {T, ν} (model parameters).

• P(Y|M1, I): Prior distributions (prior information).

• P(D|M1, Y, I): Global likelihood function (probability of the entire data set, given the prior
information and theory M1.

• P(D|M1, I): Global likelihood (probability of the entire data set, given the prior information
and theory M1 =

∫
dYP(D|M1, Y, I) .

For the priors we choose uniform distributions for ν in the range channel 1 to 64. And for T we
use the so-called Jeffreys prior (which is a equal propability per decade on a logarithmic scale)
given by

P(T|M1, I) =
1

T ln (Tmax/Tmin)
(6)
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and the joint prior P(Y|M1, I) is given by P(ν|M1, I)P(T|M1, I).
The global likelyhood can be directly computed given our model of the noise and is given by

P(D|M1, Y, I) =
1√

(2πσ2)N
exp

{
−∑i(di − T fi)

2

2σ2

}
(7)

where di is acquired data from channel i. We would like to find the optimum choice for T and ν
which gives the maximum posteriori probability. With defining Λ(Y) = − ln(P(Y|M1, I) · P(D|M1, Y, I)),
the posterior can be rewritten as

P(Y|D, M1, I) =
e−Λ(Y)

Z
(8)

with Z =
∫

dYe−Λ(Y), which is equal to Global likelihood.
Next we need to maximize the likelihood over model parameters using a numerical method,

we choose to use Monte-Carlo approach in this problem. Recasting given by Eq. 8 essentially
suggests using Metropolis algorithm with the Metropolis rate

r = e−(Λ(Y′)−Λ(Y)) (9)

for transition from Y to Y′. Having all these information, The Metropolis algorithm steps can be
given as follows:

• Initialize X0; set t = 0. In this example we set X0 = {T0 = 5, ν0 = 30}

• Repeat {

– Obtain new sample Y from q(Y|Xt)
Y = {T′, ν′}
we set q(T′|Tt) = N (Tt, σT = 1.0) (Normal Distribution)
and q(ν′|νt) = N (νt, σf = 1.0) (Normal Distribution)

– Compute the Metropolis ratio:

r =
P(Y|D, M1, I)
P(Xt|D, M1, I)

=
P(T′, ν′|M1, I)P(D|M1, T′, ν′, I)
P(Tt, νt|M1, I)P(D|M1, Tt, νt, I)

(10)

Note: if T′, ν′ lie outside the prior boundaries set r = 0.

– if r > 1 accept Xt+1 = Y
if r < 1, choose U from a uniform random distribution between 0 and 1.U ∼ Uni f (0, 1).

– Accept Xt+1 = Y if U ≤ r, otherwise set Xt+1 = Xt

– increment t.}

Note the transition rate, W(Xt+1, Xt), defined as the probability of transfer from state Xt to
state Xt+1 during one time step, in our algorithm can be written as

W(Xt+1, Xt) = min(1, r) (11)

Note that the transition rates satisfy detailed balance, i.e.

P(Xt|D, M1, I)W(Xt+1, Xt) = P(Xt+1|D, M1, I)W(Xt, Xt+1) (12)

Therefore simulation of the trajectories in the parameter space will lead to a distribution that
resembles the posteriori PDF.

1. Simulate the algorithm above using programming language of your choice and find the opti-
mum values for T and ν. Plot the posterior distributions for T and ν by plotting a histogram
of all the obtained values for T and ν.
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2. Use Eq.(5) for calculating the posterior distributions again. Compare to results from last
part.

3. An allowed range for a parameter X with probability content C (e.g. C = 0.95) is provided
by the credible region RX defined as∫

RX

dXP(X|D, M) = C, (13)

with the posterior density inside RX everywhere greater than outside it. Calculate RT and
Rν for C = 0.95.
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