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Statistical Physics I'V: Non-equilibrium statistical physics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Exercise No.6

Solution: Distribution of maximum step-sizes in Lévy flights

Question 1 The probability of observing an increment with size y > i is

7) = 7 P(y)dy
v

The probability of observing a single event 7y among n with a step-size ¥ > y, , n # ng is given
by
Qg n) =n-Q@) - (1-Q())-

The step size with the maximum probability is given by the condition % = 0. Taking the
derivative and rearranging we obtain the condition:
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1-n-Q(y) = /

Question 2 The limit of large 7 is equivalent to the limit in which 7 — co. We use the Taylor
approximation of 2 in the argument of the exponential to approximate the integral.
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As n — oo we only keep the highest order term in 7/, on the right-hand side of the above equation.

Thus we obtain:
Jn = \/4Dtlogn = o+/2logn,
7 v/21
Fn — lim o ogn _

v ) e o

so that

This suggests that the maximum most likely step-size does not contribute significantly to the sec-
ond order moment of the random walk.
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Question 3 For a Cauchy process the calculation is identical but significantly less technical.

. -1
b

54 yn - le
In this case rare events do contribute to the average position after n steps:

Wn

e (x(n))

Question 4 To prove the divergence of the second and first order moments we consider that
the probability distribution only resembles yf’w for y > yo. This is necessary to guarantee the

normalisability of P(y).
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Solution: Arrhenius cascade

Question 1 In the case of constant well heights

= anro exp(BVo) = ntoexp(BVo) ,

i=1

where § = kf%T and Vj is the constant energy height of the wells.

In the case of exponentially distributed well heights
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Question 2  See the supplementary scripts. The following plots show the simulations asked for.
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Solution: Simulation of Lévy flights

See the supplementary Python scripts
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7. Supplementary Codes for Arrhenius-cascade

7.1 .ipynb



Arrhenius cascade 04.04.19, 16:33

Arrhenius cascade

April 2019

In this notebook we simulate escape time of a particle from a washboard potential using the Kramer's
escape rate.

In [369]: import numpy as np
gmatplotlib notebook
import matplotlib.pyplot as plt

Washboard potential

A particle is moving in a washboard potential like figure below characterized by a series of potential wells
of depth V. The potential barriers V; are randomly distributed, according to an exponential distribution,

1 _»
P(V)=—e %
V) Eoe

where E|) is the average depth.

In [370]: N = 500# Maximum number of wells
N traj = 100 # Number of trajectories

E0O =1 # Average well depth
# Generating N traj * N matrix of exponential random variables with

mean EO
V = np.random.exponential(EO, (N_traj, N))

Visualising the potential

file:///Users/amiraliarabmoheghi/Downloads/Arrhenius%20cascade.html Page 1 of 8
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In [371]: # This code cell is just for visualising the potential and is not g
oing to be used in the simulation.
X = np.linspace(0,23,1000)

def p(x):
return 1.0*(x>-0.5)-1.0*(x>0.5)
v = -0.05*x + np.sum([-V[0,i]*p(x-2*(i+tl)) for i in range(10)],axis
=0)
plt.figure('Washboard potential')
plt.plot(x,Vv)
plt.title(r'Potential cascade with 10 potential wells and $E 0S$ = %
.1f'%EOQ)

plt.xlabel('x")
plt.ylabel('V(x)"')
plt.tight layout();

Potential cascade with 10 potential wells and Eg = 1.0
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Escape times

Dew to Kramer's escape rate formula the rate at which particles escape the i, barrier with height V; is
given by
r;=1/t; = l/roe_v"/kBT.

Therefor, the time at which the particle reaches the n,;,, 7(n) well is given by the cummulative sum of 7;s
n

w(n) = Z T;

i=1
We define the y parameter as

_ kgT
=
We investigate ¢ > 1 and 4 < 1 cases separatly.
Case 1
u>1

in this case the process reaches a stationary state and the average (z(n)) is given by

(r(n)) =

nt,
u—1"

Trajectories
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In [372]:

04.04.19, 16:33

tau0 =1
mu = np.array([2, 4, 10, 100])
kT = EO * mu*1.0

tau = tau0 *np.array([np.exp(V/kT[i]) for i in range(len(mu))],dtyp
e="'float")
tau n = np.cumsum(tau, axis = 2)

plt.figure('Tau_n')
n = np.arange(N)
for i in range(len(mu)):

for j in range(20):

plt.plot(n, tau n[i,],:1);

plt.text(N,tau n[i,j,N-1],r'$\mu=%.1£$"'mu[i])
plt.xticks(np.arange(0,int(N*1.25),int(N*1.25/8)))
plt.xlabel('n')
plt.ylabel(r'S$\tau(n)$"')
plt.title(r'$\tau(n)$ trajectories for different values of $\mu>1$'

plt.tight layout();

T(n) trajectories for different values of u>1
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In [373]: Meantau n = np.mean(tau n, axis=l) # The average escape time aft
er n steps over all trajectories

n = np.arange(N)
plt.figure('<Tau n>")
for i in range(len(mu)):
plt.plot(n, Meantau n[i,:],label = r'$\mu=%.1£$'%mu[i])
plt.plot(n,n*taul0*mu[i]/(muf[i]-1),'-=") # The theory curve wi
th the linear relation
plt.legend()
plt.xlabel('n')
plt.ylabel(r's$<\tau(n)>$"')
plt.title(r's$<\tau(n)>$ for different values of $\mu>1$')
plt.tight layout();

< T(n) > for different values of u>1
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As we can see above, the average values fit with the theory curves (in dashed lines) (7(n)) = ﬁmo.
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Case 2

04.04.19, 16:33

u<l

in this case the process becomes a Levy flight and the average (7(n)) does grows with the relation

(1(n))y ~ n'*

Trajectories

In [374]:

tau0 1
mu = np.array([ .1,.3,0.9])
kT = EO * mu*1.0

tau = taul0 *np.array([np.exp(V/kT[i]) for i in range(len(mu))],dtyp
e="'float')
tau n = np.cumsum(tau, axis = 2)

plt.figure('Tau_n Levy')
n = np.arange(N)
for i in range(len(mu)):

for j in range(20):

plt.loglog(n, tau n[i,j,:]);

plt.text(N,tau n[i,j,N-1],r'$\mu=
plt.xticks(np.logspace(0,np.logl0(N*2
plt.xlabel('n")
plt.ylabel(r's$\tau(n)$"')
plt.title(r'$\tau(n)$ (in log-log scale) trajectories for different
values of $\mu<1l$')
plt.tight layout();

$.1£$'8mu[i])
)r4))
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T(n) (in log-log scale) trajectories for different values of u<1
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In [377]: Meantau n = np.mean(tau n, axis=l) # The average escape time aft
er n steps over all trajectories

n = np.arange(l,N+1)
plt.figure('<Tau n Levy>"')
for i in range(len(mu)):
plt.loglog(n, Meantau n[i,:],label = r'$\mu=%.1£$'%mu[i])
# The theory curve with the power law relation
# We normalize to maximum value of the numeric curve to be able
to compare the slope in loglog scale
plt.loglog(n,Meantau n[i,-1]*n**(1.0/mu[i])/(N**(1.0/mu[i])), -
-")
plt.legend()
plt.xlabel('n")
plt.ylabel(r's<\tau(n)>$"')
plt.title(r'$<\tau(n)>$ for different values of $\mu>1$')
plt.tight layout();

< 1(n) > for different valuesof u>1
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As we can see above, the average values fit with the theory curves (in dashed lines) {(7(n)) ~ n'k .
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7.2 Python Code

1 # Python code example

2 import numpy as np

3 import matplotlib.pylab as plt

4 import scipy.optimize as opt

5

6 E_LO =1

7 tau_0 = 1

s mu = np.array([0.3,0.5,0.8,0.99,1.01,1.5,2,10])

9 colours = np.array([’blue’,’red’,’yellow’,’orange’,’purple’,’brown’,’

black’,’green’])

10

1 length = 200

12 sim_num = 1000

13

14

15 def potential(mn):

16 return np.random.exponential (E_O,n)

17

18 def escape_time (x,MU):

19 return np.exp(x/(E_0*MU))*tau_0

20

21 tau = np.zeros((sim_num,length,len(mu)))

2 tau_avrg = np.zeros ((length,len(mu)))

3 for j in range(len(mu)):

2 MU = mulj]

25 for i in range(sim_num):

26 tauli,:,j] = np.cumsum(escape_time (potential(length) ,MU))
27 for 1 in range(length):

28 tau_avrg[l,:] = np.mean(taul:,1,:],axis=0)

29

3 plt.figure ()

31 for i in range(len(mu)):

32 MU = mul[i]

33 if MU > 1:

34 plt.plot(taul0,:,i],label=r’$\mu,=%,’+str (MU),color = colours[i

D

35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54

plt.legend (loc=’best’)

plt.xlabel (r’$n$’)

plt.ylabel(r’$\tau(n)$’)
plt.title(’Typicalescapeytimesasayfunction of yn’)
plt.show ()

plt.close ()

plt.figure ()
for i in range(len(mu)):
MU = mul[i]
if MU < 1:
plt.semilogy(taul0,:,i],label=r’$\mu,=$,’+str(MU),color =
colours[i])
plt.legend(loc=’best’)
plt.xlabel(r’$n$’)
plt.ylabel(r’$\tau(n)$’)
plt.title(’Typicalescapeytimesas ayfunction ofyn’)
plt.show ()
plt.close ()

plt.figure ()
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55 for 1 in range(len(mu)):

56 MU = mulil

57 if MU > 1:

58 plt.plot(tau_avrgl[:,i],label=r’$\mu, =%, +str(MU) ,color =
colours[il)

5% plt.legend(loc=’best’)

60 plt.xlabel (r’$n$’)

61 plt.ylabel(r’$<\tau(n)>$’)

62 plt.title(’Average escapetimes asya,functionof n’)

63 plt.show ()

64 plt.close ()

65

66 plt.figure ()

7 for 1 in range(len(mu)):

68 MU = mulil

69 if MU < 1:

70 plt.semilogy(tau_avrgl[:,i]l,label=r’$\nu,=$,’+str(MU),color =
colours[i])

71 func = lambda x,a: axx**x(1/MU)

72 n = np.arange (0, length)

73 ¢ = opt.curve_fit(func,n,tau_avrgl:,i]) [0]

74 plt.semilogy(n,c*n**x(1/MU),’--’,color = coloursl[il)

75 plt.legend (loc="best’)

76 plt.xlabel (r’$n$’)

77 plt.ylabel(r’$<\tau(n)>$’)

73 plt.title(’Average escape times asya, functionyof n, and theiry,

asymptoticyscaling’)
79 plt.show ()
80 plt.close ()
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