Prof. T.]. Kippenberg
Spring Term 2025

Statistical Physics I'V: Non-equilibrium statistical physics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Exercise No.10

10.1 Standard quantum limit for gravitational wave detection !

(This exercise has 20 points)

In interferometric gravitational waves detectors (LIGO,
Virgo, GEO600) the tiny displacements of test masses
are inferred from the phase modulation of laser light,
reflected from these masses. The equivalent scheme of
gravitational waves detector is a one-sided optical cav-
ity, one mirror of which is mounted on a spring that al-
lows it to move as a harmonic oscillator with frequency
), and decay rate I'y,. Displacement x of the movable
mirror modulates the optical cavity frequency w, as

W, = (CUQ + \/igo J?),

thus resulting in phase-modulation of the intracavity
field 4. The field 4 leaks out of the cavity with the de-
cay rate x, creating the output optical field ¢,

ﬁout = ﬁin - ﬁa/

which can be directly detected.

The effect of gravitational waves in such picture is
equivalent to a weak force Fgy(t) applied to the test
mass, which excites motion of the mass £(¢) and can be
detected as phase modulation of the output field 4.

Sensitivity of the real-life gravitational wave detec-
tors are limited by many factors, the most important of
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Figure 1: a) A realistic gravitational wave
detector scheme b) The equivalent model
of gravitational waves detector

which are the thermal noise, seismic noise at low frequencies and the laser shot noise at high fre-
quencies. However, there is also a fundamental limitation on the precision of force measurements,
the Standard Quantum Limit (SQL), which the present exercise derives. In state of the art gravita-

tional waves detectors the contribution of this quantum noise can be at the level of percents.

1. Write down Hamiltonian for the system shown at the Fig. 10.1(b) including the energies
of the optical field, mechanical oscillator, their interaction and the classical force Foy (t)
((Few(t)) = 0) acting on the oscillator. It is convenient work in terms of the creation/annihilation
operators for the optical field (4) and dimensionless position (£) and momentum (p) of the
harmonic oscillator,

N A

b+ bt h— bt
V2 iv2 '’

where b is the annihilation operator for phonons. In such notations Fgy () = fiks(t).

X =

f):

2. Assume that a strong coherent laser drive, at the frequency wy, is applied to the system.
In the reference frame, rotating with the laser frequency for the optical field, expand the

ISee the seminal article “Quantum limits in interferometric detection of gravitational radiation” by Pace et al. and
Walls, “Quantum Optics”, chapter 8.3.
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Hamiltonian around the average coherent values of operators

ad=ua+4dd,
X=X+ 0%,
p=2op,

where «, X are real numbers and 44, 6%, 6p contain the quantum flucutations. ¥ is the average
shift of the mirror position due to radiation pressure.

In a steady-state from the known « find ¥ and comment on why the average momentum
displacement p = 0. Also show that the linearized interaction part of the Hamiltonian is

Hine = V2hig (64 + da%)o%,
where ¢ = gou is the loaded cooperativity.

Show that the detection imprecision SIP caused by laser shot noise and the radiation pres-

sure force exerted onto the mechanics S¢p (F = —%—Ij) obeys the relation SFFS;TP < /4.

Further show that the measurement rate I'jeas = ﬁ is equal to or less than the back-action

rate FBA = h%Spp.

Assume that the laser drive frequency is set on resonance, i.e. such that the steady state
detuning from the shifted cavity frequency is zero,

Wi, = wo + \ﬁgof

Write the quantum Langevin equations for the position () and momentum (p) of the me-
chanical oscillator and phase (Y) and amplitude (X) quadratures of the optical field, defined

a52

oa + sa’ 57— o - sa’
V2 iv?2
As derived in the lectures and earlier exercises include dissipation for the optical cavity cou-

pled to the input field 4;, through a partially reflecting mirror at a rate x and the mechanics
energy relaxation rate I';,. Neglect noise input for the mechanical oscillator.

X =

The Langevin equations can be solved in Fourier domain. First express the intracavity fluc-
tuations of the field §X[w] and 6Y[w] in terms of the optical input noises X, [w] and 6 Vin [w]
and the mechanical motion 6%[w]. Show that only the phase quadrature of the field is mod-
ulated by the mechanical motion and thus carries information about the force, acting on the
oscillator.

Express the motion of the oscillator é£[w] in terms of the optical input noises Xi,[w] and
8Yin|w] and the gravitational force ks(t). Introduce the mechanical susceptibility to force
Xmlw] = Qu/ ((iw — Ty /2)? + Q3,) for the brevity of notations, so that

0% |w] = xm[w](Few([w] + Fa[w]).

The noise force F,[w] due to the optical field (Quantum back-action of measurements or
Radiation Pressure Shot Noise) is contaminating the measurements of s(¢).

In an experiment it is the output field Y out [w] that is being detected. Give the expression
for such fluctuations

8Yout[w] = 8Vin[w] — V&Y [w] = A[w]dYin[w] + B[w]dXin[w] + Clw]s|w]. (1)

2Note that different conventions exist for the definitions of the quadrature operators in the literature.
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8. The spectrum of the detected signal is given by the symmetrized power spectrum of Yoy

Shuleo) = 5 (((OFoule) " OFoule]) + (8Foule] (Foutlw]))) @

in order to compute which one needs to know the correlations of the incoming light. For a
coherent laser drive

<5ﬁm(t) [5ﬁm(t’)]+> —5(t—t)
<[(Sﬁin(t)]+5ﬁin(t’)> — 0.

Give the expressions for < ((5Yin [w]) f 0Yin[w'] >, < (6Xin[w]) ' 0 Xin[w'] >, < (5Yin [w]) T O Xin[w'] >
(note that e.g. (5Y[w])+ # oYHw)).

Argue why the cross correlators between & Yi, and 6X;, do not contribute to the experimen-
tally relevant symmetrized power spectrum. The latter means that the spectrum of the phase
fluctuations will depend only on the squared amplitudes of the quantities A(w), B(w), C(w)
calculated above, and not on any cross products.

Calculate the spectrum in the eq. (2).

9. Returning to the expression for Y out [w] (Eq. 2), identify the terms which correspond to the
gravitational signal, laser shot noise in the detection and the measurement back action noise,
caused by the fluctuation of the laser field driving the oscillator.

10. From the output signal given by the Eq. 1 the gravitational waves signal (s(¢)) can be esti-
mated as Alew] Blow]
w)] ¢ w
sest[w] = S[CU] + m(st[W] + m
The detection noise is given by the last two terms, which have different scaling with input
optical power (P, &% « ¢?). Show that there exists an optimum input power for which
the noise spectral density is minimum and find this power (in terms of g). Adopt here
the approximation that all the Fourier frequencies of interest is within the cavity linewidth
(w < «), which is the most favorable situation for interferometric measurements. Show that

the minimum noise spectral density is given by

6 Xin[w). 3)

APy | (Bl 1
Snoise,SQL[w] - ‘C[wHZSm ’C[a]]|25§1 N m (4)

This is the standard quantum limit (SQL) for a linear measurement. If the laser power is too
low, the output is dominated by the shot noise, and if it is too high, the quantum intensity
fluctuations drive the mechanical oscillator and drown the signal to be measured.

10.2 Quantum regression theorem and photon bunching?

For a set of operators Aﬂ (t) evolving under the equations of motion

4 1)) =Y Mu (A1)

the quantum regression theorem takes place:

ddr<ol()A (t+1)02(1)) = L My (O1(DA(t+7)02(0)

3Carmichael, “Statistical Methods in Quantum Optics 17, section 1.5.
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where O1,z(t) are arbitrary system operators.

Consider an energy-damped harmonic oscillator with dissipation constant . Under these
conditions using the regression theorem show that the photon statistics is an example of photon
bunching? such that

<a*(t)ﬁ*(t +r)a(t+ T)ﬁ(t)> — 7% (1+e ).

10.3 Asymmetry of the spectral density of the quantum harmonic oscillator °

Consider a simple quantum harmonic oscillator with mass m and frequency (). The oscillator is
at a temperature T; this temperature is maintained through an infinitesimal coupling to a heat
bath (therefore, one can neglect the energy decay rate x of the oscillator). Let £ and p denote the
position and momentum operators (obeying the canonical commutation relation) and 4, a' the
standard annihilation and creation operators.

1. Show that the autocorrelation function of the position operator is given by

2. Show that in thermal equilibrium the following expressions hold: (£(0)p(0)) = if/2 and
(p(0)%(0)) = —in/2

3. Using these expressions, show that the autocorrelation function is given by
Crx(t) o 7i(7Q)e™ + [2(hQ) + 1]e ¥,
where 7 is the Bose-Einstein occupation factor. Calculate the proportionality factor.

4. Using this correlation function, calculate the spectral density Syx(w) and show that it is
asymmetric in frequency. Show that in the high temperature limit (kgT >> h(}), this spectral
density becomes symmetric (thus, it coincides with the classical case).

We note that the positive-frequency part of the spectral density is a measure of the ability of the
oscillator to absorb energy, while the negative-frequency part is a measure of the ability of the
oscillator to emit energy.

10.4 Asymmetry of the spectral density of the quantum harmonic oscillator with damp-
ing (*)6

We will repeat the calculation of the spectral density of a quantum harmonic oscillator, but now

taking damping into consideration. Therefore, we start from the quantum Langevin-equation

= —iQa — ga — VxFn(t)

==

Here, F,, is the input noise operator which satisfies the following time-domain correlation rela-
tions:
(EL(DEn(t) = 7é(t — 1)

(Fn(HEL()) = (A +1)o(t — 1)

4Two photons are more likely to be detected at the same time. This effect was used by Hanbury Brown and Twiss to
measure the apparent solid angle of stars, see “A test of a new type of stellar Interferometer on Sirius”, Nature 1956.

Ssee Clerk et al: Introduction to quantum noise, measurement and amplification, RMP 82 (2010) Sec. 2 on quantum
noise spectra

6This is a bonus exercise
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1. Write down the correlation relations for the input noise operators written above in the fre-
quency domain.

2. By solving the Langevin-equation for 4 and 4" in the frequency domain, calculate the spectral
densities S+, (w) = [* (4T (t+ T)a(t))e™TdT and S,,+ (w) (defined analogously).

3. Next, express Syy(w) in terms of S;i,(w) and S,,+(w) and show that indeed, the position
spectral density of a damped quantum harmonic oscillator is asymmetric in frequency.
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