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Exercise No.2

2.1 Stochastic differential equations

A continuous, memoryless, stochastic 1 function of time X(t) satisfies the following update formula
for the increment in time dt:

X(t + dt) = X(t) + A(X(t), t)dt +
√

D(X(t), t)N(0, 1)
√

dt, (1)

where A(x, t) is the drift, D(x, t) is the diffusion function (both continuous in their arguments),
and N(0, 1) is a random variable with normal distribution of unit variance.

(a) Show that the update formula without N being a random variable cannot describe a continu-
ous memoryless process, due to violation of self-consistency.
Hint: Examine the update induced by t → t + dt; and compare it with the result obtained by
performing the same update in two steps, t → t + dt/2 → t + dt.

(b) Show that Eq. 1 does satisfy the self-consistency requirement.

(c) Derive the equation of motion for the mean ⟨X(t + dt)⟩ and the second moment ⟨X(t + dt)2⟩
by directly applying Eq. 1. Express the results as ordinary differential equations.

(d) Show that Eq. 1 is equivalent to the white noise Langevin equation:

dX
dt

= A(X(t), t) +
√

D(X(t), t)Γ(t). (2)

What is the explicit form of Γ(t); and what are the average and the two-point correlators of Γ?

2.2 Wiener-Khinchin theorem

For a stochastic process X(t), prove that the Fourier transform of the auto-correlation

CXX(τ) = ⟨X(t)X(t + τ)⟩

is related to the power spectrum SXX(ω) via

CXX(τ) =
∫

SXX(ω)e−iωτ dω

2π

Where the spectrum density is defined as SXX(ω) = ⟨|X̃(ω)|2⟩, with the normalized Fourier trans-
form X̃(ω) = limT→∞

1√
T

∫ T/2
−T/2 X(t)eiωt dt.

2.3 Review of Spectral Densities

Spectral densities are an often encountered and essential concept in both Engineering and Physics.
However, their definition can differ as they can be one- or two-sided spectral densities. This ex-
ercise is intended to clarify the difference and use of both notations. In Physics the definition
of spectral densities one often encounters is two-sided (extending over both negative and posi-
tive Fourier frequencies): SXX(ω) = ⟨|X̃(ω)|2⟩ = limT→∞ ⟨| 1

2π

∫ T/2
−T/2 X(t)eiωtdt|2⟩. The Wiener-

Khinchin theorem (see next problem) then implies that SXX(ω) = 1
2π

∫ ∞
−∞ CXX(τ)eiωτdτ where

CXX(τ) = ⟨X(t)X(t + τ)⟩.
1cf. D.T. Gillespie, “The mathematics of Brownian motion and Johnson noise”, Am. J. Phys. 64, 225 (1996)
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(a) Show that for the Orstein-Uhlenbeck process (defined with drift A(X, t) = −1/τ · X and
diffusion D(X, t) = c) the auto-correlation function CXX(τ) = ⟨X(t)X(t + τ)⟩ is symmetric2,
i.e. CXX(τ) = CXX(−τ).

(b) Show that for a symmetric autocorrelation function C(τ) = C(−τ) the two-sided spectrum
SXX(ω), as defined by SXX(ω) =

∫
C(τ)e−iωτdτ, is real, non-negative and even3, i.e. SXX(ω) =

SXX(−ω). This - and the fact that in experimental science negative frequencies cannot be read-
ily measured - motivates the use of a one-sided spectral density Ssingle

XX (ω) = 2 · SXX(ω) where,
ω ≥ 0.

(c) Show that the definitions of a double sided spectral density SXX(ω) = 1
2π

∫ ∞
−∞ C(τ)eiωτdτ and

Ssingle
XX (ω) = 4 1

2π

∫ ∞
0 C(τ)cos(ωt)dτ lead to Ssingle

XX (ω) = 2SXX(ω), where ω ≥ 0.

(d) Returning to the Ornstein-Uhlenbeck process (A(X, t) = −1/τ · X and D(X, t) = c) calculate
the two-sided spectral density of fluctuations SXX(ω) as well as the one-sided spectral density,
Ssingle

XX (ω).

2.4 Johnson noise and its spectrum(*)

Johnson noise (discovered by J.B. Johnson, and explained by H. Nyquist) refers to the random
fluctuations of the voltage across a resistor, due to the thermal motion of charge carriers.

(a) Consider a resistance R in series with an inductor L, for which Khirchoff’s laws imply

−RI(t)− L
dI(t)

dt
+ V(t) = 0.

Here, the voltage V is a random stochastic function. Bring this equation into the form of
a standard O-U process and determine the constants c and τ by supposing that the system
reaches thermal equilibrium.

(b) From this derive the fluctuation-dissipation relation

⟨V(t)V(t′)⟩ = 2kBTRδ(t − t′).

(c) Using the Wiener-Khinchin theorem, calculate the spectrum of voltage fluctuations SVV(ω).
The result SVV(ω) = 2kBTR is the Nyquist formula4. The frequency-independence of the
noise spectrum motivates the term white noise.

2Note that because X(t) is a real-valued and a classical variable, CXX(τ) is always real and symmetric in time since
⟨X(t)X(t′)⟩ = ⟨X(t′)X(t)⟩. This is not the case for a quantum mechanical operator. (See e.g. “Introduction to Quantum
Noise and Measurement” Clerk et al. Rev. Mod. Phys.).

3It is important to note that in Quantum Physics, the use of a two-sided spectral density is essential, as the spectral
densities are not generally symmetric - due to the non-zero commutation relations - as shown later in this class. See e.g.
“Introduction to Quantum Noise and Measurement” Clerk et al. Rev. Mod. Phys.

4Note that in the literature, the formula is often given for (experimentally more relevant) one-sided power densities
(i.e. for positive frequencies only), so that it reads 4kBTR.

2


	Stochastic differential equations
	Wiener-Khinchin theorem
	Review of Spectral Densities
	Johnson noise and its spectrum(*)

