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Statistical Physics IV: Non-equilibrium statistical physics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Exercise No.6

Solution: Distribution of maximum step-sizes in Lévy flights

Question 1 The probability of observing an increment with size y ≥ ȳ is

Q(ȳ) =
∞∫

ȳ

P(y)dy .

The probability of observing a single event n0 among n with a step-size ȳ ≥ yn , n ̸= n0 is given
by

Q(ȳ, n) = n · Q(ȳ) · (1 − Q(ȳ)) .

The step size with the maximum probability is given by the condition dQ(ȳ,n)
dȳ = 0. Taking the

derivative and rearranging we obtain the condition:

1 − n · Q(ȳ) = 0 ⇔
∞∫

ȳ

P(y)dy =
1
n

.

Question 2 The limit of large n is equivalent to the limit in which ȳ → ∞. We use the Taylor
approximation of y2 in the argument of the exponential to approximate the integral.

1
n

=

∞∫
ȳn

1√
4πDτ

exp
(
− y2

4Dτ

)
dy

≈
∞∫

ȳn

1√
4πDτ

exp
(
− ȳ2

n + 2ȳn(y − ȳn)

4Dτ

)
dy

=
1√

4πDτ
exp

(
− ȳ2

n
4Dτ

) ∞∫
0

exp
(
−2ȳny

4Dτ

)
dy

=
1√

4πDτ
exp

(
− ȳ2

n
4Dτ

)
4Dτ

2ȳn

− log(n) = − ȳ2
n

4Dτ
− log(ȳn) + log

(√
4Dτ

2
√

π

)

As n → ∞ we only keep the highest order term in ȳn on the right-hand side of the above equation.
Thus we obtain:

ȳn ≈
√

4Dτ log n = σ
√

2 log n ,

so that

lim
n→∞

ȳn√
⟨x(n)2⟩

= lim
n→∞

σ
√

2 log n
σn

= 0 .

This suggests that the maximum most likely step-size does not contribute significantly to the sec-
ond order moment of the random walk.
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Question 3 For a Cauchy process the calculation is identical but significantly less technical.

n =

 ∞∫
ȳn

b
y2 dy

−1

⇔ ȳn = nb

In this case rare events do contribute to the average position after n steps:

lim
n→∞

ȳn

⟨x(n)⟩ = b .

Question 4 To prove the divergence of the second and first order moments we consider that
the probability distribution only resembles b

y1+µ for y ≥ y0. This is necessary to guarantee the
normalisability of P(y).

⟨yα⟩ =

y0∫
0

yαP(y)dy

︸ ︷︷ ︸
=Aα<∞

+

∞∫
y0

yαP(y)dy

= Aα + b
∞∫

y0

yα−µ−1dy

⟨yα⟩ = Aα +

{
∞, α = 2 , 0 < µ < 2
∞, α = 1 , 0 < µ < 1
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Solution: Arrhenius cascade

Question 1 In the case of constant well heights

τ(n) =
n

∑
i=1

τ0 exp(βV0) = nτ0 exp(βV0) ,

where β = 1
kBT and V0 is the constant energy height of the wells.

In the case of exponentially distributed well heights

⟨τ(n)⟩ =
n

∑
i=1

∞∫
0

τ0 exp(βVi)P(Vi)dVi

= τ0n
∞∫

0

1
E0

exp
(

βV − V
E0

)
dV

1
βE0

>1
=

nτ0

1 − βE0

Question 2 See the supplementary scripts. The following plots show the simulations asked for.
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Solution: Simulation of Lévy flights

See the supplementary Python scripts

Question 1

4



Prof. T.J. Kippenberg
Spring Term 2025

7. Supplementary Codes for Arrhenius-cascade
7.1 .ipynb
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Arrhenius cascade
April 2019

In this notebook we simulate escape time of a particle from a washboard potential using the Kramer's
escape rate.

In [369]: import numpy as np
%matplotlib notebook
import matplotlib.pyplot as plt

Washboard potential
A particle is moving in a washboard potential like figure below characterized by a series of potential wells
of depth . The potential barriers  are randomly distributed, according to an exponential distribution,

where  is the average depth.

In [370]: N = 500# Maximum number of wells
N_traj = 100     # Number of trajectories

E0 = 1      # Average well depth

# Generating N_traj * N matrix of exponential random variables with 
mean E0
V = np.random.exponential(E0, (N_traj, N))

Visualising the potential

Vi Vi

P(V) = 1
E0

e− V
E0

E0



04.04.19, 16)33Arrhenius cascade

Page 2 of 8file:///Users/amiraliarabmoheghi/Downloads/Arrhenius%20cascade.html

In [371]: # This code cell is just for visualising the potential and is not g
oing to be used in the simulation.
x = np.linspace(0,23,1000)
def p(x):
    return 1.0*(x>-0.5)-1.0*(x>0.5)
v = -0.05*x + np.sum([-V[0,i]*p(x-2*(i+1)) for i in range(10)],axis
=0)
plt.figure('Washboard potential')
plt.plot(x,v)
plt.title(r'Potential cascade with 10 potential wells and $E_0$ = %
.1f'%E0)
plt.xlabel('x')
plt.ylabel('V(x)')
plt.tight_layout();
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Escape times
Dew to Kramer's escape rate formula the rate at which particles escape the  barrier with height  is
given by

Therefor, the time at which the particle reaches the ,  well is given by the cummulative sum of s

We define the  parameter as

We investigate  and  cases separatly.

Case 1

in this case the process reaches a stationary state and the average  is given by

Trajectories

ith Vi

= 1/ = 1/ .ri τi τ0e− / TVi kB

nth τ(n) τi

τ(n) = ∑
i= 1

n

τi

μ

μ = TkB

E0
μ > 1 μ < 1

μ > 1
⟨τ(n)⟩

⟨τ(n)⟩ = n
μ

μ − 1 τ0
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In [372]: tau0 = 1
mu = np.array([2, 4, 10, 100])
kT = E0 * mu*1.0

tau = tau0 *np.array([np.exp(V/kT[i]) for i in range(len(mu))],dtyp
e='float')
tau_n = np.cumsum(tau, axis = 2)

plt.figure('Tau_n')
n = np.arange(N)
for i in range(len(mu)):
    for j in range(20):
        plt.plot(n, tau_n[i,j,:]);
    plt.text(N,tau_n[i,j,N-1],r'$\mu=%.1f$'%mu[i])
plt.xticks(np.arange(0,int(N*1.25),int(N*1.25/8)))
plt.xlabel('n')
plt.ylabel(r'$\tau(n)$')
plt.title(r'$\tau(n)$ trajectories for different values of $\mu>1$'
)
plt.tight_layout();

Average escape time
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In [373]: Meantau_n = np.mean(tau_n, axis=1)    # The average escape time aft
er n steps over all trajectories

n = np.arange(N)
plt.figure('<Tau_n>')
for i in range(len(mu)):
    plt.plot(n, Meantau_n[i,:],label = r'$\mu=%.1f$'%mu[i])
    plt.plot(n,n*tau0*mu[i]/(mu[i]-1),'--')   # The theory curve wi
th the linear relation
plt.legend()
plt.xlabel('n')
plt.ylabel(r'$<\tau(n)>$')
plt.title(r'$<\tau(n)>$ for different values of $\mu>1$')
plt.tight_layout();

As we can see above, the average values fit with the theory curves (in dashed lines) .⟨τ(n)⟩ = nμ
μ−1 τ0
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Case 2

in this case the process becomes a Levy flight and the average  does grows with the relation

Trajectories

In [374]: tau0 = 1
mu = np.array([ .1,.3,0.9])
kT = E0 * mu*1.0

tau = tau0 *np.array([np.exp(V/kT[i]) for i in range(len(mu))],dtyp
e='float')
tau_n = np.cumsum(tau, axis = 2)

plt.figure('Tau_n_Levy')
n = np.arange(N)
for i in range(len(mu)):
    for j in range(20):
        plt.loglog(n, tau_n[i,j,:]);
    plt.text(N,tau_n[i,j,N-1],r'$\mu=%.1f$'%mu[i])
plt.xticks(np.logspace(0,np.log10(N*2),4))
plt.xlabel('n')
plt.ylabel(r'$\tau(n)$')
plt.title(r'$\tau(n)$ (in log-log scale) trajectories for different 
values of $\mu<1$')
plt.tight_layout();

μ < 1
⟨τ(n)⟩

⟨τ(n)⟩ ∼ n1/μ
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Average escape time
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In [377]: Meantau_n = np.mean(tau_n, axis=1)    # The average escape time aft
er n steps over all trajectories

n = np.arange(1,N+1)
plt.figure('<Tau_n_Levy>')
for i in range(len(mu)):
    plt.loglog(n, Meantau_n[i,:],label = r'$\mu=%.1f$'%mu[i])
    # The theory curve with the power law relation
    # We normalize to maximum value of the numeric curve to be able 
to compare the slope in loglog scale
    plt.loglog(n,Meantau_n[i,-1]*n**(1.0/mu[i])/(N**(1.0/mu[i])),'-
-')    
plt.legend()
plt.xlabel('n')
plt.ylabel(r'$<\tau(n)>$')
plt.title(r'$<\tau(n)>$ for different values of $\mu>1$')
plt.tight_layout();

As we can see above, the average values fit with the theory curves (in dashed lines) .⟨τ(n)⟩ ∼ n1/μ
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7.2 Python Code

1 # Python code example

2 import numpy as np

3 import matplotlib.pylab as plt

4 import scipy.optimize as opt

5

6 E_0 = 1

7 tau_0 = 1

8 mu = np.array ([0.3 ,0.5 ,0.8 ,0.99 ,1.01 ,1.5 ,2 ,10])

9 colours = np.array([’blue’,’red’,’yellow ’,’orange ’,’purple ’,’brown’,’

black’,’green’])

10

11 length = 200

12 sim_num = 1000

13

14

15 def potential(n):

16 return np.random.exponential(E_0 ,n)

17

18 def escape_time(x,MU):

19 return np.exp(x/(E_0*MU))*tau_0

20

21 tau = np.zeros((sim_num ,length ,len(mu)))

22 tau_avrg = np.zeros ((length ,len(mu)))

23 for j in range(len(mu)):

24 MU = mu[j]

25 for i in range(sim_num):

26 tau[i,:,j] = np.cumsum(escape_time(potential(length),MU))

27 for l in range(length):

28 tau_avrg[l,:] = np.mean(tau[:,l,:],axis =0)

29

30 plt.figure ()

31 for i in range(len(mu)):

32 MU = mu[i]

33 if MU > 1:

34 plt.plot(tau[0,:,i],label=r’$\mu␣=$␣’+str(MU),color = colours[i

])

35 plt.legend(loc=’best’)

36 plt.xlabel(r’$n$’)
37 plt.ylabel(r’$\tau(n)$’)
38 plt.title(’Typical␣escape␣times␣as␣a␣function␣of␣n’)

39 plt.show()

40 plt.close()

41

42 plt.figure ()

43 for i in range(len(mu)):

44 MU = mu[i]

45 if MU < 1:

46 plt.semilogy(tau[0,:,i],label=r’$\mu␣=$␣’+str(MU),color =

colours[i])

47 plt.legend(loc=’best’)

48 plt.xlabel(r’$n$’)
49 plt.ylabel(r’$\tau(n)$’)
50 plt.title(’Typical␣escape␣times␣as␣a␣function␣of␣n’)

51 plt.show()

52 plt.close()

53

54 plt.figure ()
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55 for i in range(len(mu)):

56 MU = mu[i]

57 if MU > 1:

58 plt.plot(tau_avrg[:,i],label=r’$\mu␣=$␣’+str(MU),color =

colours[i])

59 plt.legend(loc=’best’)

60 plt.xlabel(r’$n$’)
61 plt.ylabel(r’$<\tau(n)>$’)
62 plt.title(’Average␣escape␣times␣as␣a␣function␣of␣n’)

63 plt.show()

64 plt.close()

65

66 plt.figure ()

67 for i in range(len(mu)):

68 MU = mu[i]

69 if MU < 1:

70 plt.semilogy(tau_avrg[:,i],label=r’$\mu␣=$␣’+str(MU),color =

colours[i])

71 func = lambda x,a: a*x**(1/MU)

72 n = np.arange(0,length)

73 c = opt.curve_fit(func ,n,tau_avrg[:,i])[0]

74 plt.semilogy(n,c*n**(1/MU),’--’,color = colours[i])

75 plt.legend(loc=’best’)

76 plt.xlabel(r’$n$’)
77 plt.ylabel(r’$<\tau(n)>$’)
78 plt.title(’Average␣escape␣times␣as␣a␣function␣of␣n,␣and␣their␣

asymptotic␣scaling ’)

79 plt.show()

80 plt.close()
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