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Solutions to Exercise No.1

1.1 Solution: Langevin equation

(a)

(b)

(©)

(d)

(e)

Straightforward computation gives,

d _ dx dv\ 5 _
ma(xv) =m (dtv+xdt> =mv°+x(—av+Fp). (1)

When doing the stochastic average, with respect to all possible realization of the random force,
the only thing that can happen is that one of the two averages does not exist. For nice and
smooth functions, it should always be possible to interchange the order of the derivative and
the average.

Taking the ensemble average of Eq. 1,

d

m (xv) = (mv?) — a (xv).

If we consider the long-time limit, when the system goes toward a stationary solution, we can
identify this to thermal equilibrium. The equipartition theorem then states that (mv?) = kgT.

We have
d (x?)
dt
From the previously derived equation, (xv) converges to kgT /« for long times. We then have
(x%(t)) = 2Dt for long times, with the diffusion constant D = T

o

=2 (xv).

For a particle of charge g, in a homogeneous stationary electric field E, and being impressed
upon by a Langevin force, the equation of motion reads,

do

T

+av =qgE + Fp.
Integrating this:
ot) = 0(0)e "+ [ (qE + Ey () e
= v(0)e~™/" 4 % (1 — e‘“t/’”) + % /Ot F (e 2=t /m gy,

Taking the limit t — oo, and ensemble averages:

lim (v(t)) = — = U=

t—o0 n©

qE q
>

Finally using the expression for the diffusion constant from above,

u/D =q/kgT.
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1.2 Solution: Smoluchowski equation

The discrete probability p(nA, (k+ 1)T) can be related to p((n — 1)A, kt) and p((n + 1)A, k7):

p(nA, (k+1)t) =r(nA)p((n — 1D)A, k1) + [(nA)p((n+1)A, k1)
= [% + Aa(n—1)A] x p((n —1)A kt) + [% —Aa(n+1)A] x p((n+1)A, kT)
(2)

By substracting p(nA, kt) on each side of the the equality, one obtains:

p(nd, (k+1)7) — p(nd, k1) :%[p((n +1)A,kT) — 2p(nA, kT) + p((n — 1)A, k)]

—Ala(n+1)Ax p((n+1)Akt) —a(n —1)A x p((n —1)A, kT)]
©)

By dividing by T on each side, one obtains:

p(nA, (k+1)7t) — p(nA,kt) A2 p((n+1)A,kt) —2p(nd, k) + p((n —1)A, kt)
T _E[ A2 )

2A% a(n+1)A x p((n+1)A,kt) —a(n—1)A x p((n —1)A, k7)
A 24 !

(4)

Notice that:
p((n+1)Akt) —2p(nA kt) + p((n —1)Akt) 1 p((n+1)Akt) — p(nA, k)
A2 - K[ A
(5)
_ p(ndkt) —p((n— 1)A,kT)]
A

Taking the limit A — 0 and T — 0, one gets the differential equation for continuous probability
distribution P(x, t):

oP(x,t) & d
ST DﬁP(x,t) - 4D$[a(x)P(x,t)] (6)
where we set %—i =D.
Dimensional analysis incites us to write 4Da(x) = %, where F(x) is the froce acting on the
particle. Thus,
oP(x,t) 9° 1 9
5 DﬁP(x,t) - m—vg[F(x)P(x,t)] )
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