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Statistical Physics I'V: Non-equilibrium statistical physics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Solutions to Exercise No.3

Solution: Change of variables of a stochastic function f(X(t)), i.e. Ito’s Lemma

1. Assume that we have a stochastic process x(t) of the Ito form:
dx = Adt 4+ BAW

(for convenience we used A = A(x(t),t) and B = /D £)). A function f(x(t),t) can be
expanded in Taylor series

af of ., 19%f
af = d +8tdt+§8 dx® + ..
and we can substitute dx to get
of of 1%f oo 2 71072
df =5 (Adt—i—BdW)+ St 5553 (A*dt* + 2ABdt + B*dW?)

For the Wiener increment dW, we know that dW? — dt as dt — 0. We can delete terms
which are o dt? or o dtdW (since the latter tends to dt3/? and we are only interested in the
first order) and after rearranging we get

of , of 20°f of
df = (A 8t+2B 55 ) di+ B dW

which is the desired result.

2. In standard calculus, one would stop at df = af dx + aa]; dat

3. For the Ornstein-Uhlenbeck process:

Directly using Ito’s lemma we can find:

d

5 (R0) = =2 (X(0) +¢

Solution: Geometric Brownian motion - multiplicative white noise

1. Directly applying It6’s lemma, we obtain

2
dy = —%dt + cdW (1)
so that J 5
Y c
E = —E + Cr(t). (2)
2. We find )
Y(t) = —%t+c(W(t))+Yo 3)
so that
X(t) = Cem21eM ), (4)
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Computing the correlation, we get
(X(D)X(s)) = X3 (sWOHWED) )
_ X2 1R WIHE)) ©)
= XGet min(ts) (7)
using (expz) = exp (3 (z?)) valid for Gaussian variable z, (W?(t)) = t and (W(t)W(s)) =

min(t,s).

Solution: Spectral broadening of a laser by phase diffusion

1. From the diffusion process with diffusion constant D, we have the distribution of A¢:

() = e ®)
= e 4Dt
P VAarDt

From this distribution function we can obtained the expetation value we need (for example,
(89?) = [73 dApp(t) = 2D¥).
With this distribution function, we have:

<ei¢(f1)—i¢(fz)> - <eiA4>(\t1—tzD>

too
— / ™o (Ap(|t — ta]))

+oo iA 1 Ag? ©)
_ / P ] Pe |
\/47TD’t1 — t2|
_ o Dlti—t|
2. We have
See(w) = E§ /+OO drei(wo—w)T <ei4’(t“)’i4’(t)> (10)
=E} /Ho dre{(wo—w)To=DT (11)
= 2E2Re ! (12)
T —i(w—w) =D
=2E3 b (13)

(wo — w)?* — D2
The width is given by the diffusion constant D.

3. For a large number of uncorrelated phase-shifting events, the central limit theorem allows
one to use the Gaussian probability distribution as used above. From which we have:

<eiA¢> = e_%<A¢2> (14)
Therefore:
= E%/e’““’““”%*%@ﬁ)
g} [ eritrorre i (2)
\/inexp __ m(w—w)®
e ()
V(o8 (5F) +4)

2

(15)
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Solution: Johnson noise in an RLC circuit

1. The equation of motion for the (forced) RLC circuit is given by:

Q) | ,dIt)
= RI L .
V(t) (t) + C + i
It can be reexpressed using only the charge on the capacitor and the fact that the applied

voltage is a stochastic function:

2
d aglgtz(t) _ Jer(n - Qét) _Rd%t) |

2. We solve the above equation in Fourier space.

1 T iwt
Qlw] = mé Q(t)e ! dt

Define 1 N
xlw] = [L(wlzz —w?— iw'y)]’l; WR = and y = —;

VLC L

so that the solution to the above equation in Fourier space takes the following form:

We can calculate (V[w1]V*[ws]) = cd(w1 — wy) to obtain! <\V[w] ]2> =c.

So
c/L?

(W% — w?)? + w22

Soale] = (|QIw]]) = (Vi) [xle]? =

To find ¢ we can use multiple methods (integration in the complex plane, admittance of
circuit...), we choose here the results of the fluctuation dissipation theorem.

C
2kpT

Ly =+ / (V(DV(E+ to)) e lodty =
kT |

So?
2kgTvy/L

2
WE — w?)2 4 w22

Saolw] = (
3. SH((U) = CUZSQQ(CU)

Brownian motion as a Markov jump process and the two force hypothesis

The solution here is adapted from the provided reference.

The motion of V() over its allowed states {v,} consists of random steps of size +A, these
steps being taken at random times and in a past-forgetting (Markovian) manner. Such behavior
can be characterized by two ”stepping functions” W, (v) and W_(v), which are defined so that

W (vy,)dt = the probability, given V (t) = v, that V(t 4 dt) will equal v, 1. (16)

IThis piece of mathematical trickery can be properly justified by taking the appropriate limit of a bounded Fourier
transform

2A factor two in the answer here could simply be due to different integration bounds depending on whether we
take a full spectrum or only a positive spectrum.
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W)

N~ — W_(v) = Bl + viA)

W, ) = Bl - vlA)

N T O 'S
Illlllllllllin = v

v_N=-A vp=0 ) oy=A

Figure 1: Graphs of the stepping functions W4 (v).

Our first task will be to find forms for these two functions that characterize in a plausible
way the effect on the particle’s velocity of the naturally occurring molecular impingements. Since
symmetry considerations dictate that

W-(-0) = W:(v), (17)

then we may focus our efforts on finding a form for the function W, (v).

Suppose first that the particle is at rest. Then in the next infinitesimal time interval d¢, there
will be a certain probability that some molecule will strike the particle’s backside sufficiently hard
to increase the particle’s velocity from zero to v; = A. Let us assume that this probability can be
written in the form Bdt, where B is some positive constant:

Bdt =the probability that the particle, at rest at timet, will acquire velocity v; = A (18)
in the next infinitesimal time interval [¢, t 4 dt)

We may reasonably expect B to be an increasing function of the average kinetic energy of the
bath molecules, and a decreasing function of the particle’s mass M and the velocity step size A;
however, we shall be content here to let B be phenomenologically defined by the statement Eq. 18.
Comparison with the definition Eq. 16 shows that

W, (0) =B. (19)

Since our model assumes that the velocity of the particle can never exceed the value A, then
we must have

W4 (A) =0. (20)

And it is clear on physical grounds that, for any v < A, W, (v) must be a steadily decreasing
function of v; because, if the particle’s forward speed is increased, then the likelihood that the
particle will be struck from behind by a gas molecule hard enough to further augment its forward
speed by A should surely decrease. To keep our model simple, let us assume that W (v) is a
linearly decreasing function of v. This linearity assumption an the conditions Eq. 19 and Eq. 20
suffice to determine W, (v) completely

Wi(v) =B(1—v/A), (—A<<v<A). (21)
The symmetry relation Eq. 17 then gives

W_(0v) = B(1+0/A), (—A<<0v<A). (22)

Plots of these functions are shown in Fig. 1.
We now have a fully defined jump Markov process model for the particle’s velocity V(t). Our
model contains two parameters A and B, and we shall later have to decide how these parameters
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should depend upon the parameter N that controls the total number of velocity states. For now,
though, let us deduce the consequences of this model.
Our analysis will focus on the function

P (vy, t) = the probability that V(t) = v,, given that V(0) = V. (23)

To derive a time-evolution equation for this function, we begin by using the definitions Eq. 23
and Eq. 16, along with the multiplication and addition laws of probability, to infer the following
expression for the probability that V (t + dt) will equal v,, :

P (vy, t+dt) =P (v,-1,t) x Wy (v,-1) dt
+P (Un—i-lr t) W_ (Un-H) dt (24)
+ P (v, t) {1 — [Wy (vn) dt + W_ (vy,) dt]} .

The first term on the right is the probability that V(f) = v,_1 and then an up-going step occurs
in the next dt; the second term is the probability that V() = v,,41 and then a down-going step
occurs in the next dt; and the third term is the probability that V(¢) = v, and then no step occurs
in the next dt. All other routes to V(¢ 4+ dt) = v, from time ¢ involve more than one velocity jump
in time [t, t 4 dt), and consequently will be of order > 1 in dt. Upon transposing the term P (v, ),
dividing through by dt and then passing to the limit dt — 0, we obtain

3P (vn,t) =P (vy41,t) W= (041) — P (0, t) Wy (0)

ot (25)
+ P (vy-1,t) Wy (vy—1) — P (vn, t) W= (vn) .

Substitution of the formulas Eq. 21 and Eq. 22 for the functions W4 (v), followed by some simple
algebraic rearrangement, then gives

2P (0n,t) =(B/A) [vg+1P (vy41,t) — 04—1P (vy—1, t)]

ot
+B [ (vi’l—ll t) —2P (vi’lr t) +P (vi’l-i-ll t)]

p 26)
(=N <n<N).

In preparation for taking the limit N — oo, we use the fact that A = A/N to write Eq. Eq. 26
as

0 2B (0y41P (vy41,t) — Un 1P (0p-1, 1)
ol (ont) = < 2A
BA? (P (v, 1,t) — 2P (vy, t) + P (0411, 1) (27)
N2 A2
(=N <n<N).

Now, as mentioned earlier, we intend to arrange things so that A — 0 and A — oo when
N — co. Assuming that those conditions are fulfilled, then the limit N — co brings Eq. 27 into the
form of the partial differential equation

2

3P(v,t) zcli[UP(v,t)] +G I

at aU WP(U’ t) (—OO < 0 < 00), (28)

where we have put
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C = I\lllir;o %, (29a)
2

Cp = lim TAT (29b)

As may be verified by direct differentiation, the solution to Eq. 27 that satisfies the required
initial condition P(v,0) = ¢ (v — V) is

-1/2 v — Voe Cit)?
P(U, t) = [Zﬂ (CZ/CI) <1 - €_2C1t>] X exp <_2 (CE/Cl) (El — e)_2C1t)> : (30)

Comparing the form of this solution to the form of a normal distribution, we immediately deduce
that

V(t) =N (voe—clf, (C2/Cy) (1 - e—2C1f)) . (31)

We now observe that this solution will be physically sensible only if C; and C; are both finite,
positive numbers. But according to Eq. 29a, C; can be finite and positive only if B o N as N — co.
And given that, Eq. 29b tells us that C; can be finite and positive only if A> « N as N — co. Thus
we conclude that our two model parameters A and B must scale with N according to

A = aN/2

N — co: {
where the positive constants a and b are now our new model parameters.
Before proceeding, let us verify that these scaling formulas are satisfactory. First, Eq. 32 implies
that A does indeed satisfy the required condition A — ccas N — co. Second, Eq.32and A = A/N
together give, for N — oo,

A =aN"12 (33)

which in turn implies that A satisfies the required condition A — 0 as N — co. And finally, the
implication of Eq. 32 that B increases with N is entirely plausible; because, increasing N decreases
the step size A, and that in turn should increase the probability Eq. 18.

Substituting Eq. 32 into Eqs. 14, we find that

Ci1 =2b; Cp=ba®. (34)

Therefore, our formula (40) for V() becomes

V() =N (Voe 2, (a2/2) (1—e71) ). (35)

This is the solution of our jump Markov process model of Brownian motion in the continuum
limitof A = 0and A — co.

When we compare our model solution Eq. 35 with the solution of the Langevin, we observe
that the two solutions will be identical provided that

2 2
v, @ _ f
2b=—; — = . 36
M 2 29M (36)
Solving these two relations simultaneously for ¢ and f, we conclude that our jump Markov
process model, in the continuum limit, predicts the existence of a dissipative drag force —yV (t)
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and a zero-mean fluctuating force fT'(¢), where 7y and f are given in terms of our model parameters
a and b by

v = 2Mb, (37)
f = Ma(2b)2. (38)

To this point, we have not invoked the thermodynamic requirement. To do so, we first note
that the t — co limit of Eq. 35 gives

V(o) =N (0,4%/2). (39)
So satisfaction of the equipartition theorem demands that a?/2 = kgT /M, or

a = (2kgT/M)"2. (40)
With this result, our formulas Eq. 36 for v and f become

v = 2Mb, (41)
f = (4MbkgT)"?. (42)

Now only the single model parameter b(= B/N) remains. The fact that v and f both increase
with b, and vanish only when b = 0, is an expression of the fluctuation-dissipation theorem: the
dissipative drag force and the zero-mean fluctuating force are concomitants.

Solution: Computer simulation of Brownian motion

See the supplementary Mathematica notebook



