
Prof. T.J. Kippenberg
Spring Term 2024

Statistical Physics IV: Non-equilibrium statistical physics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Solutions to Exercise No.9

Solution: Quantization of an electrical LC circuit

(a) H = 1
2

Q2

C + 1
2

Φ2

L

(b) By ensuring
[
a, a†] = 1, one gets a first equation for the factors of interest. To obtain the

second equation, one has multiple options. First, one can make sure that a gets a meaningful
dimension. Second, one can compute the Hamiltonian and cancel the terms aa, a†a†. Then one
gets

Φ̂ = Φzp f (â + â†) Φzp f =

√
h̄
2

√
L
C

Q̂ = Qzp f
(â − â†)

i
Qzp f =

√
h̄
2

√
C
L

â =
1
2

(
Φ̂

Φzp f
+ i

Q̂
Qzp f

)
One should then derive

H = h̄
1√
LC

(a†a +
1
2
)

(c) One obtains the zero point fluctuations derived above.

Solution: The Sudarshan-Glauber representation of a density matrix

1. ∫
d2α |α⟩ ⟨α| = ∑

n,m

1√
n!m!

|n⟩ ⟨m|
∫

d2α e−|α|2 αn(α∗)m︸ ︷︷ ︸
(⋆)

(1)

(⋆) =

∞∫
0

dr e−r2
rn+m

2π∫
0

dϕ eiϕ(n−m) (2)

r2=s
= 2πδ(n − m) · 1

2

∞∫
0

ds e−ss
n+m

2 (3)

= πδ(n − m)

(
n + m

2

)
! (4)

⇒
∫ d2α

π
|α⟩ ⟨α| = 1

π
π ∑

n
|n⟩ ⟨n| = 1 (5)

2.

⟨α| |β⟩ = e−
|α|2

2 e−
|β|2

2 ∑
n,m

(α∗)nβm
√

n!m!
⟨n| |m⟩ = e−

|α|2
2 e−

|β|2
2 eα∗β (6)

⇒ |α⟩ =
∫ d2β

π
|β⟩ ⟨β| |α⟩ = e−|α|2/2

π

∫
e−|β|2/2+β∗α |β⟩ d2β (7)

3. This is trivial
Ô = 1Ô1 =

∫
O(α, β) |α⟩ ⟨β| d2α d2β, (8)
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4.

O(α, β) =
1

π2

∫
d2α′

∫
d2β′ ⟨α| |α′⟩ ⟨α

′| Ô |β′⟩
π2 ⟨β′| |β⟩ (9)

=
e−(|α|2+|β|2)/2

π2

∫
O(α′, β′)e−(|α′|2+|β′|2)/2+α∗α′+β(β′)∗d2α′ d2β′ (10)

5.
Ô =

∫
P(β) |β⟩ ⟨β|d2β (11)

⟨−α| Ô |α⟩ =
∫

d2β P(β)e−(|α|2+|β|2)/2eβ∗α−α∗βe−(|α|2+|β|2)/2 (12)

So, ∫
d2α ⟨−α| Ô |α⟩ e|α|

2+|β|2+α∗β′−β′∗α (13)

=
∫

d2β
∫

d2α P(β)e|β
′|2−|β|2 eα∗(β′−β)−α(β′∗−β∗) (14)

=
∫

d2β P(β)e|β
′|2−|β|2

∫
d2α e2i Im[α∗(β′−β)] (15)

=
∫

d2β P(β)e|β
′|2−|β|2

∫
d2α e2i Re[α] Im[β′−β]−2i Im[α]Re[β′−β] (16)

=
∫

d2β P(β)e|β
′|2−|β|2(2π)2δ(Im[β′]− Im[β])δ(Re[β′]− Re[β]) (17)

= π2P(β′) . (18)

⇒ P(β) =
∫

O(−α, α)e|α|
2+|β|2+α∗β−β∗α d2α. (19)

Solution: Quantum Langevin equation for a harmonic oscillator interacting with a heat
bath

1. The full interaction Hamiltonian will contain terms like:

∑
k
(â + â†)(b̂k − b̂†

k ) = ∑
k

âb̂k − âb̂†
k + â†b̂k − â†b̂†

k . (20)

We can change reference frame (or, equivalently, go to the interaction picture) and do the
following substitutions: â → âe−iωst and b̂ → b̂e−iωkt. So that the terms above become:

∑
k

âb̂ke−i(ωk+ωs)t − âb̂†
k ei(ωk−ωs)t + â†b̂ke−i(ωk−ωs)t − â†b̂†

k ei(ωk+ωs)t . (21)

Now if |ωk + ωs| ≫ |ωk − ωs|, the terms with e±i(ωk+ωs)t will average to zero over much
shorter time scales than the terms with e±i(ωk−ωs)t, thus the former terms can be neglected.
This is the rotating wave approximation.

2. We calculate the equations of motion using ∂tÔ = i
h̄

[
H, Ô

]
. A straightforward calculation

leads to:

∂t â = −iωs â − i ∑
k

gk b̂k (22)

∂tb̂k = −iωk b̂k − igk â (23)
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3. First we formally integrate the equation for b̂k. We obtain (can be verified by substitution or
derived using variation of the constant):

b̂k(t) = b̂k(t)e−iωkt − igk

t∫
0

dt′ â(t′)eiωk(t−t′) . (24)

We now insert this back into the expression for â:

∂t â = −iωs â(t)−i ∑
k

gk b̂k(0)e−iωkt

︸ ︷︷ ︸
f̂a(t)

−∑
k

g2
k

t∫
0

dt′ â(t′)eiωk(t−t′) . (25)

Now we transform the sum into an integral:

∑
k

g2
k →

∞∫
0

dωk D(ωk)|g(ωk)|2 ; (26)

and apply the 1st Markov approximation gk = g(ωk) = g and make the assumption that the
density of states is slowly varying D(ω) = D(ωs):

∑
k

g2
k

t∫
0

dt′ â(t′)e−iωk(t−t′) =

∞∫
0

dωk D(ωk)|g(ωk)|2
t∫

0

dt′ â(t′)e−iωk(t−t′) (27)

= D(ω)|g(ω)|2
t∫

0

dt′ â(t′)
∞∫

0

dωk e−iωk(t−t′) (28)

= D(ω)|g(ω)|2
t∫

0

dt′ â(t′)2πδ(t − t′) (29)

= 2πD(ω)|g(ω)|2 1
2

â(t) ≡ κ

2
â(t) . (30)

Finally we obtain the QLE for â:

∂t â(t) = −iωs â(t)− κ

2
â(t) + f̂a(t) . (31)

4. Take an operator â whose equation of motion is given by ∂t â = i
h̄ [H, â]. Then ˆ̃a = âe−iωt has

the equation of motion:

∂t ˆ̃a = iω ˆ̃a +
i
h̄
[
H, ˆ̃a

]
. (32)

So with going to a frame rotating with ωs (â = ˆ̃aeiωst):

∂t ˆ̃a = −κ

2
ˆ̃a(t) + f̂ ã(t) (33)

5. F(t) = f̂ ã(t) 〈
F†(t)F(t′)

〉
= ∑

k
∑
k′

gkgk′eiωkt−iωk′ t
′
〈

b̂†
k (0)b̂k′(0)

〉
(34)

= 2π ∑
k

g2
k n̄keiωk(t−t′) (35)

=

∞∫
0

dω g2n̄(ω)eiωk(t−t′)D(ω) (36)

= κn̄thδ(t − t′) (37)
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6.

∂t

[
ˆ̃a(t), ˆ̃a†(t)

]
= −κ

[
ˆ̃a(t), ˆ̃a†(t)

]
+
[

F(t), ˆ̃a†(t)
]
+
[

ˆ̃a(t), F†(t)
]

(38)

To compute
[

ˆ̃a(t), F†(t)
]

we use ˆ̃a(t) = ˆ̃a(0)e−
κ
2 t +

t∫
0

dt′ e−
κ
2 (t−t′)F(t′) and obtain:

[
ˆ̃a(t), F†(t)

]
=

t∫
0

dt′ e−
κ
2 (t−t′)

[
F(t′), F†(t)

]
(39)

=
κ

2
=
[

F(t), ˆ̃a†(t)
]

. (40)

So
∂t

[
ˆ̃a(t), ˆ̃a†(t)

]
= −κ

[
ˆ̃a(t), ˆ̃a†(t)

]
+ κ = 0 ∀t (41)

knowing that
[

ˆ̃a(0), ˆ̃a†(0)
]
.

7. 〈
∂t ˆ̃a
〉
= ∂t

〈
ˆ̃a
〉
= −κ

2
〈

ˆ̃a(t)
〉
+ ⟨F(t)⟩ = −κ

2
〈

ˆ̃a(t)
〉
⇒

〈
ˆ̃a(t)

〉
=
〈

ˆ̃a(0)
〉

e−
κ
2 t (42)

8. Using all the information up until now it is a straightforward calculation to find the equation
of motion

⟨t|N|t⟩ = −κ ⟨N(t)⟩+
〈

F†(t) ˆ̃a(t)
〉
+
〈

ˆ̃a†(t)F(t)
〉
= −κ ⟨N(t)⟩+ κn̄th (43)

which solves to:
⟨N(t)⟩ = (⟨N(0)⟩ − n̄th) e−κt + n̄th (44)
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