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Statistical Physics IV: Non-equilibrium statistical physics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Exercise No.4

4.1 The Generalized Fluctuation Dissipation Theorem1

The Generalized Fluctuation dissipation theorem as derived by Callen and Greene2 states that the
spectral density of thermal Langevin force fluctuations obey:

|FL(ω)|2 = 4kBT · R(ω) (1)

where R(ω)=Re{Z(ω)} is the mechanical resistance which is the real part of the complex valued
mechanical impedance Z(ω) ≡ FL(ω)/v(ω), where FL(ω) is the random thermal force and v(ω)
is the velocity (quantities are in the Fourier domain). Equivalently, this implies that the velocity
fluctuations satisfy:

Svv(ω) = 4kBT · R(ω)

|Z(ω)|2

1. Calculate the spectrum of velocity fluctuations Svv(ω) of a harmonic oscillator of mass m,
and velocity proportional damping γ (i.e. FD(t) = γv(t)). State the value of R and Z.

2. Calculate the spectrum of position fluctuations Sxx(ω).

3. Let us next assume a non-trivial damping force and apply the generalized FDT. Assume
we study the velocity fluctuation spectrum of a mass on a spring with spring constant k.
The associated damping is given by the material induced, intrinsic damping force FD(ω) =
ikϕ(ω)x(ω). This means that if an external sinusiodal force is applied to the oscillator, posi-
tion x(t) lags behind the force by angle ϕ(ω), which is in general dependent on the frequency
of excitation. (Zener proposed that in solids this angle obeys: ϕ(ω) = ∆ωτ

1+(ωτ)2 where τ is
some characteristic damping time intrinsic to the material). Use the generalized fluctuation
dissipation theorem to find the form of the fluctuation spectrum Svv(ω) and Sxx(ω)

4.2 Stationary solutions of the Fokker Planck Equation3:

The one dimensional Fokker Planck equation with constant drift (Smoluchowski equation) is
given by: ∂

∂t P(x, t) = − 1
γ

∂
∂x (F(x)P(x, t)) + D · ∂2

∂x2 P(x, t), where D is a the diffusion constant,
F(x) = −dV(x)/dx the consrvative force and γ is the dissipation constant. This equation can also
be written in the form of a continuity equation:

∂

∂t
P(x, t) = − ∂

∂x
J(x, t)

Where the probability current is J(x, t) =
[
−D · ∂

∂x + 1
γ F(x)

]
P(x, t).

1. First, for a stationary probability distribution ( ∂
∂t P(x, t) = 0), J must be constant. Assume

first that the probability current vanishes somewhere, this implies J(x) = 0∀x. Find that
in this case the stationary probability distribution P(x, t) has the form P(x) = Ne−Φ(x)and
derive Φ(x).

1See “Thermal noises in mechanical experiments”, Saulson, Phys. Rev. D. Vol 42, No. 8, (1990) - Section III
2“On a theorem of irreversible thermodynamics”, Callen and Greene, Physical Review (1952)
3cf. Risken: “The Fokker Planck Equation”, chapter 4, Springer Verlag
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2. Boundary conditions of the Fokker Planck equation: Show that if the probability current J van-
ishes at the boundaries at x = xmin and x = xmax, it follows that

∫ xmax
xmin

P(x, t)dx = const.
Hence the probability distribution is constant with time (no particle can escape or can be
absorbed, i.e. we have reflecting boundaries).

3. Next assume the case where probability current J is constant but non-zero. Derive the sta-
tionary probability distribution P(x) for this case. Assume that the problem is solved on a
finite interval J(xmin) = J(xmax) = J. What do the boundary conditions now imply? Explain
why in this situation (despite having a non-zero current J) the distribution P(x) can still be
stationary.

4.3 Fokker Planck Equation to derive the limit of atomic laser cooling(*)4:

Atom laser cooling proceeds by exposing atoms to a standing wave laser field (i.e. a sum of
right and left propagating fields in a 1D-case) whose frequency ωL is slightly below the atomic
transition frequency ω0. From basic quantum theory of atom-photon interaction it follows, that
when a photon is absorbed by or emitted from an atom there is a momentum recoil given by
∆p = h̄k (k = ωL/c).

In the case of absorption the recoil is co-directional with the propagation of the photons being
absorbed. Due to the fact that the atoms move and experience a Doppler shift, the rates ϵabs

± (p) at
which the atom absorbs light from the right or left lasers are different and related as

ϵabs
± (p) = σ±

I
h̄ωL

= s
(γ/2)2

(∆ω ± kv)2 + (γ/2)2 , (2)

where I is the laser intensity, s = σ0 I/h̄ωL is the photon flux through the resonant scattering cross-
section of the atom (σ0 = 2πλ2), γ is the spontaneous emission rate, v = p/m speed of the atom
and ∆ω = ωL − ω0. In contrast, the spontaneous emission events provide recoils in a random
direction (+ or − in 1D-case) in each direction at the rate

ϵem
± (p) =

ϵabs
+ (p) + ϵabs

− (p)
2

, (3)

so that on average the atom emits and absorbs equal number of photons per unit time.
Over the course of the excercise assume the laser detuning ∆ω = −γ/2 (which turns out to

lead to the lowest achievable temperature).

1. Using these expressions, derive the 1-dimensional Fokker Planck equation for the case of
atomic laser cooling by considering a one dimensional random walk in momentum space de-
scribed by the probability distribution P(p, t) and give the expression for the drift and diffu-
sion coefficients. Start your derivation by expanding P(p, t+∆t), similar to the derivation of
the Smoluchowski equation. Assume here the limit kv ≪ γ and use the following formulas

ϵ± = ϵabs
± + ϵem

± ,

(ϵ+(p)− ϵ−(p))∆p ≈ −βv,

(ϵ+(p) + ϵ−(p))(∆p)2 = 2D,

where β = sk2h̄/(γ/2) and D = sk2h̄2.

4cf. Physics Nobel Prize 1997 to Steven Chu, Claude Cohen-Tannoudji and William D. Phillips, For development
of methods to cool and trap atoms with laser light. For a dervation cf: S. Stenholm, The Semiclassical Theory of Laser
Cooling, Rev. Mod. Phys. 1986, Chapter 5
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2. Solve the steady state ( ∂
∂t P(p, t) = 0) of the Fokker Planck equation and show that the distri-

bution has the form Pss(p, t) ∝ e−p2/(2mkBTeff), where the effective temperature Teff is defined
so that kBTeff = h̄γ/2. This is the famous Doppler limit of atomic laser cooling5.6

3. Return to the more general case where the cooling force only acts over a finite range of ve-
locities (i.e. physically this comes from the fact that if the atoms travel too fast, their Doppler
shift can exceed their linewidth implying that the cooling laser is entirely off resonant and
will thus not excite the atoms ). Then kv may be > γ and more general expressions for the
momentum jumps rates should be used, so that

(ϵ+(p)− ϵ−(p))∆p =
−β · v

1 + (v/vc)
4 ,

(ϵ+(p) + ϵ−(p))(∆p)2 = 2D
1 + (v/vc)

2

1 + (v/vc)
4 ,

where vc = γ/(k
√

2) is the “capture velocity”. Derive for this case the steady-state momen-
tum probability distribution P(p).

4.4 Spectral broadening of a laser by phase diffusion7

We consider an oscillating electromagnetic field that exhibits phase fluctuations, which model, for
example, the output of a realistic RF signal generator or a laser. Assume that the field is given by
E(t) = E0e−iω0t+iϕ(t), where the phase ϕ(t) is a Wiener process with diffusion constant D.

1. Show that the phase fluctuations satisfy〈
eiϕ(t1)−iϕ(t2)

〉
= e−D|t1−t2|.

2. Show that this leads to the electric field spectrum SEE(ω) =
∫ ∞
−∞ ⟨E(t)E∗(t + τ)⟩ eiωtdτ of

Lorentzian shape. Relate the linewidth of the Lorentzian to the diffusion constant D.

3. In many practical situations phase fluctuations are described not by a simple Wiener pro-
cess, which results in the constant power spectral density of frequency fluctuations (white
noise), but rather by a stochastic process with frequency noise increasing at low frequen-
cies. In this case the electric field spectrum is not necessarily a Lorenzian, and moreover
its linewidth might depend on the observation time Tobs. For a common model example 8

when the frequency noise spectral density is given by Sν = (ω/2π)2Sϕ = k/|ω|, the phase
diffusion approximately obeys

⟨(ϕ(t1)− ϕ(t2))
2⟩ = (t1 − t2)

2 k
π

(
a + log

(
aT2

obsk
π

))
,

where a = 4.3 is a numeric constant.

Calculate the shape of electric field spectrum in this case.

5The 1997 Nobel prize was in particularly awarded for methods to cool below this Doppler limit (techniques called
sub-Doppler laser cooling).

6The Doppler limit can be viewed as a manifestation of the Heisenberg uncertainty limit. A photon that cools the
atom, decays within a time frame of ∆t = γ−1. As a result the atom has an energy uncertainty given by ∆E · ∆t > h̄/2.
Hence ∆E > h̄γ/2.

7See, for example, Riehle F. “Frequency Standards: Basics and Applications”, section 3.4
8Mercer L. B. “1/f frequency noise effects on self-heterodyne linewidth measurements”. Journal of Lightwave Tech-

nology 9, 485–493 (1991).
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