

Statistical Physics IV: Non-equilibrium statistical physics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Solutions to Exercise No.9

Solution: Quantization of an electrical LC circuit

(a) $H = \frac{1}{2} \frac{Q^2}{C} + \frac{1}{2} \frac{\Phi^2}{L}$

(b) By ensuring $[a, a^\dagger] = 1$, one gets a first equation for the factors of interest. To obtain the second equation, one has multiple options. First, one can make sure that a gets a meaningful dimension. Second, one can compute the Hamiltonian and cancel the terms aa , $a^\dagger a^\dagger$. Then one gets

$$\begin{aligned}\hat{\Phi} &= \Phi_{zpf}(\hat{a} + \hat{a}^\dagger) & \Phi_{zpf} &= \sqrt{\frac{\hbar}{2} \sqrt{\frac{L}{C}}} \\ \hat{Q} &= Q_{zpf} \frac{(\hat{a} - \hat{a}^\dagger)}{i} & Q_{zpf} &= \sqrt{\frac{\hbar}{2} \sqrt{\frac{C}{L}}} \\ \hat{a} &= \frac{1}{2} \left(\frac{\hat{\Phi}}{\Phi_{zpf}} + i \frac{\hat{Q}}{Q_{zpf}} \right)\end{aligned}$$

One should then derive

$$H = \hbar \frac{1}{\sqrt{LC}} (a^\dagger a + \frac{1}{2})$$

(c) One obtains the zero point fluctuations derived above.

Solution: The Sudarshan-Glauber representation of a density matrix

1.

$$\int d^2\alpha |\alpha\rangle \langle \alpha| = \sum_{n,m} \frac{1}{\sqrt{n!m!}} |n\rangle \langle m| \underbrace{\int d^2\alpha e^{-|\alpha|^2} \alpha^n (\alpha^*)^m}_{(*)} \quad (1)$$

$$(*) = \int_0^\infty dr e^{-r^2} r^{n+m} \int_0^{2\pi} d\phi e^{i\phi(n-m)} \quad (2)$$

$$\stackrel{r^2=s}{=} 2\pi \delta(n-m) \cdot \frac{1}{2} \int_0^\infty ds e^{-s} s^{\frac{n+m}{2}} \quad (3)$$

$$= \pi \delta(n-m) \left(\frac{n+m}{2} \right)! \quad (4)$$

$$\Rightarrow \int \frac{d^2\alpha}{\pi} |\alpha\rangle \langle \alpha| = \frac{1}{\pi} \pi \sum_n |n\rangle \langle n| = \mathbb{1} \quad (5)$$

2.

$$\langle \alpha | \beta \rangle = e^{-\frac{|\alpha|^2}{2}} e^{-\frac{|\beta|^2}{2}} \sum_{n,m} \frac{(\alpha^*)^n \beta^m}{\sqrt{n!m!}} \langle n | m \rangle = e^{-\frac{|\alpha|^2}{2}} e^{-\frac{|\beta|^2}{2}} e^{\alpha^* \beta} \quad (6)$$

$$\Rightarrow |\alpha\rangle = \int \frac{d^2\beta}{\pi} |\beta\rangle \langle \beta| |\alpha\rangle = \frac{e^{-|\alpha|^2/2}}{\pi} \int e^{-|\beta|^2/2 + \beta^* \alpha} |\beta\rangle d^2\beta \quad (7)$$

3. This is trivial

$$\hat{O} = \mathbb{1} \hat{O} \mathbb{1} = \int O(\alpha, \beta) |\alpha\rangle \langle \beta| d^2\alpha d^2\beta, \quad (8)$$

4.

$$O(\alpha, \beta) = \frac{1}{\pi^2} \int d^2\alpha' \int d^2\beta' \langle \alpha | \alpha' \rangle \frac{\langle \alpha' | \hat{O} | \beta' \rangle}{\pi^2} \langle \beta' | \beta \rangle \quad (9)$$

$$= \frac{e^{-(|\alpha|^2+|\beta|^2)/2}}{\pi^2} \int O(\alpha', \beta') e^{-(|\alpha'|^2+|\beta'|^2)/2+\alpha^*\alpha'+\beta(\beta')^*} d^2\alpha' d^2\beta' \quad (10)$$

5.

$$\hat{O} = \int P(\beta) |\beta\rangle \langle \beta| d^2\beta \quad (11)$$

$$\langle -\alpha | \hat{O} | \alpha \rangle = \int d^2\beta P(\beta) e^{-(|\alpha|^2+|\beta|^2)/2} e^{\beta^*\alpha - \alpha^*\beta} e^{-(|\alpha|^2+|\beta|^2)/2} \quad (12)$$

So,

$$\int d^2\alpha \langle -\alpha | \hat{O} | \alpha \rangle e^{|\alpha|^2+|\beta|^2+\alpha^*\beta'-\beta'^*\alpha} \quad (13)$$

$$= \int d^2\beta \int d^2\alpha P(\beta) e^{|\beta'|^2-|\beta|^2} e^{\alpha^*(\beta'-\beta)-\alpha(\beta'^*\beta-\beta^*)} \quad (14)$$

$$= \int d^2\beta P(\beta) e^{|\beta'|^2-|\beta|^2} \int d^2\alpha e^{2i \text{Im}[\alpha^*(\beta'-\beta)]} \quad (15)$$

$$= \int d^2\beta P(\beta) e^{|\beta'|^2-|\beta|^2} \int d^2\alpha e^{2i \text{Re}[\alpha] \text{Im}[\beta'-\beta] - 2i \text{Im}[\alpha] \text{Re}[\beta'-\beta]} \quad (16)$$

$$= \int d^2\beta P(\beta) e^{|\beta'|^2-|\beta|^2} (2\pi)^2 \delta(\text{Im}[\beta'] - \text{Im}[\beta]) \delta(\text{Re}[\beta'] - \text{Re}[\beta]) \quad (17)$$

$$= \pi^2 P(\beta'). \quad (18)$$

$$\Rightarrow P(\beta) = \int O(-\alpha, \alpha) e^{|\alpha|^2+|\beta|^2+\alpha^*\beta-\beta^*\alpha} d^2\alpha. \quad (19)$$

Solution: Quantum Langevin equation for a harmonic oscillator interacting with a heat bath

1. The full interaction Hamiltonian will contain terms like:

$$\sum_k (\hat{a} + \hat{a}^\dagger)(\hat{b}_k - \hat{b}_k^\dagger) = \sum_k \hat{a}\hat{b}_k - \hat{a}\hat{b}_k^\dagger + \hat{a}^\dagger\hat{b}_k - \hat{a}^\dagger\hat{b}_k^\dagger. \quad (20)$$

We can change reference frame (or, equivalently, go to the interaction picture) and do the following substitutions: $\hat{a} \rightarrow \hat{a}e^{-i\omega_s t}$ and $\hat{b} \rightarrow \hat{b}e^{-i\omega_k t}$. So that the terms above become:

$$\sum_k \hat{a}\hat{b}_k e^{-i(\omega_k+\omega_s)t} - \hat{a}\hat{b}_k^\dagger e^{i(\omega_k-\omega_s)t} + \hat{a}^\dagger\hat{b}_k e^{-i(\omega_k-\omega_s)t} - \hat{a}^\dagger\hat{b}_k^\dagger e^{i(\omega_k+\omega_s)t}. \quad (21)$$

Now if $|\omega_k + \omega_s| \gg |\omega_k - \omega_s|$, the terms with $e^{\pm i(\omega_k+\omega_s)t}$ will average to zero over much shorter time scales than the terms with $e^{\pm i(\omega_k-\omega_s)t}$, thus the former terms can be neglected. This is the rotating wave approximation.

2. We calculate the equations of motion using $\partial_t \hat{O} = \frac{i}{\hbar} [H, \hat{O}]$. A straightforward calculation leads to:

$$\partial_t \hat{a} = -i\omega_s \hat{a} - i \sum_k g_k \hat{b}_k \quad (22)$$

$$\partial_t \hat{b}_k = -i\omega_k \hat{b}_k - i g_k \hat{a} \quad (23)$$

3. First we formally integrate the equation for \hat{b}_k . We obtain (can be verified by substitution or derived using variation of the constant):

$$\hat{b}_k(t) = \hat{b}_k(0)e^{-i\omega_k t} - ig_k \int_0^t dt' \hat{a}(t') e^{i\omega_k(t-t')} . \quad (24)$$

We now insert this back into the expression for \hat{a} :

$$\partial_t \hat{a} = -i\omega_s \hat{a}(t) - \underbrace{i \sum_k g_k \hat{b}_k(0) e^{-i\omega_k t} - \sum_k g_k^2 \int_0^t dt' \hat{a}(t') e^{i\omega_k(t-t')}}_{\hat{f}_a(t)} . \quad (25)$$

Now we transform the sum into an integral:

$$\sum_k g_k^2 \rightarrow \int_0^\infty d\omega_k D(\omega_k) |g(\omega_k)|^2 ; \quad (26)$$

and apply the 1st Markov approximation $g_k = g(\omega_k) = g$ and make the assumption that the density of states is slowly varying $D(\omega) = D(\omega_s)$:

$$\sum_k g_k^2 \int_0^t dt' \hat{a}(t') e^{-i\omega_k(t-t')} = \int_0^\infty d\omega_k D(\omega_k) |g(\omega_k)|^2 \int_0^t dt' \hat{a}(t') e^{-i\omega_k(t-t')} \quad (27)$$

$$= D(\omega) |g(\omega)|^2 \int_0^t dt' \hat{a}(t') \int_0^\infty d\omega_k e^{-i\omega_k(t-t')} \quad (28)$$

$$= D(\omega) |g(\omega)|^2 \int_0^t dt' \hat{a}(t') 2\pi\delta(t-t') \quad (29)$$

$$= 2\pi D(\omega) |g(\omega)|^2 \frac{1}{2} \hat{a}(t) \equiv \frac{\kappa}{2} \hat{a}(t) . \quad (30)$$

Finally we obtain the QLE for \hat{a} :

$$\partial_t \hat{a}(t) = -i\omega_s \hat{a}(t) - \frac{\kappa}{2} \hat{a}(t) + \hat{f}_a(t) . \quad (31)$$

4. Take an operator \hat{a} whose equation of motion is given by $\partial_t \hat{a} = \frac{i}{\hbar} [H, \hat{a}]$. Then $\hat{\tilde{a}} = \hat{a} e^{-i\omega t}$ has the equation of motion:

$$\partial_t \hat{\tilde{a}} = i\omega \hat{\tilde{a}} + \frac{i}{\hbar} [H, \hat{\tilde{a}}] . \quad (32)$$

So with going to a frame rotating with ω_s ($\hat{a} = \hat{\tilde{a}} e^{i\omega_s t}$):

$$\partial_t \hat{\tilde{a}} = -\frac{\kappa}{2} \hat{\tilde{a}}(t) + \hat{f}_{\tilde{a}}(t) \quad (33)$$

5. $F(t) = \hat{f}_{\tilde{a}}(t)$

$$\langle F^\dagger(t) F(t') \rangle = \sum_k \sum_{k'} g_k g_{k'} e^{i\omega_k t - i\omega_{k'} t'} \langle \hat{b}_k^\dagger(0) \hat{b}_{k'}(0) \rangle \quad (34)$$

$$= 2\pi \sum_k g_k^2 \bar{n}_k e^{i\omega_k(t-t')} \quad (35)$$

$$= \int_0^\infty d\omega g^2(\omega) \bar{n}(\omega) e^{i\omega_k(t-t')} D(\omega) \quad (36)$$

$$= \kappa \bar{n}_{\text{th}} \delta(t-t') \quad (37)$$

6.

$$\partial_t [\hat{a}(t), \hat{a}^\dagger(t)] = -\kappa [\hat{a}(t), \hat{a}^\dagger(t)] + [F(t), \hat{a}^\dagger(t)] + [\hat{a}(t), F^\dagger(t)] \quad (38)$$

To compute $[\hat{a}(t), F^\dagger(t)]$ we use $\hat{a}(t) = \hat{a}(0)e^{-\frac{\kappa}{2}t} + \int_0^t dt' e^{-\frac{\kappa}{2}(t-t')} F(t')$ and obtain:

$$[\hat{a}(t), F^\dagger(t)] = \int_0^t dt' e^{-\frac{\kappa}{2}(t-t')} [F(t'), F^\dagger(t)] \quad (39)$$

$$= \frac{\kappa}{2} = [F(t), \hat{a}^\dagger(t)]. \quad (40)$$

So

$$\partial_t [\hat{a}(t), \hat{a}^\dagger(t)] = -\kappa [\hat{a}(t), \hat{a}^\dagger(t)] + \kappa = 0 \quad \forall t \quad (41)$$

knowing that $[\hat{a}(0), \hat{a}^\dagger(0)]$.

7.

$$\langle \partial_t \hat{a} \rangle = \partial_t \langle \hat{a} \rangle = -\frac{\kappa}{2} \langle \hat{a}(t) \rangle + \langle F(t) \rangle = -\frac{\kappa}{2} \langle \hat{a}(t) \rangle \Rightarrow \langle \hat{a}(t) \rangle = \langle \hat{a}(0) \rangle e^{-\frac{\kappa}{2}t} \quad (42)$$

8. Using all the information up until now it is a straightforward calculation to find the equation of motion

$$\langle t | N | t \rangle = -\kappa \langle N(t) \rangle + \langle F^\dagger(t) \hat{a}(t) \rangle + \langle \hat{a}^\dagger(t) F(t) \rangle = -\kappa \langle N(t) \rangle + \kappa \bar{n}_{\text{th}} \quad (43)$$

which solves to:

$$\langle N(t) \rangle = (\langle N(0) \rangle - \bar{n}_{\text{th}}) e^{-\kappa t} + \bar{n}_{\text{th}} \quad (44)$$