
Prof. T.J. Kippenberg
Spring Term 2025

Statistical Physics IV: Non-equilibrium statistical physics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Exercise No.6

Solution: Distribution of maximum step-sizes in Lévy flights

Question 1 The probability of observing an increment with size y ≥ ȳ is

Q(ȳ) =
∞∫

ȳ

P(y)dy .

The probability of observing a single event n0 among n with a step-size ȳ ≥ yn , n ̸= n0 is given
by

Q(ȳ, n) = n · Q(ȳ) · (1 − Q(ȳ)) .

The step size with the maximum probability is given by the condition dQ(ȳ,n)
dȳ = 0. Taking the

derivative and rearranging we obtain the condition:

1 − n · Q(ȳ) = 0 ⇔
∞∫

ȳ

P(y)dy =
1
n

.

Question 2 The limit of large n is equivalent to the limit in which ȳ → ∞. We use the Taylor
approximation of y2 in the argument of the exponential to approximate the integral.

1
n

=

∞∫
ȳn

1√
4πDτ

exp
(
− y2

4Dτ

)
dy

≈
∞∫

ȳn

1√
4πDτ

exp
(
− ȳ2

n + 2ȳn(y − ȳn)

4Dτ

)
dy

=
1√

4πDτ
exp

(
− ȳ2

n
4Dτ

) ∞∫
0

exp
(
−2ȳny

4Dτ

)
dy

=
1√

4πDτ
exp

(
− ȳ2

n
4Dτ

)
4Dτ

2ȳn

− log(n) = − ȳ2
n

4Dτ
− log(ȳn) + log

(√
4Dτ

2
√

π

)

As n → ∞ we only keep the highest order term in ȳn on the right-hand side of the above equation.
Thus we obtain:

ȳn ≈
√

4Dτ log n = σ
√

2 log n ,

so that

lim
n→∞

ȳn√
⟨x(n)2⟩

= lim
n→∞

σ
√

2 log n
σn

= 0 .

This suggests that the maximum most likely step-size does not contribute significantly to the sec-
ond order moment of the random walk.

1

Prof. T.J. Kippenberg
Spring Term 2025

Question 3 For a Cauchy process the calculation is identical but significantly less technical.

n =

 ∞∫
ȳn

b
y2 dy

−1

⇔ ȳn = nb

In this case rare events do contribute to the average position after n steps:

lim
n→∞

ȳn

⟨x(n)⟩ = b .

Question 4 To prove the divergence of the second and first order moments we consider that
the probability distribution only resembles b

y1+µ for y ≥ y0. This is necessary to guarantee the
normalisability of P(y).

⟨yα⟩ =

y0∫
0

yαP(y)dy

︸ ︷︷ ︸
=Aα<∞

+

∞∫
y0

yαP(y)dy

= Aα + b
∞∫

y0

yα−µ−1dy

⟨yα⟩ = Aα +

{
∞, α = 2 , 0 < µ < 2
∞, α = 1 , 0 < µ < 1

2

Prof. T.J. Kippenberg
Spring Term 2025

Solution: Arrhenius cascade

Question 1 In the case of constant well heights

τ(n) =
n

∑
i=1

τ0 exp(βV0) = nτ0 exp(βV0) ,

where β = 1
kBT and V0 is the constant energy height of the wells.

In the case of exponentially distributed well heights

⟨τ(n)⟩ =
n

∑
i=1

∞∫
0

τ0 exp(βVi)P(Vi)dVi

= τ0n
∞∫

0

1
E0

exp
(

βV − V
E0

)
dV

1
βE0

>1
=

nτ0

1 − βE0

Question 2 See the supplementary scripts. The following plots show the simulations asked for.

3

Prof. T.J. Kippenberg
Spring Term 2025

Solution: Simulation of Lévy flights

See the supplementary Python scripts

Question 1

4

Prof. T.J. Kippenberg
Spring Term 2025

7. Supplementary Codes for Arrhenius-cascade
7.1 .ipynb

5

04.04.19, 16)33Arrhenius cascade

Page 1 of 8file:///Users/amiraliarabmoheghi/Downloads/Arrhenius%20cascade.html

Arrhenius cascade
April 2019

In this notebook we simulate escape time of a particle from a washboard potential using the Kramer's
escape rate.

In [369]: import numpy as np
%matplotlib notebook
import matplotlib.pyplot as plt

Washboard potential
A particle is moving in a washboard potential like figure below characterized by a series of potential wells
of depth . The potential barriers are randomly distributed, according to an exponential distribution,

where is the average depth.

In [370]: N = 500# Maximum number of wells
N_traj = 100 # Number of trajectories

E0 = 1 # Average well depth

Generating N_traj * N matrix of exponential random variables with
mean E0
V = np.random.exponential(E0, (N_traj, N))

Visualising the potential

Vi Vi

P(V) = 1
E0

e− V
E0

E0

04.04.19, 16)33Arrhenius cascade

Page 2 of 8file:///Users/amiraliarabmoheghi/Downloads/Arrhenius%20cascade.html

In [371]: # This code cell is just for visualising the potential and is not g
oing to be used in the simulation.
x = np.linspace(0,23,1000)
def p(x):
 return 1.0*(x>-0.5)-1.0*(x>0.5)
v = -0.05*x + np.sum([-V[0,i]*p(x-2*(i+1)) for i in range(10)],axis
=0)
plt.figure('Washboard potential')
plt.plot(x,v)
plt.title(r'Potential cascade with 10 potential wells and E_0 = %
.1f'%E0)
plt.xlabel('x')
plt.ylabel('V(x)')
plt.tight_layout();

04.04.19, 16)33Arrhenius cascade

Page 3 of 8file:///Users/amiraliarabmoheghi/Downloads/Arrhenius%20cascade.html

Escape times
Dew to Kramer's escape rate formula the rate at which particles escape the barrier with height is
given by

Therefor, the time at which the particle reaches the , well is given by the cummulative sum of s

We define the parameter as

We investigate and cases separatly.

Case 1

in this case the process reaches a stationary state and the average is given by

Trajectories

ith Vi

= 1/ = 1/ .ri τi τ0e− / TVi kB

nth τ(n) τi

τ(n) = ∑
i= 1

n

τi

μ

μ = TkB

E0
μ > 1 μ < 1

μ > 1
⟨τ(n)⟩

⟨τ(n)⟩ = n
μ

μ − 1 τ0

04.04.19, 16)33Arrhenius cascade

Page 4 of 8file:///Users/amiraliarabmoheghi/Downloads/Arrhenius%20cascade.html

In [372]: tau0 = 1
mu = np.array([2, 4, 10, 100])
kT = E0 * mu*1.0

tau = tau0 *np.array([np.exp(V/kT[i]) for i in range(len(mu))],dtyp
e='float')
tau_n = np.cumsum(tau, axis = 2)

plt.figure('Tau_n')
n = np.arange(N)
for i in range(len(mu)):
 for j in range(20):
 plt.plot(n, tau_n[i,j,:]);
 plt.text(N,tau_n[i,j,N-1],r'$\mu=%.1f$'%mu[i])
plt.xticks(np.arange(0,int(N*1.25),int(N*1.25/8)))
plt.xlabel('n')
plt.ylabel(r'$\tau(n)$')
plt.title(r'$\tau(n)$ trajectories for different values of $\mu>1$'
)
plt.tight_layout();

Average escape time

04.04.19, 16)33Arrhenius cascade

Page 5 of 8file:///Users/amiraliarabmoheghi/Downloads/Arrhenius%20cascade.html

In [373]: Meantau_n = np.mean(tau_n, axis=1) # The average escape time aft
er n steps over all trajectories

n = np.arange(N)
plt.figure('<Tau_n>')
for i in range(len(mu)):
 plt.plot(n, Meantau_n[i,:],label = r'$\mu=%.1f$'%mu[i])
 plt.plot(n,n*tau0*mu[i]/(mu[i]-1),'--') # The theory curve wi
th the linear relation
plt.legend()
plt.xlabel('n')
plt.ylabel(r'$<\tau(n)>$')
plt.title(r'$<\tau(n)>$ for different values of $\mu>1$')
plt.tight_layout();

As we can see above, the average values fit with the theory curves (in dashed lines) .⟨τ(n)⟩ = nμ
μ−1 τ0

04.04.19, 16)33Arrhenius cascade

Page 6 of 8file:///Users/amiraliarabmoheghi/Downloads/Arrhenius%20cascade.html

Case 2

in this case the process becomes a Levy flight and the average does grows with the relation

Trajectories

In [374]: tau0 = 1
mu = np.array([.1,.3,0.9])
kT = E0 * mu*1.0

tau = tau0 *np.array([np.exp(V/kT[i]) for i in range(len(mu))],dtyp
e='float')
tau_n = np.cumsum(tau, axis = 2)

plt.figure('Tau_n_Levy')
n = np.arange(N)
for i in range(len(mu)):
 for j in range(20):
 plt.loglog(n, tau_n[i,j,:]);
 plt.text(N,tau_n[i,j,N-1],r'$\mu=%.1f$'%mu[i])
plt.xticks(np.logspace(0,np.log10(N*2),4))
plt.xlabel('n')
plt.ylabel(r'$\tau(n)$')
plt.title(r'$\tau(n)$ (in log-log scale) trajectories for different
values of $\mu<1$')
plt.tight_layout();

μ < 1
⟨τ(n)⟩

⟨τ(n)⟩ ∼ n1/μ

04.04.19, 16)33Arrhenius cascade

Page 7 of 8file:///Users/amiraliarabmoheghi/Downloads/Arrhenius%20cascade.html

Average escape time

04.04.19, 16)33Arrhenius cascade

Page 8 of 8file:///Users/amiraliarabmoheghi/Downloads/Arrhenius%20cascade.html

In [377]: Meantau_n = np.mean(tau_n, axis=1) # The average escape time aft
er n steps over all trajectories

n = np.arange(1,N+1)
plt.figure('<Tau_n_Levy>')
for i in range(len(mu)):
 plt.loglog(n, Meantau_n[i,:],label = r'$\mu=%.1f$'%mu[i])
 # The theory curve with the power law relation
 # We normalize to maximum value of the numeric curve to be able
to compare the slope in loglog scale
 plt.loglog(n,Meantau_n[i,-1]*n**(1.0/mu[i])/(N**(1.0/mu[i])),'-
-')
plt.legend()
plt.xlabel('n')
plt.ylabel(r'$<\tau(n)>$')
plt.title(r'$<\tau(n)>$ for different values of $\mu>1$')
plt.tight_layout();

As we can see above, the average values fit with the theory curves (in dashed lines) .⟨τ(n)⟩ ∼ n1/μ

Prof. T.J. Kippenberg
Spring Term 2025

7.2 Python Code

1 # Python code example

2 import numpy as np

3 import matplotlib.pylab as plt

4 import scipy.optimize as opt

5

6 E_0 = 1

7 tau_0 = 1

8 mu = np.array ([0.3 ,0.5 ,0.8 ,0.99 ,1.01 ,1.5 ,2 ,10])

9 colours = np.array([’blue’,’red’,’yellow ’,’orange ’,’purple ’,’brown’,’

black’,’green’])

10

11 length = 200

12 sim_num = 1000

13

14

15 def potential(n):

16 return np.random.exponential(E_0 ,n)

17

18 def escape_time(x,MU):

19 return np.exp(x/(E_0*MU))*tau_0

20

21 tau = np.zeros((sim_num ,length ,len(mu)))

22 tau_avrg = np.zeros ((length ,len(mu)))

23 for j in range(len(mu)):

24 MU = mu[j]

25 for i in range(sim_num):

26 tau[i,:,j] = np.cumsum(escape_time(potential(length),MU))

27 for l in range(length):

28 tau_avrg[l,:] = np.mean(tau[:,l,:],axis =0)

29

30 plt.figure ()

31 for i in range(len(mu)):

32 MU = mu[i]

33 if MU > 1:

34 plt.plot(tau[0,:,i],label=r’$\mu␣=$␣’+str(MU),color = colours[i

])

35 plt.legend(loc=’best’)

36 plt.xlabel(r’n’)
37 plt.ylabel(r’$\tau(n)$’)
38 plt.title(’Typical␣escape␣times␣as␣a␣function␣of␣n’)

39 plt.show()

40 plt.close()

41

42 plt.figure ()

43 for i in range(len(mu)):

44 MU = mu[i]

45 if MU < 1:

46 plt.semilogy(tau[0,:,i],label=r’$\mu␣=$␣’+str(MU),color =

colours[i])

47 plt.legend(loc=’best’)

48 plt.xlabel(r’n’)
49 plt.ylabel(r’$\tau(n)$’)
50 plt.title(’Typical␣escape␣times␣as␣a␣function␣of␣n’)

51 plt.show()

52 plt.close()

53

54 plt.figure ()

14

Prof. T.J. Kippenberg
Spring Term 2025

55 for i in range(len(mu)):

56 MU = mu[i]

57 if MU > 1:

58 plt.plot(tau_avrg[:,i],label=r’$\mu␣=$␣’+str(MU),color =

colours[i])

59 plt.legend(loc=’best’)

60 plt.xlabel(r’n’)
61 plt.ylabel(r’$<\tau(n)>$’)
62 plt.title(’Average␣escape␣times␣as␣a␣function␣of␣n’)

63 plt.show()

64 plt.close()

65

66 plt.figure ()

67 for i in range(len(mu)):

68 MU = mu[i]

69 if MU < 1:

70 plt.semilogy(tau_avrg[:,i],label=r’$\mu␣=$␣’+str(MU),color =

colours[i])

71 func = lambda x,a: a*x**(1/MU)

72 n = np.arange(0,length)

73 c = opt.curve_fit(func ,n,tau_avrg[:,i])[0]

74 plt.semilogy(n,c*n**(1/MU),’--’,color = colours[i])

75 plt.legend(loc=’best’)

76 plt.xlabel(r’n’)
77 plt.ylabel(r’$<\tau(n)>$’)
78 plt.title(’Average␣escape␣times␣as␣a␣function␣of␣n,␣and␣their␣

asymptotic␣scaling ’)

79 plt.show()

80 plt.close()

15

	Supplementary Codes for Arrhenius-cascade
	.ipynb
	Python Code

