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Exercise No.5

5.1 Proof of Kramers escape rate 1:

Kramers famous equation relates the escape rate (2πr = 1
tescape

) of a particle to the curvature of the
potential at the bottom and the top (see figure 5.10.1. Risken). Assume that the potential V(x) has
a minimum at xmin and a maximum at xmax so that 0 < xmin < xmax < A. The escape rate is given
by (in the limit of a strongly damped particle and a high barrier compared to the thermal energy):

r = (2π)−1 · D
kBT

·
√

V ′′(xmin)|V ′′(xmax)| · e−(V(xmax)−V(xmin))/kBT (1)

1. Derive this rate. First, assume that the particle is strongly damped and solve the simplified
1-D Fokker Planck equation with a constant probability current (J(x) ≈ J = const). Show
that with Φ(x) = V(x)/kBT the current satisfies:

J(x, t) = −De−Φ(x) d
dx

[e+Φ(x)P(x, t)] (2)

2. As outlined above we are treating the problem without reflecting or absorbing boundary
conditions, but assume the current to be nonzero even on our boundaries. As such we can
neglect the time dependence of P(x, t) and J(x, t) since the solution will become stationary in
this case. Why does it become stationary? Obtain an expression for the current by integrating
over the interval x = xmin...A. Find an expression for J and show that it obeys:

J = D · eV(xmin)/kBTP(xmin, t)/(
∫ A

xmin

eV(x)/kBTdx) (3)

3. Approximate the distribution P(xmin, t) by assuming the stationary distribution of the parabolic
well only (i.e. such that particles cannot escape from near xmin). This will be an excellent
approximation as long as the barrier is high compared to kBT.

4. Obtain an expression for the escape rate r, i.e. J = pr, which is defined as the ratio of the
probability current J and the absolute probability p to find the particle inside the well.

5. Solve the integrals by considering the regions where the integrals contribute most and by
extending the integration limits (0..A) to ±∞. Use the local Taylor expansion in the potential
and use

∫
e−ax2

dx =
√

π
a to arrive at Kramers escape rate, finally!

5.2 Application of the Kramers escape rate formula: optical tweezers

In optical tweezers a small dielectric particle is trapped in the waist of a focused laser beam by
electrical dipole potential. For a spherical particle, this potential can be found as

U(r) = −2πn0a3

c

(
n2 − n2

0

n2 + 2n2
0

)
I(r), (4)

where a and n are the particle radius and index of refraction, n0 is the index of refraction of the
surrounding medium, I(r) is the laser intensity distribution.

1cf. Chapter 5.10 Risken: “The Fokker Planck Equation”
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Consider the setting of2, where a particle is trapped in water by two laser beams with Gaussian
transverse intensity profiles

I1,2(x) = Imax
1,2 exp

(
−2

(x ± δx/2)2

w2
0

)
. (5)

Here the distributions are given for the beams 1 and 2 in their waists, w0 = 1 µm is the beam width,
Imax
1,2 are the peak intensities (total powers of the lasers 1 and 2 are 80 and 90 mW correspondingly)

and the centers of two beams are separated by δx = 1.4 µm.
Use the Kramers formula to estimate the escape rate of a particle with the radius a = 100 nm

made of silica (n = 1.5, density ρ = 2650 kg/m3) from the 1-st well to the 2-nd. Assume room
temperature and the water viscosity η = 8.9 · 10−4 Pa/s.

Neglect the 3D nature of the problem and, if you prefer, use numerical or approximate methods
to calculate the potential curvatures.

5.3 Simulation of Particle Escape(*)

We have recently learned two equivalent descriptions of a diffusion process: the Langevin equa-
tion and the Fokker-plank equation. The goal of this exercise is to numerically explore the equiv-
alence of these two approaches. Consider a particle at x = 2.5 confined between a reflecting wall
at x = 0 on one side and a potential barrier on the other side at x = 5. Assume that the potential
has a Gaussian form of height h = 1 and variance of d = 0.4, the diffusion coefficient is D = 0.5,
mass of the particle - m = 1 and the damping coefficient - γ = 1.

Please include your simulation code together with the answers on the following questions. We
recommend using Jupyter notebooks.

1. Write down a Fokker-Plank equation and numerically solve it using a programming lan-
guage of your choice. To impose the boundary conditions, described above, use the fact that
the probability current at x = 0 has to vanish, and assume the probability density on the
right end of the simulation interval [0, 20] to be always 0. Plot the probability density at
different moments in time to illustrate the diffusive evolution of particle.

2. Now write an equivalent Langevin equation. Suggest a numerical algorithm to simulate
stochastic trajectories generated by this equation. (Hint: you can find such algorithm in
Section 2 of this reference 3)

3. Run multiple iterations of your algorithm, and obtain probability densities for the particle at
different moments of time. Compare these with the numerical solution of the Fokker-Plank
from part 1. Do the two models agree quantitatively? If not, suggest why.

4. Recover the Arrhenius law by plotting the escape probability (i.e. the particle being outside
of the confined region) over a certain time as a function of the barrier height. Show that
the probability scales as ∝ exp[−V/D], where V is the potential barrier height. Can your
numerical solution of the Fokker-Plank equation be used to recover the Arrhenius law?

5.4 First passage time and the backward Fokker-Planck equation4

It is often of interest to know how long a particle whose position is described by a Fokker-Planck
equation remains in a certain region. The solution of this problem can be achieved by use of the
backward Fokker-Planck equation.

2L. I. McCann et al “Thermally activated transitions in a bistable three-dimensional optical trap”. Nature 402, 785
(1999).

3Grassia PS, Hinch EJ, Nitsche LC. Computer simulations of Brownian motion of complex systems. Journal of Fluid
Mechanics. 1995

4Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences, C. W. Gardiner, 2nd ed, Chapter
5.2.7
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1. Review: Use Chapman-Kolmogorov equation and Kramers-Moyal expansion to derive the
backward Fokker-Planck equation.

2. Consider a one dimensional particle moving along x − axis and a certain interval I on x −
axis. The particle is initially at x (x ∈ I) at time time t = 0. Assume T to be the time that the
particle leaves I. Show that the mean first passage time (⟨T⟩ = T(x)) is given by

T(x) = −
∫ ∞

0
t∂tG(x, t)dt, (6)

where G(x, t) =
∫

I dx′p(x′, t|x, 0) is the probability that at time t the particle is still in I.

3. Show that T(x) satisfies the backward, but not the forward Fokker-Planck equation.

4. Consider that the particle with diffusion constant D is moving in a potential field given by

V(x) =

{
∞ x < 0
h exp

{
−(x−x0)

2

2d2

}
x > 0

(7)

Solve the equation numerically (with a program of your choice) for the parameter values:

• h = 1

• x0 = 5

• d = 0.4

• D = 0.5

and plot T(x). Assuming the particle is at x(0) = 2.5 at t = 0, show that you recover the
same result for the mean escape time as for the simulation of the individual trajectories in
the exercise ”Simulation of Particle Escape”. Include your code with the answer.
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