

Statistical Physics IV: Non-equilibrium statistical physics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Exercise No. 11

11.1 Quantum master equation for a damped harmonic oscillator¹

The master equation describing the evolution of the reduced density matrix $\hat{\rho} = \text{Tr}_B \hat{\rho}_{SB}$ (traced over bath variables), takes the Lindblad form

$$\frac{d\hat{\rho}}{dt} = \frac{-i}{\hbar} [\hat{H}_0, \hat{\rho}] + \sum_k \left(\hat{L}_k \hat{\rho} \hat{L}_k^\dagger - \frac{1}{2} \{ \hat{L}_k^\dagger \hat{L}_k, \hat{\rho} \} \right),$$

where $\hat{H}_0 = \hbar\omega \hat{a}^\dagger \hat{a}$ and where the \hat{L}_k are the Lindblad jump operators describing each of the many possible decoherence mechanisms influenced by the bath degrees of freedom.

Here we consider a harmonic oscillator coupled to a thermal bath such that the bath affects the following two physical decoherence mechanisms:

- *Energy relaxation.* In this case the oscillator loses quanta into the bath, a process described by the Lindblad operator $\hat{L}_{1,-} = \sqrt{\gamma_1(\bar{n}+1)} \hat{a}$. This process is invariably accompanied by the stimulation of excitations in the oscillator by the bath, described by the jump operator $\hat{L}_{1,+} = \sqrt{\gamma_1 \bar{n}} \hat{a}^\dagger$. Here $\gamma_1 = 1/T_1$ is the energy relaxation rate of the oscillator, and \bar{n} its Bose-Einstein occupation at given bath temperature.
- *Phase damping.* In this case, there is no exchange of quanta between the bath and the oscillator, however the bath affects the oscillator by *resetting its state in the energy basis* (akin to a measurement) — this is described by the single Lindblad operator $\hat{L}_2 = \sqrt{\gamma_2} \hat{a}^\dagger \hat{a}$. Here, $\gamma_2 = 1/T_2$ is the dephasing rate of the oscillator.

(a) Derive the equation of motion for the density matrix elements in the number basis², $\rho_{n,m} = \langle n | \hat{\rho} | m \rangle$, for a zero-temperature bath, and show that it is of the form:

$$\frac{d\rho_{n,m}}{dt} = -i\omega_0(n-m)\rho_{n,m} - \left(\frac{n+m}{2T_1} + \frac{(n-m)^2}{2T_2} \right) \rho_{n,m} + \frac{\sqrt{(n+1)(m+1)}}{T_1} \rho_{n+1,m+1}$$

(b) For a density matrix diagonal in the number basis $|n\rangle$, $\rho_{n,m} = 0$ if $n \neq m$ and $p_n = \rho_{n,n}$. Show that the resulting equation of motion is analogous to that of a classical birth-death process. What are the transition probabilities in and out of the state $|n\rangle$?

(c) Consider the case where the oscillator only undergoes energy relaxation ($\gamma_2 = 0$). Show that the canonical thermal state $\hat{\rho}_{th} \propto \exp(-\hat{H}_0/k_B T)$ is an equilibrium solution of the master equation. What is the population distribution in such an equilibrium?

(d) Show that for the Fock state $|n\rangle$, the decoherence time is T_1/n .

(e) For the energy and phase damped oscillator ($\gamma_1, \gamma_2 \neq 0$), derive the equation of motion for $\langle \hat{a} \rangle$ and $\langle \hat{a}^\dagger \hat{a} \rangle$.

11.2 Quantum master equation for a two-level system³

We consider a two-level system, with Hamiltonian $\hat{H}_0 = \frac{1}{2}\hbar\omega_0\sigma_z$. We assume only energy relaxation i.e. a master equation with the sole jump operator $\hat{L} = \sqrt{\gamma} \hat{\sigma}_-$, which corresponds to coupling with a zero-temperature bath, and want to express the equation of motion for the two-level system density operator.

¹See Carmichael, "Statistical Methods in Quantum Optics 1", section 1.4.

²cf. Martinis, Phys. Rev. Lett. **103**, 200404 (2009) for an experimental investigation.

³Carmichael, "Statistical Methods in Quantum Optics 1", section 2.2.

- (a) Derive the equations of motion for the operators, $\langle \hat{\sigma}_z \rangle$, $\langle \hat{\sigma}_+ \rangle$, $\langle \hat{\sigma}_- \rangle$. These are known as the *optical Bloch equations*.
- (b) How are the components of the density matrix related to the above expectation values?
- (c) Show that the diagonal terms of the density matrix decay at double the rate of the off-diagonal elements for a zero-temperature bath and pure energy relaxation.
- (d) Assume now that the two-level system is driven by an external (classical) radiation field. The coupling hamiltonian takes the form, $\hat{H}_{drive} = \frac{\hbar\Omega}{2} (\hat{\sigma}_+ e^{-i\Omega_L t} + h.c.)$. Write down the Bloch equations for this situation.

11.3 Numerical simulation of the decoherence of a nonclassical state of a harmonic oscillator

Using QuTiP package simulate the quantum mechanical decoherence of a nonclassical state of motion, i.e. simulate the decay of a harmonic oscillator quantum state in the presence of pure energy relaxation for the initial state $|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |3\rangle)$. This state is a superposition of a vacuum state and a state having energy $3\hbar\omega$. Assume a zero temperature bath, which allows to truncate the Hilbert space for $n > 3$. Simulate the evolution of the density matrix components ρ_{00} , ρ_{11} , etc... using the master equation derived in Ex1 above. Your result should model the results of the experiments carried out by Martinis⁴.

11.4 Two-level system as a spectrum analyser (*)

Consider a two-level system whose free evolution is determined by the hamiltonian

$$\hat{H} = \frac{\hbar\omega_0}{2}\hat{\sigma}_z.$$

It is coupled to an external “field” $f(t)$ via a dipole-like interaction,

$$\hat{H}_{int} = \hbar g f(t) \hat{\sigma}_x.$$

We will assume that $g \ll \omega_0$, so that the system can be analyzed perturbatively.

- (a) Assume that the two-level system is prepared in its ground state $|0\rangle$ at time $t = 0$. Using the Schrödinger equation show that the probability amplitude for the system to be in its excited state at time t is given by,

$$\langle 1 | \psi(t) \rangle = -ig \int_0^t f(t') e^{-i\omega_0 t'} dt' + \mathcal{O}(g^2).$$

- (b) Thus, show that the average \mathbb{E} (over realizations of the possibly random “field” f) probability to find the system in the excited state is given by,

$$p_1(t) = \mathbb{E} [|\langle 1 | \psi(t) \rangle|^2] \approx g^2 \int_0^t e^{i\omega_0(t-t'')} \mathbb{E} [f(t') f(t'')] dt' dt''.$$

- (c) Assume now that f is weak and stationary. Show that under this condition, the average excitation probability takes the form,

$$p_1(t) \approx g^2 t \cdot S_{ff}(\omega_0),$$

where $S_{ff}(\omega_0)$ is the double-sided spectral density of the field f . The transition rate to the upper state, $\Gamma_1 = \dot{p}_1(t) = g^2 S_{ff}(\omega_0)$.

Thus by measuring the transition rate of a tunable two-level system, one can measure the quantum noise of externally coupled variables.

⁴See Figure 1C of “Decoherence Dynamics of Complex Photon States in Superconducting Circuits”, Physical Review Letters, 103, 200404 (2009).