Lol =] Prof. T.J. Kippenberg
P 3 L Spring Term 2025

Statistical Physics I'V: Non-equilibrium statistical physics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Exercise No.6

Solution: Distribution of maximum step-sizes in Lévy flights

Question 1 The probability of observing an increment with size y > i is

7) = 7 P(y)dy
v

The probability of observing a single event 7y among n with a step-size ¥ > y, , n # ng is given
by
Qg n) =n-Q@) - (1-Q())-

The step size with the maximum probability is given by the condition % = 0. Taking the
derivative and rearranging we obtain the condition:

[ee]

1-n-Q(y) = /

Question 2 The limit of large 7 is equivalent to the limit in which 7 — co. We use the Taylor
approximation of 2 in the argument of the exponential to approximate the integral.

1 _ Y y2
no / 47‘[DT < 4DT) 4y
~ / L p (STt 20 =90))
; VArDT 4Dt
1 BT 20y
= 47'[DT () O/exp <_4DT) dy
1 < 73) Dt
VAnDT 4Dt) 2y,
)
B W _ V4Dt

As n — oo we only keep the highest order term in 7/, on the right-hand side of the above equation.

Thus we obtain:
Jn = \/4Dtlogn = o+/2logn,
7 v/21
Fn — lim o ogn _

v) e o

so that

This suggests that the maximum most likely step-size does not contribute significantly to the sec-
ond order moment of the random walk.

Lol =] Prof. T.J. Kippenberg
= P 3 L Spring Term 2025

Question 3 For a Cauchy process the calculation is identical but significantly less technical.

. -1
b

54 yn - le
In this case rare events do contribute to the average position after n steps:

Wn

e (x(n))

Question 4 To prove the divergence of the second and first order moments we consider that
the probability distribution only resembles yf’w for y > yo. This is necessary to guarantee the

normalisability of P(y).

Yo o
") = / y*P(y)dy + / y*P(y)dy
0 Yo

~—
=Ap<©

= A, —|—b/y“”"1dy
Yo

o, a=2,0<u<?2
, a=1,0<u<l1

o0

v = Aa+{

=P

=

L

Prof. T.]. Kippenberg
Spring Term 2025

Solution: Arrhenius cascade

Question 1 In the case of constant well heights

= anro exp(BVo) = ntoexp(BVo) ,

i=1

where § = kf%T and Vj is the constant energy height of the wells.

In the case of exponentially distributed well heights

(t(n))

ﬁ

0_

i/’foexp (BVi)P(V;)dV;
i=1}

Tglfl/exp<

>1

0
nty

1— BE,

V- —
E

-)av
0

Question 2 See the supplementary scripts. The following plots show the simulations asked for.

Typical escape times as a function of n

1000
— p=1.01
— u=15
800 — nm=2.0
— u=10.0
600 -
<
400
200
0 L n n
0 50 100 150 200
n
2500 Average escape times as a function of n
— pu=1.01
— pu=15
2000 — w=20
— p=10.0
1500+
FAY
®
v
1000+
500 -
0 . L L
0 50 100 150 200

(n)

1011

1010 L
10°F
10°+
107+
10°F
10°+
10

10°+

10°
10!

10°

0

Typical escape times as a function of n

pn=03
u=0.5
n=0.8
u=0.99

50

160 150 200

Average escape times as a function of n, and their asymptotic scaling

50

160 1_’;0 200

EPFL

Prof. T.]. Kippenberg
Spring Term 2025

Solution: Simulation of Lévy flights

See the supplementary Python scripts

7000 +

6000

5000 +

< x(n) >

2000 4

1000 -

Question 1

12 4

10 4

4000 -

3000 4

— <x(n) > F
nlogn

T T T T T T
0 200 400 600 800 1000

<xin) =
logn

T T
0 200 400 600 800 1000

Lol =] Prof. T.J. Kippenberg
= P 3 L Spring Term 2025

7. Supplementary Codes for Arrhenius-cascade

7.1 .ipynb

Arrhenius cascade 04.04.19, 16:33

Arrhenius cascade

April 2019

In this notebook we simulate escape time of a particle from a washboard potential using the Kramer's
escape rate.

In [369]: import numpy as np
gmatplotlib notebook
import matplotlib.pyplot as plt

Washboard potential

A particle is moving in a washboard potential like figure below characterized by a series of potential wells
of depth V. The potential barriers V; are randomly distributed, according to an exponential distribution,

1 _»
P(V)=—e %
V) Eoe

where E|) is the average depth.

In [370]: N = 500# Maximum number of wells
N traj = 100 # Number of trajectories

E0O =1 # Average well depth
Generating N traj * N matrix of exponential random variables with

mean EO
V = np.random.exponential(EO, (N_traj, N))

Visualising the potential

file:///Users/amiraliarabmoheghi/Downloads/Arrhenius%20cascade.html Page 1 of 8

Arrhenius cascade 04.04.19, 16:33

In [371]: # This code cell is just for visualising the potential and is not g
oing to be used in the simulation.
X = np.linspace(0,23,1000)

def p(x):
return 1.0*(x>-0.5)-1.0*(x>0.5)
v = -0.05*x + np.sum([-V[0,i]*p(x-2*(i+tl)) for i in range(10)],axis
=0)
plt.figure('Washboard potential')
plt.plot(x,Vv)
plt.title(r'Potential cascade with 10 potential wells and $E 0S$ = %
.1f'%EOQ)

plt.xlabel('x")
plt.ylabel('V(x)"')
plt.tight layout();

Potential cascade with 10 potential wells and Eg = 1.0

0.0 A

1N ~

—1.0 4

V(x)
-
wm
[

—2.0 1

—2.5 -

file:///Users/amiraliarabmoheghi/Downloads/Arrhenius%20cascade.html Page 2 of 8

Arrhenius cascade 04.04.19, 16:33

Escape times

Dew to Kramer's escape rate formula the rate at which particles escape the i, barrier with height V; is
given by
r;=1/t; = l/roe_v"/kBT.

Therefor, the time at which the particle reaches the n,;,, 7(n) well is given by the cummulative sum of 7;s
n

w(n) = Z T;

i=1
We define the y parameter as

_ kgT
=
We investigate ¢ > 1 and 4 < 1 cases separatly.
Case 1
u>1

in this case the process reaches a stationary state and the average (z(n)) is given by

(r(n)) =

nt,
u—1"

Trajectories

file:///Users/amiraliarabmoheghi/Downloads/Arrhenius%20cascade.html Page 3 of 8

Arrhenius cascade

In [372]:

04.04.19, 16:33

tau0 =1
mu = np.array([2, 4, 10, 100])
kT = EO * mu*1.0

tau = tau0 *np.array([np.exp(V/kT[i]) for i in range(len(mu))],dtyp
e="'float")
tau n = np.cumsum(tau, axis = 2)

plt.figure('Tau_n')
n = np.arange(N)
for i in range(len(mu)):

for j in range(20):

plt.plot(n, tau n[i,],:1);

plt.text(N,tau n[i,j,N-1],r'$\mu=%.1£$"'mu[i])
plt.xticks(np.arange(0,int(N*1.25),int(N*1.25/8)))
plt.xlabel('n')
plt.ylabel(r'S$\tau(n)$"')
plt.title(r'$\tau(n)$ trajectories for different values of $\mu>1$'

plt.tight layout();

T(n) trajectories for different values of u>1

=2.0
1000 -
800 -
{1=4.0
T 0001 =10.0
= =100.0
400 -
200 -
0
0 78 156 234 312 390 468 546 624

n

Average escape time

file:///Users/amiraliarabmoheghi/Downloads/Arrhenius%20cascade.html Page 4 of 8

Arrhenius cascade 04.04.19, 16:33

In [373]: Meantau n = np.mean(tau n, axis=l) # The average escape time aft
er n steps over all trajectories

n = np.arange(N)
plt.figure('<Tau n>")
for i in range(len(mu)):
plt.plot(n, Meantau n[i,:],label = r'$\mu=%.1£$'%mu[i])
plt.plot(n,n*taul0*mu[i]/(muf[i]-1),'-=") # The theory curve wi
th the linear relation
plt.legend()
plt.xlabel('n')
plt.ylabel(r's$<\tau(n)>$"')
plt.title(r's$<\tau(n)>$ for different values of $\mu>1$')
plt.tight layout();

< T(n) > for different values of u>1

1000 A

800

600

< T1(n)>

400

200 +

0 100 200 300 400 500

As we can see above, the average values fit with the theory curves (in dashed lines) (7(n)) = ﬁmo.

file:///Users/amiraliarabmoheghi/Downloads/Arrhenius%20cascade.html Page 5 of 8

Arrhenius cascade

Case 2

04.04.19, 16:33

u<l

in this case the process becomes a Levy flight and the average (7(n)) does grows with the relation

(1(n))y ~ n'*

Trajectories

In [374]:

tau0 1
mu = np.array([.1,.3,0.9])
kT = EO * mu*1.0

tau = taul0 *np.array([np.exp(V/kT[i]) for i in range(len(mu))],dtyp
e="'float')
tau n = np.cumsum(tau, axis = 2)

plt.figure('Tau_n Levy')
n = np.arange(N)
for i in range(len(mu)):

for j in range(20):

plt.loglog(n, tau n[i,j,:]);

plt.text(N,tau n[i,j,N-1],r'$\mu=
plt.xticks(np.logspace(0,np.logl0(N*2
plt.xlabel('n")
plt.ylabel(r's$\tau(n)$"')
plt.title(r'$\tau(n)$ (in log-log scale) trajectories for different
values of $\mu<1l$')
plt.tight layout();

$.1£$'8mu[i])
)r4))

file:///Users/amiraliarabmoheghi/Downloads/Arrhenius%20cascade.html Page 6 of 8

Arrhenius cascade

04.04.19, 16:33

T(n) (in log-log scale) trajectories for different values of u<1

1038 - —
10% 1 ~
u=0.1
1078 + —
1023 :
E 10 1 /! , -
1013 - / / II r —
,/] L | =0.3
108 .
=0.9
103
10° 10! 102 103

Average escape time

file:///Users/amiraliarabmoheghi/Downloads/Arrhenius%20cascade.html

Page 7 of 8

Arrhenius cascade 04.04.19, 16:33

In [377]: Meantau n = np.mean(tau n, axis=l) # The average escape time aft
er n steps over all trajectories

n = np.arange(l,N+1)
plt.figure('<Tau n Levy>"')
for i in range(len(mu)):
plt.loglog(n, Meantau n[i,:],label = r'$\mu=%.1£$'%mu[i])
The theory curve with the power law relation
We normalize to maximum value of the numeric curve to be able
to compare the slope in loglog scale
plt.loglog(n,Meantau n[i,-1]*n**(1.0/mu[i])/(N**(1.0/mu[i])), -
-")
plt.legend()
plt.xlabel('n")
plt.ylabel(r's<\tau(n)>$"')
plt.title(r'$<\tau(n)>$ for different values of $\mu>1$')
plt.tight layout();

< 1(n) > for different valuesof u>1

_ | " l—[—
. -

2 - -
A -
| P g

22 '

—-'/
104 |

As we can see above, the average values fit with the theory curves (in dashed lines) {(7(n)) ~ n'k .

file:///Users/amiraliarabmoheghi/Downloads/Arrhenius%20cascade.html Page 8 of 8

E P F L Prof. T.J. Kippenberg

Spring Term 2025

7.2 Python Code

1 # Python code example

2 import numpy as np

3 import matplotlib.pylab as plt

4 import scipy.optimize as opt

5

6 E_LO =1

7 tau_0 = 1

s mu = np.array([0.3,0.5,0.8,0.99,1.01,1.5,2,10])

9 colours = np.array([’blue’,’red’,’yellow’,’orange’,’purple’,’brown’,’

black’,’green’])

10

1 length = 200

12 sim_num = 1000

13

14

15 def potential(mn):

16 return np.random.exponential (E_O,n)

17

18 def escape_time (x,MU):

19 return np.exp(x/(E_0*MU))*tau_0

20

21 tau = np.zeros((sim_num,length,len(mu)))

2 tau_avrg = np.zeros ((length,len(mu)))

3 for j in range(len(mu)):

2 MU = mulj]

25 for i in range(sim_num):

26 tauli,:,j] = np.cumsum(escape_time (potential(length) ,MU))
27 for 1 in range(length):

28 tau_avrg[l,:] = np.mean(taul:,1,:],axis=0)

29

3 plt.figure ()

31 for i in range(len(mu)):

32 MU = mul[i]

33 if MU > 1:

34 plt.plot(taul0,:,i],label=r’$\mu,=%,’+str (MU),color = colours[i

D

35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54

plt.legend (loc=’best’)

plt.xlabel (r’n’)

plt.ylabel(r’$\tau(n)$’)
plt.title(’Typicalescapeytimesasayfunction of yn’)
plt.show ()

plt.close ()

plt.figure ()
for i in range(len(mu)):
MU = mul[i]
if MU < 1:
plt.semilogy(taul0,:,i],label=r’$\mu,=$,’+str(MU),color =
colours[i])
plt.legend(loc=’best’)
plt.xlabel(r’n’)
plt.ylabel(r’$\tau(n)$’)
plt.title(’Typicalescapeytimesas ayfunction ofyn’)
plt.show ()
plt.close ()

plt.figure ()

14

e Prof. T.J. Kippenberg
= P F L Spring Term 2025

55 for 1 in range(len(mu)):

56 MU = mulil

57 if MU > 1:

58 plt.plot(tau_avrgl[:,i],label=r’$\mu, =%, +str(MU) ,color =
colours[il)

5% plt.legend(loc=’best’)

60 plt.xlabel (r’n’)

61 plt.ylabel(r’$<\tau(n)>$’)

62 plt.title(’Average escapetimes asya,functionof n’)

63 plt.show ()

64 plt.close ()

65

66 plt.figure ()

7 for 1 in range(len(mu)):

68 MU = mulil

69 if MU < 1:

70 plt.semilogy(tau_avrgl[:,i]l,label=r’$\nu,=$,’+str(MU),color =
colours[i])

71 func = lambda x,a: axx**x(1/MU)

72 n = np.arange (0, length)

73 ¢ = opt.curve_fit(func,n,tau_avrgl:,i]) [0]

74 plt.semilogy(n,c*n**x(1/MU),’--’,color = coloursl[il)

75 plt.legend (loc="best’)

76 plt.xlabel (r’n’)

77 plt.ylabel(r’$<\tau(n)>$’)

73 plt.title(’Average escape times asya, functionyof n, and theiry,

asymptoticyscaling’)
79 plt.show ()
80 plt.close ()

15

	Supplementary Codes for Arrhenius-cascade
	.ipynb
	Python Code

