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Preface to the Third Edition

The methods in this book were developed for use in quantum optics, but they do
have a much wider relevance. The basic concepts, related to the manipulation of
quantum states in the presence of noise, are fundamental to any study of a wide
range of physical systems, and the methods can often be appropiately adapted.

A particular example is the field of Bose-Einstein condensation, which has a
long history as a part of condensed matter physics. With the dramatic experimental
creation of alkali atom condensates in 1995, a whole body of theoretical work on
them has arisen, and the field is now in the process of diversifying into the physics
of cold atoms, including degenerate cold Fermi gases. This is now leading to a more
unified view of the overall field of quantum statistics, of which quantum optics and
condensed matter physics form significant subfields.

Another field which is more directly connected to quantum optics is that of quan-
tum information theory and quantum computing, for which there are several differ-
ent proposed experimental implementations, and a very extensive literature on its
purely theoretical aspects. Connected to this is the concept of quantum state en-
gineering: The engineering of interesting and useful quantum states. Currently,
the frontier is moving towards building larger composite systems of a few atoms
and photons, while still maintaining complete quantum control of the individual
particles

These developments have been very extensive, and their full treatment would
not be possible without expanding the book unreasonably. Therefore, for this third
edition, we have limited changes to the provision of a supplementary chapter with
a guide to developments in the field since completion of the second edition in 1999,
with particular attention to the above fields and, of course, we have also corrected
various misprints and minor errors. Proofreading and checking a book such as this
is always a major task, and we would like to thank Ashton Bradley and Piyush Jain
for their assistance in this process. The work on the supplementary chapter was
partially funded by the Marsden Fund of the Royal Society of New Zealand under
contract PVT202.

Wellington and Innsbruck Crispin Gardiner
May 2004 Peter Zoller



Preface to the Second Edition

Since the first edition of this book was completed some eight years ago, the two
authors of this new edition have developed a very fruitful collaboration, which has
led us naturally to collaborate on the revision of Quantum Noise. The emphasis
on quantum optical methods remains, but the significant advances in the theoretical
methods of quantum optics in the intervening period have made it necessary to add
a considerable amount of new material, which has resulted in the addition of two
new chapters.

The stochastic Schrodinger equation is the subject of Chap.11. The wave of work
in the early 1990s on this topic arose out of the need to compute the quite complex
problems involved in laser cooling of atoms. The development of these methods,
coupled with the growing availability of low cost fast workstations brought about a
changed point of view in theoretical methods. One can nowadays seriously contem-
plate investigating systems with a very large number of degrees of freedom, without
making the very drastic approximations which were the hallmark of the early days
of quantum optics.

The concept of cascaded quantum systems—the subject of a new Chap.12—
became essential with the growing capacity to create and use non-classical states of
light. The subject matter of this chapter covers some applications of these methods,
including one application to the transmission of quantum information.

The remainder of the book is not greatly changed. The main addition is new ma-
terial on the applicability of positive-P function methods. The positive P-function
has proved very useful in quantum optics, even though there were examples known
in which it could be demonstrated that it gave incorrect results. The first edition of
this book touched on the problem, but did not offer a resolution. We are now able to
present clear guidelines for it use, together with a definite explanation of the causes
of difficulties.

The process of revision and adding more material was helped considerably by
many colleagues. In particular we want to thank James Anglin, Rob Ballagh,
Thomas Busch, Ignacio Cirac, Simon Gardiner, Dieter Jaksch and Klaus Gheri for
advice and proofreading, and as well all those other colleagues who have worked
with us on this subject over the past few years; in particular Hans Briegel, Pe-
ter Drummond, Ralph Dum, Klaus Ellinger, Steven van Enk, Andrea Eschmann,
Alexei Gilchrist, Murray Holland, Stefan Marksteiner, Monika Marte, Peter Marte,
Bill Munro, Scott Parkins, Thomas Pellizzari, and Richard Taieb.

Both of us have had a long relationship with Dan Walls, whose untimely death
came as we were finishing this book. Dan’s influence on quantum optics over the
last thirty years is unparalleled, and this book reflects that influence. He was instru-
mental in introducing both of us to this field, and for this and for the privilege of
having known and worked with him we are deeply grateful.

Crispin Gardiner

Wellington and Innsbruck
Peter Zoller

May 1999

Preface to the First Edition

The term “Quantum Noise” covers a number of separate concepts, and has a variet

of manifestations in different realms of physics. The principal e;perimental area)‘/
now Fovered by the term arise in quantum optics and in the study of Josephs .
juncugns. Although there has been some interaction between these two ﬁeldf 'sto'n
ess;x]txally true to say that the two fields have developed independently, and ’hl o
their own body of techniques for theoretical investigation. This booli,’is lar; 2‘1’3
about the quantum optical field. By this I mean that the techniques presented ﬁ .
are based on the methods used in quantum optics—I certainly do not me ;3:6
these methods are applicable only to quantum optics. o

My aim in this book is to give a systematic and consistent exposition of thos
quantum sto.chastic methods which have developed over the last ihin ea in
quantum pptlcs. In my previous book, “A Handbook of Stochastic Methoﬁs?: IrS N
CIL-Id‘Cd w1.th a chapter on quantum mechanical Markov processes. This W‘as’onclon'—
brief outline of those methods which harmonized most naturally .with Athe claes'y'(l1
th‘eory of Markov processes. Since that time the realization has grown that the stilcdd
of squeezing .and other more exotic properties of light fields required a much mory
careful description of quantum noise, and in particular the relation between in te
and outputs to quantum optical systems. After Matthew Collett and myself woiuj
out .such a formalism for describing the production of squeezed light beams .
reuhz.ed.that the same basic approach had within it the foundation for a con; 71\):e
description of quantum noise. This book is the result of this realization. P

3 ’Th'lS b%0k 1s not merely a collection of methods drawn from the literature—there
1 a significant amount of new work, and the interconnections between the various

descriptions are new. The st . .
. structure of the b : .
diagram. 00k is as illustrated in the following

The introduction and Chap.2 on quantum statistics set the background for th
real development of the theory, which takes place mainly in Chap.3. This cha :
ter develops the quantum Langevin equation of a system in intf;rz;ction W'thp-
heat bath of. harmonic oscillators in a form which is rather general, and Wlhiclgli
can be applled. The adjoint equation, which is analogous to a ,Schrédin
picture version of the quantum Langevin equation is also introduced, and itg s
§llowp how all the standard quantum optical techniques can be derivéd as li ;
1‘ts of the adjoint equation. The great advantage of the adjoint equation 001;1m_
from the remarkable fact that the quantum noise which arises can be ex ;S
represen'ted py a c-number stochastic process. To emphasizek this point ?: ﬁy
nal section in Chap.3 shows how to apply it to the problem of macrO;co ic
quanturp coherence in a low temperature two level system, which can c;rh plc‘
be realized with a SQUID—that is, it is an application o’f a quantumpo tiapi
method to a problem in superconductivity. This section, written in collaborlzitii:;



XII Preface to the First Edition

My chapter on photon counting is an almost entirely new formulation, in which
the techniques of quantum Markov processes are utilized to develop a fully spatially
dependent description of the photodetection process. Of course no new physical
results arise from this, but I believe the derivation of the conditions under which
the quantum Mandel formula is valid, and the relation to the theory of continuous
measurements is very illuminating. The latter part of the chapter puts together a way
of looking at photodetectors from the point of view of inputs and outputs—that is,
we look at input photons and output electrons. Almost incidentally, a Fermionic
form of quantum white noise is introduced to describe electron fields.

Chapter 9 is a rather brief summary of the interaction of light and the two level
atom, including gas laser theory and optical bistability. The presentation is again
unconventional, since it is an application of the quantum Markov process descrip-
tion developed in the earlier parts of the book.

The final chapter is a brief summary of some aspects of squeezed light. This
field is still developing, and I did not feel a more intensive discussion would be
appropriate.

In order to understand this book, it is necessary to have some knowledge of field
quantization, and a thorough knowledge of non-relativistic quantum mechanics. I
have chosen not to put in a description of classical stochastic processes, since this
is well covered in my previous book, “A Handbook of Stochastic Methods”, to spe-
cific sections of which I shall frequently refer by using the abbreviation S.M. In
that sense, this book does demand a lot of preparation, but I think that is unavoid-
able. To understand the full range of physical noise phenomena requires a thorough
understanding of both the classical and the quantum fields, and I hope this book and
my previous one will provide that.

I have not designed this book primarily as a textbook for a course, though I have

included some exercises, which are not necessarily always easy. However, I have
given a short course of eight two-hour lectures at the University of Linz, in which I
covered the material in Chaps. 1,3 (two lectures), Chap.4, Chap.5 and the first three
sections of Chap.9. A very suitable course of about 24 one hour lectures could
be made from selections from “Handbook of Stochastic Methods”, say Chaps. 1-7,
and Chap.9, and from “Quantum Noise”, Chaps. 3-7, and Chap.9. Other material
would be optional. For a balanced view, the student should also attend a course
on quantum optics with a more applied point of view, including information on
experiments.
Acknowledgments: The material in this book, as well as the realization that such
a book was possible, arose because of the work done by Matthew Collett in his
M.Sc. thesis in 1983, which resulted in the first description of the input-output
formalism, and the first correct description of travelling wave squeezed light. This
was a period of remarkable productivity, and I wish to acknowledge here the central
role of Matthew’s thinking in the form that this book now takes.

The parts of the book dealing with simulations of the adjoint equation were
largely carried out by Scott Parkins, who has also assisted me immensely by reading
and checking the proofs. Andrew Smith developed the parts of Chap.9 involving
unconventional phase space methods, and Moira Steyn-Ross carried out some of
the work on quantum Brownian motion in Chap.3.

Preface to the First Edition XIII

My most heaz.’[felt thanks go to Heidi Eschmann, who gladly took up the chal-
lenge of producing a manuscript in and, as the reader can see, has managed some
typesetting of very great complexity with great success.

The book. was written over a period of five years, during which time I have trav-
§lled e.xtenmlvely, and benefited greatly from the points of view of many colleagues
mclud-mg Nico van Kampen, Carl Caves, Jeff Kimble, Howard Carmichael Ger-,
ard Mllbum, Peter Drummond, Urbaan Titulaer, Peter Zoller, Marc Levensor; Bob
Shelby, Achk Slusher, Bernard Yurke, Fritz Haake, Robert Graham and my (’]uan
tum optics colleagues here in New Zealand, Mar: i : )

, garet Reid, Matth ¢
Dan Walls, who first introduced me to the field. o Colett and

I also w1sh. to thank my colleagues here at the University of Waikato, in partic-
ular Bruce Liley fo.r his constant support of the project, and Alastair Steyn-Ross
and Lawrence D’Oliveiro for their assistance in understandin
Macintosh.

. vaogldsalso like to thank Hermann Haken, for including this book in the Springer
eries 1n Synergetics, and Helmut Lotsch for his constant f b i
evitable delays of such a book. procarmnce of e fn-
. Fmal.ly, let. me express my thanks to Helen May and our daughter Nell, who have
lived with this project and supported it for the last five years.

g the mysteries of the

Hamilton, New Zealand

May 1991 Crispin Gardiner
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1. A Historical Introduction

Quantum mechanics has had a statistical aspect since the formulation of the prob-
ability interpretation by Born [1.1] in 1926, and in spite of repeated attempts to
re-interpret this intrinsic statistical aspect as the consequence of the observer’s in-
complete access to information which is in principle accessible (as is the case clas-
sically), Born’s probability interpretation remains with us to this day. There is as
yet no experiment which has shown any disagreement whatsoever with the basic
principles of quantum mechanics, even though some of its predictions are quite
counter intuitive.

In simple experiments, such as scattering experiments, the quantum mechanics
of few body problems—essentially Schrodinger’s equation—is sufficient to give
a complete description. But even in the archetypal quantum mechanical concept
of atomic energy levels and spectral lines the simple few body view is no longer
adequate. Spectral lines are not sharp. The origin of the spectral line width is the
coupling of the atom to the electromagnetic field, which has infinitely many degrees
of freedom, and it is only because of this infinity that the irreversible phenomenon
of atomic decay takes place.

Thus the description of atomic decay embodies the two fundamental building
blocks of the theory of quantum noise—the intrinsic statistical aspect of quantum
mechanics, and the statistical aspect which arises from our inability to specify each
of all of the infinite number of degrees of freedom of the electromagnetic field.
Weisskopf and Wigner [1.2] gave the first description of atomic decay and the con-
sequent existence of a spectral line width as long ago as 1930, and their paper can
be regarded as the beginning of the theory of quantum noise, though the concept of
noise per se did not really enter their formulation. The purely quantum mechanical
aspect of noise arises from Heisenberg’s uncertainty principle, which we shall now
investigate in some detail.

1.1 Heisenberg’s Uncertainty Principle

Heisenberg’s uncertainty principle states that it is impossible to measure simulta-
neously two canonically conjugate variables such as position z and momentum D,
with arbitrary precision. Explicitly,

AzAp > h)2. (1.1.1)

From Heisenberg’s principle alone, it is clear that we simply cannot measure all of
the variables of a system precisely. Repeated measurements on the same system
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will yield values of z and p which fluctuate about certain mean values, with uncer-
tainties Az and Ap. It is instructive to derive (1.1.1), for this yields a connection
with classical noise theory. Let us consider two variables z and y, and define

br=1x— (x)
by=y—(y)
where z and y are quantum mechanical operators, and ( ) is the average over

quantum wavefunctions as well as any other statistical elements. Then we know
that for any operator A, with Hermitian conjugate A’

(AAT) > 0. (1.1.3)
Let us put A = 6z + Ae'’6y and substitute in (1.1.3). We get
(62%) + A(cos O([6z, 5yl,) — isinO([6z, 5y])) + A2 (6y2) > 0. (1.1.4)

The criterion for (1.1.4), regarded as a quadratic in A, to be non-negative is

(1.1.2)

(cos O([6,6y1,) — isinO([6z,6y1))° < 4(622) (6y2). (1.1.5)

(Note that the mean of a commutator is imaginary, so that i([6x, dy]) is real). This
must be true for all 6, so maximizing the left hand side yields

(62°)(6y%) > F([6z. 6y ) [* + (162, 8y1.)% (1.1.6)

We can now see a classical term and a quantum term on the right hand side. The
second term involves the covariance

Oy = 3(026y + 6ybz). (1.1.7)

In a classical theory the products would commute, and we would recover the usual
definition of a covariance. In the classical case we would then have

(627)(6y%) = 02, (1.1.8)

and this expresses the fact that if = and y are correlated, then the product of the
variances must satisfy (1.1.8) as illustrated in Fig.1.1. This second term, being
one which arises classically, has an origin in the coupling of the simple system to
an external reservoir, as mentioned in the introduction to this chapter. Quantum
effects can still be manifested in this term through the quantum mechanical nature
of the reservoir, so although it has a classical analogue, it cannot be called a purely
classical term. The first term is purely quantum, since it vanishes if the operators
commute. We can see that even if z and y are uncorrelated, there is a minimum
product of their variances. In the case of position z and momentum p we know

[z,p] =ih (1.1.9)

so that the inequality (1.1.6) becomes in this case

Azdp >/ {h* + 02, . (1.1.10)

If the correlation ¢, vanishes then we recover the Heisenberg principle, as stated
in (1.1.1).
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Fig. 1.1 Diagram illustrating how the existence of a co-
variance requires that the product of variances not be zero.

Ax

1.1.1 The Equation of Motion and Repeated Measurements

We can now ask how Heisenberg’s principle will manifest itself as quantum noise.
Like all noise, quantum noise is a time dependent phenomenon. Without noise, re-
peated measurements of a physical quantity would be expected to yield a smoothly
varying function of time. To analyse such a time dependent situation one must have
some equations of motion, so we consider a specific example; repeated measure-
ments at time intervals ¢ of the position of a free particle, in the absence of any
thermal noise. The Heisenberg equations of motion are of the same form as the
classical Hamilton equations :

mi(t) = p(t) }

5O =0 (1.1.11)
so that

Tt +7) = p(t)— + (t) (1.1.12)

m
from which one can deduce
) T 2 ) .
(62t +1)%) = (62(1)%) + (%) (6p)?) + (%) (162, 6pl,). (1.1.13)

We note some interesting consequences of (1.1. 13).
i) A precise measurement of z(t) results, from Heisenberg’s principle, in

(6p(t)*) — oo (1.1.14)
and hence also
(62t +71)*) — oo. (1.1.15)

The measurement acts back on the system in such a way as to make any further
precise measurement of z impossible. The infinite uncertainty in p(f) means
that the velocity of the particle is infinitely arbitrary, and hence so is the future
position.

ii) The best we could do would perhaps be to measure with uncertainties in z(t)
and p(t) which were comparable with each other; for example Heisenberg’s
principle permits

(6x®)’) = hr/@m),  (6p(t)*) = mh/(@2r) (1.1.16)
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which yields

(5t +71)*) = hr/m. 1.1.17)

Hence the measurement at time ¢ + 7 has twice the variance of that at time t.

It should be borne in mind that to measure with the uncertainties given by
(1.1.16) requires that the initial state be a pure quantum-mech?lqical state. HO\.N
to carry out any of these measurements in practice is non-trivial, though it is
theoretically possible.

Not all quantum measurements have this property. For example, (1.1.11)
clearly shows that

1ii)

iv)
p(t+ 1) =p() (1.1.18)

and hence repeated measurements of the momentum do not introduce noise.
This is the basis of back action evading or quantum non-demolition measure-

ments [1.3].

1.2 The Spectrum of Quantum Noise

Nyquist’s theorem [1.4] as experimentally verified by Johnson [1.5] established that
a resistor R develops a noise voltage E(t) across its ends, whose value can be

written classically as

[ee]

(Et+1)E®)) = / el S(w) dw (1.2.1)
where
S(w) = RkT /. (1.2.2)

(k = Boltzmann’s constant, 7' = absolute temperature.) .

The origin of these fluctuations is well understood: they are 31mp1.y the ﬂuct‘ua-
tions inherent in maintaining a Boltzmann distribution of the appropriate canomcall
variables in the electric circuit. A stochastic analysis is given in S.M. S.3.6(d).
Even in 1928 Nyquist considered what should happen at high frequenglgs, such
that hw > kT, since it was known that in the case of the black body radlathn, the
effect of quantization was to yield the Planck spectrum, which would be equivalent

in this case to

fthe . (1.2.3)
nlexp(hw/kT) — 1]

!The abbreviation S.M. is used for the book, “A Handbook of Stochastic Methods” by C.W. Gardiner,
as noted in the preface.

S(w) =
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This function is flat for hw < kT, but for hw > kT, it rapidly approaches zero. If
(1.2.3) is used instead of (1.2.2), the correlation function (1.2.1) becomes a well-
behaved approximation to a delta function. Thus Nyquist concluded that the phys-
ically unrealistic flat noise spectrum would be eliminated by the incorporation of
quantum mechanics.
A more serious quantum treatment did not come until 1951, when Callen and
Welton [1.6] gave a form of reasoning which suggested that the true correlation
function should have a quantum mechanical spectral density given by

Rhw hw
S((.U) = o coth (ﬁ) (1.2.4)
R, hw
= p [2hw + WJ 5 (125)

This result shows that Nyquist was correct in surmising that the thermal spectrum
would be cut off when hw > kT. However the total spectrum is not cut off—
rather, it rises linearly with increasing w because of the first term in (1.2.5), which
arises from the zero point fluctuations in the harmonic oscillators which model
the microscopic structure of the resistive element. It might be thought that effects
arising from zero point fluctuations would be unobservable, since it is well attested
by experiment that black body radiation is observed to have a Planck spectrum,
corresponding only to the second term in (1.2.5)—we cannot detect the zero point
spectrum when we measure the spectrum by means involving the absorption of
photons from a radiation field.

However, serious doubts can be raised about the status of this quantum mechani-
cal version of S(w). Callen and Welton’s derivation is not flawless, and furthermore
they computed only the mean square voltage (E(t)*) in the case that one has a fre-
quency dependent resistor R(w), so that

o L[ LCF)
(E@)") = o /dw hwR(w) coth <2kT> (1.2.6)

and if R(w) is sufficiently rapidly decreasing, this integral converges. But, most im-
portantly, the meaning of the product specified classically in (1.2.1) for the quantum
mechanical situation, where E(t) and E(t + 1) are operators which cannot be ex-
pected to commute, has not been specified. Ford et al. [1.7] carried out a more well
defined procedure, and brought up this matter of the choice of quantum mechanical
product. They suggested the use of the normal product, (see Sect.4.3.1) which has
the effect of omitting the linearly rising term in (1.2.5), and therefore seems more
physical.

However this can only be a guess; a correct answer to the problem can only come
by a detailed modelling of what is actually measured. We consider therefore two
pieces of experimental evidence.

a) Measurement of the Spectrum of Black Body Radiation by Absorption: As
Jjust mentioned, in this we get a Planck spectrum. Furthermore, we will show later in
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Fig. 1.2 Measured spectral density of noise
current in the experiment of Koch et al. at 4.2 K
(solid circles) and 1.6 K (hollow circles). The
solid lines are the prediction of (1.2.5), while
the dashed lines correspond to the Planck spec-
trum (1.2.3)

10»22 F~~< \

1010 10! 10
v (Hz)

Chap.8 that in absorption measurements, it is the normal product that is measured,
and hence the Planck spectrum is expected.

b) Heterodyne Measurement of the Spectrum of Quantum Noise: Koch et al.
[1.8] chose to carry out measurements without a complete theory. They assumed
that an electric circuit behaves classically, except that the classical flat spectrum is
replaced by the expression (1.2.4), and they rather convincingly showed that this
expression is correct—that the linearly rising term, which Clarke has termed “f-
noise”, does exist and is measurable, as is shown in Fig.1.2. The observed spectral
density therefore does actually possess both terms. The first term, proportional to
hw, is temperature independent and is therefore purely quantum mechanical—it is
truly “quantum noise”.

However, the second “thermal” term is also influenced by quantum mechanics,
since it does contain Planck’s constant. There is no escape from the details of quan-
tum mechanics. Pragmatically, the results of this experiment show that there is
considerable validity in a treatment based on a classical noise theory with a mod-
ified “quantum” spectrum. For example, according to this kind of treatment, one
would treat an LRC circuit by the equations

dQ

=H (1.2.7)
dt
dl Q
— =——= IR+ FE@# (]28)
dt C ®
in which
W B i iw(t—t") (_r}i) 129
(E@E)) = > / e hw coth KT dw (1.2.9)

and where @, the charge on the capacitor C, I, the current through the circuit, and
E(t) are viewed as classical non-operator quantities. This kind of theory is widely
used in the treatment of macroscopic superconductivity problems [1.9].

In the limit of high temperature it reduces to the classical white noise theories,
as long as one is not interested in very high frequency phenomena. This is an
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example of a damped harmonic oscillator, and we will show in Sect.3.4.3 that a
true quantum theory of the harmonic oscillator can be cast into this form exactly.
But the introduction of any amount of anharmonicity destroys this rosy picture and
serious discrepancies arise. The major difference that arises is one noted by Dirac
[1.10]. The motion of a harmonic oscillator has only one frequency—no harmonics
occur. Quantum mechanically, the harmonic oscillator has evenly spaced energy
levels such that in a transition from one to the next, radiation of a corresponding
frequency is emitted. There is therefore no a priori contradiction between the two
viewpoints. However in the case of an anharmonic oscillator there is classically a
fundamental frequency and an infinite number of harmonics. These do nof match
up with the frequencies of the possible transitions between the energy levels of the
quantum-mechanical version—there is no way in which in the small noise limit one
will obtain agreement between these two pictures.

1.3 Emission and Absorption of Light

Having introduced the subject of energy levels in the last section, it now seems
appropriate to ask what is the relationship between these energy levels and quan-
tum noise. Historically, energy levels occur in their most easily observable form in
atoms and molecules, which interact with the radiation field, experiencing transi-
tions from one energy level to the other as they absorb and emit light. This picture
has the essentials given in the beginning of this chapter, of a small system with few
degrees of freedom (an atom) interacting with a system having very many degrees
of freedom (the radiation field).

In 1917 Einstein [1.11] introduced a stochastic method of treating emission and
absorption of thermal light, with the principal result that he was able to show that
the Planck distribution formula was necessarily required if molecules which emitted
and absorbed the light had a Maxwellian velocity distribution. Einstein’s equation
remains with us today, though in a more general form.

We suppose that the molecules have (internal) energy levels €, €5, €3, --. Sta-
tistical mechanics says that in equilibrium, the relative frequency of the state n is
given by

wy, = ppe” /T (13.1)

where k is Boltzmann’s constant, T is the temperature, and p, represents the
“weight” of the state, i.e., the number of different states with the same energy ¢,.
Suppose that n and m are two states whose energies satisfy

€m > €. (1.3.2)

The transition m — n is possible provided energy is emitted into the radiation field,
and the transition n. — m is possible if energy is absorbed from the radiation field.
Einstein made two hypotheses :
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a) Emitted Radiation: On the basis that it is known that oscillators radiate when
excited, whether or not a radiation field is present, one assumes that the probability
per unit time of making the transition m — n can be written

dw = Ay dt (1.3.3)

m

where A7), are certain coefficients. This is also in exact correspondence with the
law of radioactive decay.

b) Effect of Incident Radiation: Suppose a molecule is in the presence of a
radiation field. Then the energy of the molecule can either increase or decrease,
depending on the relative phase of the oscillator and the. radiation.ﬁe.ld. Corre-
spondingly, two hypotheses are introduced: The probability per unit time for the
transition n — m (absorption) is

dW = B;'pdt (1.3.4)
and for the transition m — n (emission)
dW = B} pdt (1.3.5)

where p is the energy density (per unit volume per unit frequency) of the radiation

field, and By,, B, are certain constants, which we do not specify for the moment.
One can now derive the Planck radiation formula. In equilibrium, the rate of tran-

sitions n — m must balance that of the transitions m — n. Using the expressions

(1.3.1) and (1.3.3-5) one sees that
pue B 5 = e~ /T (B 5+ AT) . (1.3.6)

If we assume that p can become arbitrarily large by increasing the temperature,. then
we may derive from (1.3.6) (by noting that the exponentials then approach unity)

puB = pnBL. (13.7)
Using (1.3.7) we can solve (1.3.6) for p, to find

p = A/ B (1.3.8)
. exp [(€m — en)/kT] -1

which is almost Planck’s radiation law. To complete the result, Einstein used Wien’s
displacement law, in the form that says that 5 can be written in the form

p=vf(w/T), (1.3.9)
from which it is clear that

Al /B = av? (1.3.10)
and

€m — €p = hv. (1.3.11)
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The constants « and h are not determined by this reasoning—their determina-
tion requires both experimental information and a more precise theory of radiation.
Even less so are the coefficients A”, and By, determined. However identifying h
with Planck’s constant we find that

p(w) = ar’ [(exp(hv [kT) — 1) (1.3.12)

which is of course Planck’s radiation law.

¢) Commentary: Einstein went on further to show that the conservation of mo-
mentum requires that the molecules have the Maxwellian distribution of velocities,
if it is assumed that each photon is emitted in a particular direction, rather than as a
spherical wave, as might have been expected classically. From a modern quantum-
mechanical point of view this is not acceptable. The emission of photons can be
computed either as emission of plane waves (corresponding to quanta with a defi-
nite direction) or as emission of spherical waves. Since each is a superposition of
the others, there is no difference. However the concept of superposition of proba-
bility amplitudes, which is essential for this equivalence, plays no part in Einstein’s
formulation; only probabilities enter into the argument, and the specific quantum-
mechanical connection only arises from the assumption that energy levels exist and
that the transitions between energy levels occur when electromagnetic energy is ab-
sorbed or emitted. This means that Einstein’s derivation is consistent with a purely
probabilistic quantum theory, in which, however, photons are to be regarded as par-
ticles travelling in a definite direction. The question of wave-particle duality, which
is such a central part of quantum mechanics, is nowhere to be seen.

This does not invalidate Einstein’s arguments, but the question of why photons
must be treated as particles travelling in a definite direction is not answered. We will
see in Sect.3.6.3 that purely quantum-mechanical arguments give the same results,
though not with the simplicity of Einstein’s methods.

There is a long tradition of this kind of “probabilistic” quantum mechanics. After
the development of modern quantum theory in the 1920s, the use of time-dependent
perturbation theory as developed by Dirac [1.10] and transformed by Fermi into his
“golden rule number two” [1.12] was used as the basis for multitudes of calcula-
tions by probabilistic methods. The basic technique was to use quantum mechanics
to compute probabilities for transitions (such as absorption and emission of pho-
tons) and then to use these probabilities in classical stochastic equations for the
probability of occupation of quantum mechanical energy levels. Using such meth-
ods, it is not at all difficult to compute the coefficients A7, and B" in Einstein’s
equations, and indeed to derive the whole equation, subject to one major assump-
tion. This assumption was first made explicit by Pauli [1.13], and it was called
the “repeated random phase assumption”. It is assumed that the phase relations
between wavefunctions are always (repeatedly) randomized, so that all one has to
deal with are the probabilities, which are given by the squares of the wavefunctions.
How this is achieved is not explained, but the success of many calculations based
on it shows that it often has considerable validity.

The arrival of the laser in the 1960s changed this picture. The repeated random
phase assumption does not hold for the highly coherent fields that can be produced
in a laser, and the whole field of quantum noise, emission and absorption theory, and
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optical coherence was transformed under its influence. A highly effective theory of
“quantum Markov processes” was developed for application in the field of quantum
optics, and has generated a renaissance in the theory of stochastic processes. The
development of this point of view will occupy much of this book.

1.4 Consistency Requirements for Quantum Noise Theory

In setting up theories of noise and damping one does not have complete freedom—
to be acceptable, theories must be consistent with the laws of physics, and in this
field there are two principal consistency requirements which have to be dealt with.
Firstly, there is the requirement that the well verified results of statistical mechanics
be reproduced, and secondly, the requirement that canonical commutation relations
be preserved by any equation of motion.

1.4.1 Consistency with Statistical Mechanics

Methods based on generalizations of the “quasiclassical” approach of Sect. 1.2 and
of the stochastic approach of Sect. 1.3 must be compatible with each other. In par-
ticular, the requirement of consistency with statistical mechanics, as enunciated by
Mark Kac must be shown to be satisfied. Kac observed that in the classical theory
of noise, we can show that the motion of a particle in a potential governed by the
Langevin equation

mi = —V'(x) — vi+ \/27kT &) (1.4.1)
in which
(EDEED) =8t — 1) (1.4.2)
yields the stationary distribution function
mi*  V(z)
t) = — 5 1.4.3
ps(@, &) Nexp< KT kT ) ( )

which is the familiar Boltzmann distribution of equilibrium statistical mechanics.
Any satisfactory theory of quantum noise must give the corresponding quantum
result, though some care is needed in formulating what the corresponding quantum
result should be: In the words of Kac and Benguria [1.14],
“The position of a quantum mechanical particle subject to an external potential V (x) and
in equilibrium with a heat bath of absolute temperature 7" should be distributed according to
the probability density

z:’;] exp (_En/kT) I"pn(z)|2
Yo exp (—E,/kT)

where the I, and 1,, are respectively the eigenvalues and the normalized eigenfunctions of
the Schrodinger equation with potential V(). One might thus suspect that as t — oo the

(1.4.4)
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probability density of z(¢) should approach the canonical density (1.4.4). But this cannot be
so for y # 0, because for nonvanishing friction one would expect shifting and broadening of
the spectral lines. What one should therefore expect is that only in the additional limit y—0
the limiting distribution of z(t) as t — oo should be (1.4.4)”

In a limited form, Benguria and Kac were able to prove the above result by using
a model of quantum noise developed previously by Ford et al. [1.7] which we shall
describe in Chap.3. There we will see that the canonical distribution can be derived
directly from a quantum Langevin equation of the kind (1.4.1), by means of a route
which yields a generalization of the kind of method used by Einstein—but by a
route quite different from that used by Kac and Benguria.

The essence of this model is the rather simple result that, appropriately gener-
alized, (1.4.1) represents a satisfactory quantum theory of Brownian motion of a
particle in a potential, provided that:

i) The quantities x, &, #, are regarded as Heisenberg operators, obeying the ap-
propriate canonical commutation relations.

i) The noise quantity £(t) is regarded as an operator, with the commutator

d
[£@), €] = 2iﬁ’ia5(t —t') (1.4.5)
and the mean anticommutator

([E@), EADe) = Zr—h /oo dw w coth (hw /2kT) el“ 1), (1.4.6)

This latter quantity corresponds exactly to the spectrum of quantum noise (1.2.4).
We neglect the technical problems associated with the rising spectrum, which we
will go into in Sects.3.4.2, 3.4.3

The limit & — O clearly gives a smooth transition to the classical Langevin equa-
tion, in the sense that in this limit all commutators vanish and the equation of motion
becomes an equation for c-numbers driven by a noise term. Because of the limit,

;,il’l(l) hw coth (fiw/2kT) = 2kT (1.4.7)

this noise term possesses a flat spectrum.

1.4.2 Consistency with Quantum Mechanics

I (1.4.1), regarded as quantum equations with the noise &(t) satisfying the condi-
tions (1.4.5, 6), are solved, we will obtain solutions for z(t) and p(t) = ma(t) which
must obey the canonical commutation relations

[z(), p(t)] = ih (1.4.8)
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for all times. The method of derivation of the equations used by Ford ¢t al. [1.7]
makes it clear that this will be the case. At this stage, however, let us show how
a simplified model can illustrate how the existence of noise can ensure that the

commutation relations are preserved. -~ .
If we consider a harmonic oscillator, of natural frequency w, then the Heisenberg

equations for the destruction and creation operators

wa(t) + ip(t) tg) = WEE) —ip@®) (1.4.9)
o) = —=—" i

are, in the absence of noise and damping,
a(t) = —iwat),  a'@) = iwd'@). (1.4.10)

A simplified way to introduce damping and noise is to straightforwardly add appro-
priate terms to the equation, thus;

a(t) = —iwa(t) — vya@) + /2y I'(®). (1.4.11)
Correspondingly, we also assume some simple delta-correlated commutation rela-
tions and correlation function of the noise term I'(t), namely

[F@), (@] = Ds(t — ) (14.12)

(r‘eyr’))y =Né@ —t').

Here the delta functions indicate that some kind of quantum generalization of []:]1\_?
classical delta correlated white noise process is being contemplated, and D and
are numbers which remain to be determined. Solving (1.4.11), we get

t
a(t) = e 1 a(0) + /2 / dt' e~ ply (1.4.13)
0

and if we assume that

[a(0), I''()] = [a'(0), T®)] =0 (1.4.14)
and of course
[(0), ' (O)] = 1, (1.4.15)
then the commutator can be evaluated as
lait).a'®)] =e " + D (1 —e ") (1.4.16)
so the commutator will be preserved if
(1.4.17)

D=1
The mean energy of the oscillator is similarly found to be

hw(a'(t)a®t)) = hwe " + hoN (1 — e ") (1.4.18)
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so that the quantity N represents the eventual mean occupation number of the os-
cillator, and for consistency with the Planck distribution this must require

N = 1/lexp(hw /KT) — 1]. (1.4.19)

It can be seen then that, subject to a set of rather sweeping assumptions (1.4.12,
I4). a quantum mechanically consistent picture can be built up. Although this is
only intended as an illustration and cannot pretend to give a fully realistic picture
of the physics, we will show in Sect.3.4.5 that it can be derived as a high frequency
limit of a more physical model. namely, the quantum version of (1.4.1 ), and indeed
from the quantum electrodynamics of an atom interacting with the radiation field.
[n such a model I'(¢) is essentially the operator of the electric field evaluated at the
position of the atom. It is therefore quite an appropriate model for quantum optics,
for which it was in fact first developed.

However the philosophy originally used was much more like that presented in
this section—to assume a damping-noise equation like (1.4.1 1) and to deduce noise
and damping parameters from the preservation of commutation relations and the
requirement that the mean energy of the oscillator be that given by statistical me-
chanics. At these high frequencies this technique works well because there are
considerable simplifications available in high frequency systems, as will be shown
in Chap.3 and Chap.4. What it shows is what all physicists know——physics has
sufficient internal consistency to enable one quite often to guess the right answer
to a problem in favourable circumstances. Such guesses are often illuminating, but
there is more to physics than guessing.

I.5  Quantum Stochastic Processes and the Master Equation

The approach to quantum noise based on quantum Langevin equations has its roots
in the Heisenberg equations of motion. It is well known that in all quantum mechan-
ical situations the Heisenberg equations of motion are not easy to deal with, mainly
because of their non-linear operator nature. The Schrédinger equation is always the
preferred alternative for practical calculations. The major advantage of the Heisen-
berg equations arises from their closer resemblance to the corresponding classical
equations, which can be of advantage in trying to understand particular problems
and in general theoretical formulations. This situation is amply illustrated by the
material in this chapter—for example the quantum version of the Langevin equa-
tion (1.4.1) is at least easily described. In contrast, it does not seem at all obvious
how to generalize the Schrodinger equation to take account of noise.

The appropriate approach was developed in the late 1960s by quantum optical
workers, in particular by Haken, Lax and Gordon et al. [1.15], and this amounts to
a generalization of the approach of Einstein discussed in Sect. 1.3. From the rate
laws (1.3.3-5), it is clear that there is a probabilistic law governing the probability
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function P, (t) which gives the probability that the atom is in the state n; this will
be

Put)=Y (Al + Bup)Pu(® + Y B pPu(®)
e men (1.5.1)
= AT+ B P — Y B pP(t)

m<n m>n

which is in the form of the classical master equation, S.M. 3.5.1, in which the
positive terms represent gain of probability from transitions into the state n, and the
negative terms represent loss of probability by transitions from the state n. (Here,
as in Sect. 1.3, the symbol 5 is used for the energy density of the electromagnetic
field to avoid confusion with the use of the symbol p for the density operator in the
remainder of this book.)

This kind of equation is called the Pauli master equation, after Pauli who first
introduced it [1.13]. However it has the serious defect of dealing only with proba-
bilities, whereas a proper quantum mechanical theory should deal with the density
operator for the system as described in Sect.2.1. The density operator was intro-
duced by von Neumann [1.16] in order to treat situations where there is a statistical
element to the physics other than that which arises directly from quantum mechan-
ics, and is thus appropriate in the kind of situation relevant to emission and absorp-
tion of light, where the light field is in a thermal state. We will describe how this
is to be done in a simplified derivation of the generalized master equation for the
interaction of light with an atom.

1.5.1 The Two Level Atom in a Thermal Radiation Field

The physics of the problem of a thermal radiation field interaction with an atom
can be viewed as that of an atom interacting with a random electric field—but this
field must be operator valued. Let us consider the simplest possible atom—an
atom with only two energy levels. This can be described simply in terms of matrix
wavefunctions, labelled by a for the lower level, and b for the upper level. The
energy eigenstates are

u(a) = (?) , ub) = <(l)> (1.5.2)

and the Hamiltonian is (in the Schrédinger picture)
Huom=1002 (1 ) = 1aao (1.5.3)
tom 2 O ;1 =0 Z. )

We have set the zero of energy to be midway between the upper and lower levels,
so that {2 is the frequency of the radiation that the atom will emit or absorb. The
description of the interaction with a radiation field can be most simply dealt with
by introducing the interaction Hamiltonian

Hyp=g(c"+0 )E. (1.5.4)
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Here I is an operator representing the electric field at the position of the atom, and

0+=Ol -_ (0 0
0 0/’ o= 1 0 (1.5.5)

are operators which allow this field to induce transitions between levels a and b.
Finally t.her.e must be a Hamiltonian for the radiation field, Hg,q, which we shall
not specify in detail. The total Hamiltonian is

H = Hpwom + Hin + Hgaq. (1.5.6)

The l‘nteraction is assumed to be weak, so that to a first approximation, the atom
and ﬁ.eld .do not interact. The appropriate method of solution to von Neumann’s
equation 1s to go to the interaction picture whose density operator is in terms of the
Schrodinger picture density operator for the atom-field system

(1.5.7)

prut) = exp ( — Hvm - Hias B+ )

iR t) ps(t) exp ( T

From von Neumann’s equation for the Schrédinger picture density operator
ihps(t) = [H, ps(t)] (1.5.8)

follows the interaction picture equation of motion

1hpi(t) = [Hing(t), prne(t)] (1.5.9)
where
_ HAtom + HRud HA om + H a
Hin(t) = exp (—T—t) Hinexp (%ﬁt) . (1.5.10)

Since Haom and Hgag represent different degrees of freedom, they commute, and
we can then write ’

Hin(t) = g (0%e'” + -7 %) E(1), (1.5.11)

where E(t) is defined by

_ HRad HRad
E(t)—exp<* 7 t)Eexp(To. (1.5.12)

At this stage we can make a “randomness” ansatz for E(t), the electric field operator
in the interaction picture. This operator will contain a wide range of frequencies
but the only ones which will give any significant effect in the equation of motior;
(1.5.9) will be those which almost match the frequencies #(2, so that there will
be a part of Hy,(t) which is sufficiently slowly varying for a significant change to
;f;,ll(t) to be built up. The terms corresponding to frequencies significantly different
from £{2 will oscillate so rapidly that their net effect will be almost zero. We can
cven evaluate the correlations of E(t), E(t"), under this approximation. Let us take
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the correlations to be given by the same formula as for £(t) in (1.4.5, 6) but omit
the factor ~, which refers specifically to the interaction. Thus we assume tf.lat the
electric field operator behaves like our “quantum noise”. Then we can write the
correlation function in terms of the sum of the commutator and anticommutator
terms given by (1.4.5, 6) as

8

h ‘ h“u iw(t—t'
<E(t)E(t'))=;r- dw <7w+wcoth<ﬁ>> elw=t) (1.5.13)

X

Since only the components near (2 interact significantly, we may approximate the
spectral factors depending on w by their values at +(2, so

. ' h h{? iw(t—t")
NI EWGER)) ~ p <Q+Qcoth (ﬂ)) / dwe
=4h02 (NW2) + 1) 6t — 1) (1.5.14)
and similarly
e D BGER)) ~ 4RANED6E — t) (1.5.15)

where N(£2) is the Planck function (1.4.19). These correlation functions. are of
exactly the same form as used in the arguments for quantum mechanical consistency
of Sect. 1.4.2 so we may make the replacements

Ete' — 2vh0 (), Ete " = 2vh0 T, (1.5.16)

where ['(t), I'(t) are the quantities of Sect. 1.4.2 with the properties (1.4.12).
The equation of motion for the interaction picture density operator thus becomes

i proe = 29 02 [n*F(t) +o T, p,m} . (1.5.17)

This is now a kind of quantum white noise equation, but it contains more i.nfor{na—
tion than we actually want, since py, is the density operator for the radiation field
as well as the atom: we want to obtain an equation for a reduced density operator,
which refers only to atomic variables—this would be defined by tracing out over

the radiation variables i.e.,

Pint = Trrad { Pt} - (1.5.18)

To find an equation for j, we need to trace out (1.5.13) over the radiation field,
and will hence need to evaluate terms like

Trraa {L'(@)pint } - (1.5.19)

In the classical theory of white noise differential equations, the very irreg‘ularity of
the white noise functions (which arises directly from the idea that the noise at one
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instant of time is absolutely independent of the noise at any other instant, no matter
how short the time interval between the two instants) leads to considerable technical
difficulties if we assume the equations are truly differential equations. The reason is
quite straightforward—what is usually assumed to be white noise is the derivative
of a non-differentiable, but continuous, random function; the Wiener process. The
way out of this logical anomaly in the classical case is to integrate the differential
equation and turn it into an integral equation. To do the same thing here we define
the integrals of the quantum white noise quantities by

4 t
B(t,ty) = /F(t)dt, Bl(t.ty) = /FT(t) dt. (1.5.20)

to to

The differential equation (1.5.17) is then written as the integral equation

t
.02 -
pn(®) — pnlto) = ~2ig)[ 2 / B+ dB W, pw)] . (1521
il]
The definition of the integral is taken in exactly the same form as that of the clas-

sical Stratonovich integral, S.M. 4.3.6, which leads to an approximate form for the
situation where

t—t+6t, tg—t— 6t (1.5.22)
and

6B(t) = B(t +6t,t — 6t),  6BI(t) = Bt +6t,t — 61) (1.5.23)
in the form

Pine(t + 0t) —pin(t — 6t)

= —ig\/g [0*6BMt) +0 6BI(t), pr(t + 61) + Pt — 6)].
(1.5.24)

We now want to take the trace over the radiation field. Some terms will obviously
vanish, for example Trraq {6 B(t)pyn (t — 6t)}, since from the equation of motion in
the form (1.5.24) it is clear that py,(t — 6¢) must be independent of ¢ B(t). The same
is not the case with terms involving p(t + 6t) , so we can substitute for these using
(1.5.24) itself, which yields

/1
Pi(t+6t) — pi(t — 6t) = —2ig ﬁ) [0*6 B(t) + 0 8B (t), pru(t — 61)]

g’

0*6B(t) +0 6B'(t), [¢ 76 B(t) + 0 6B (1),

pin(t + 0t) + pr(t — 6t)]] . (1.5.25)
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Taking the trace over the radiation field, all terms on the ri ght‘hand side? of the first
line vanish, because of the independence of the noise terms of the density operator
at the time t — 6t. In the next line we still have the same prob].em, l?ut we can
substitute again, and without much difficulty show that the resulting higher order
terms vanish sufficiently rapidly as 6t — O to be neglected. Thus we are left to

evaluate terms like

Trva {6 BOpm(t — 806 B11)} (1.5.26)
Since the interaction is assumed weak, we approximate

pinit — 01) = Pyt — 01) @ praa(t — 1) = Piu(t) ® praa(?). (1.5.27)
Thus we can evaluate as follows;

Triaa {8 BOpm ()6 B' (t)}

t+0t t+ot

= pine(?) / dt' / dt”TrRad{F(t’)pkad(t)ﬂ(t”)} (1.5.28)
t—ot t—0t
t+{‘>2‘, 2‘,+{>t

= ) / ' / " (P (1.5.29)

t—6t t—o6t
= 2 (N (D)6t

Putting all these together in (1.5.25), and taking the limit 6¢ — 0, we finally obtain
the master equation for the reduced density matrix in the form

(1.5.30)

~ 2 + -~
dp;[(t) = _Zghn (NUD +1) {20 pwo™ — pmo*o ™ — 070 it}
t

2 —_ ~
+Zgh01\7(.0) {20+ﬁ]m0 T — Ppmo o —0 (r+p1m} . (1.5.31)

1.5.2 Relationship to the Pauli Master Equation

The reduced density matrix has the property that its diagonal e.le‘r‘nents are th.e prob-
abilities of occupying the relevant states a or b. It is not dltﬁcultj by using tl_le
definitions (1.5.5), to show that we have the two equations for the diagonal matrix

elements

Pt) = (alpm®la),  Py(t) = (b|pm(®)|b) . (1.5.32)

df b i..g;” (-N@P, + (NG +1) P} (15.33)
t

dby _ 49’0 {NP, — (N)+1) B} (1.5.34)

dt h
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and these equations are exactly of the form of the Pauli master equation (1.5.1).
There are a number of points to note.

a) Stationary Solutions: It is straightforward that these are

o N1 : (1.5.35)
“TON+1 1+exp(_h2JKT) o

. N2 exp(—h(2/kT)

"TAN@ 1 T T+ exp(_h2JkT)’ (1.5.36)

These are of course just the probabilities that Einstein used to derive the theory
presented in Sect. 1.3

b) Stimulated and Spontaneous Processes: On comparing the Pauli master equa-
tion with (1.5.33,34), we can see that p and ]\7({)) must be proportional. Put more
carefully, we can see that there are terms proportional to N(2), identified as stim-
ulated emission and absorption terms and there are also the spontaneous emission
terms, which are present even when N(?) is zero. These terms arise out of the non-
commutativity of the noise terms, '), FT(t), which ultimately arises because it is
assumed that F(t) is an operator quantity whose commutation relations are given
by a form like (1.4.5). Thus these terms, added almost arbitrarily by Einstein, are
a natural consequence of the quantum nature of the effective noise. Indeed, one
can assume that the radiation field is a classical random quantity with the proper
spectrum of quantum noise (1.2.4) and carry out a similar analysis. The result is a
similar equation to (1.5.33), but instead of N(2) and N() + 1, one obtains in both
cases N({2)+*, which is wrong physics. Einstein’s result amounts to assuming clas-
sical noise, but with a Planck spectrum, and then arbitrarily adding the spontaneous
terms.

¢) Off-Diagonal Elements: The density operator p has two off-diagonal elements,
which are complex conjugates of each other. Following the same methods as before,
this gives the equation

d 20200
= (alpm(®)[b) = _ng(ZN + 1)(a|po(t)|b) (1.5.37)

so that in the stationary state, this off-diagonal element vanishes. However this
does not mean that such off-diagonal elements have no physical relevance. They
represent the quantum-mechanical coherence, and what (1.5.37) implies is that,
under the influence of random noise, this dies off with time.

d) Application of a Classical Light Field: Suppose, however, we introduce a
slightly more intricate situation—an atom in a thermal light field being illuminated
by a laser, modelled by a classical field, which we introduce into the Hamiltonian
(1.5.4) by

E — E+ e 4 g¥e—i (1.5.38)

so that E is the operator representing the quantized radiation field, while the re-
maining term is a classical c-number. (This procedure turns out to be in fact
a perfectly correct quantum mechanical way of representing an ideal laser field
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(see Chap.4) and even in the absence of explicit justification, it is intuitively obvi-
ous that if the light field is strong enough, it will behave classically.).
The net effect of making this change is to give a master equation in the form

dpm(t) _ 290
a — h
2¢°12
h

(N +1) {20 pmo* — po o™ — 070 pin}

+——NUD{20" pio ™ — pim0 0" — 0 0 Pia}

~ 2 (€0 +E07). ] (1.5.39)

where terms oscillating with frequencies 422 have been omitted to obtain the last
line. This equation cannot be reduced to diagonal and off-diagonal equations be-
cause the last term couples diagonal and off-diagonal terms. The simplest method
of solution is to note that jy, is completely specified by the quantities

(0%) = Tr {puo ™} } (1.5.40)
(0,) =Tr {ﬁlmffz}

and to use the algebra of the matrices to derive

+ 2 .
W) o 2L o +1) ()~ Lo (1.5.41)
. : .
L. 4g°02 o
dS:) = _4gh() 2N +1) (0.) - —gh-— - %i% (o) — E(a 7).
(1.5.43)

We can solve this equation in the stationary situation, to obtain

B — (2N +1)
(02)s - (ZN(O) +21i3;/+é|8‘2/9292 (1.5.44)
SIS (2N@) + l)2i2|5|2/g202
from which we can reconstruct py,, using
P =3+ 3(02)0+(0)s0 ™ + (07 )0 (1.5.45)

From this it is clear that there are non-diagonal terms—these represent quantum
mechanical coherence, and arise from the coherent driving field.

2. Quantum Statistics

The very concept of “quantum noise” implies some kind of a unification of statistics
and quantum mechanics. It is therefore essential to set out the background to this
unification in order to establish both notation and some less widely known matters
relevant to the subject.

There are two rather separate subjects which are relevant to the subject “Quan-
tum Statistics”. The first of these is the aspect of statistics which arises in the very
process of measurement, and this really amounts to the quantum theory of mea-
surement. The usual treatments of the quantum theory of measurement found in
texts on quantum mechanics concentrate on developing the formulation of a single
measurement at a precise time on a system in a certain quantum state. Such a for-
mulation is in principle sufficient for our needs, but in fact falls rather short of what
is in practice done. A typical measurement in a noisy system of any kind (quan-
tum mechanical or otherwise) will amount to the possibly continuous monitoring
of a small number of simultaneously measurable quantities, which will probably be
multiplied together with time delays to get correlation functions, or be Fourier anal-
ysed (either computationally by means of the fast Fourier transform, or physically
with a spectrum analyser such as a Fabry-Pérot interferometer) to produce spectra.

Thus, in Sect. 2.2 of this chapter, a kind of quantum measurement theory is in-
troduced which can generate the results of arbitrarily many measurements of the
most general kind, and the correlation functions which ensue. The end result is that
any time ordered correlation function can be generated by means of sequences of
possible measurements.

The formalism of measurement theory is essential—but it must be combined with
experience of the everyday world—which is that there is a great deal of randomness
in the world as we see it, and this is well described by the quantum mechanical
adaptation of the subject of statistical mechanics. Thus the final section of this
chapter gives an outline of quantum statistical mechanics in a form suitable for the
remainder of the book

2.1 The Density Operator

[f a system has a state vector (in the Schrodinger picture) [1,t), then it is possible
to define the density operator for the system by the outer product

p(t) = [1.t) (). 1. @.1.1)
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The quantum mechanical formula for the mean of an operator A is then
(A) = (P, t|A]p,t) =Tr {Ap)}. (2.1.2)

It is not difficult to see that all of the measurable information in the wavefunction
is contained in the density operator. Thus a density operator of the kind (2.1.1) is
essentially an object equivalent to the state vector.

However, the density operator has a more general formulation which is of par-
ticular importance in the case that the state of the system is not known with the
precision implicit in the specification of a state vector |¢,t). We can consider the
“ situation in which the system is prepared with probabilities P(a) in various states
|1,) (which need not be orthogonal to each other). The simplest example is the
possibility of preparing a beam of particles in polarization states which could be
oriented in a number of directions. The average of a quantum mechanical opera-
tor A is given by the probabilistic average over P(a) of the quantum mechanical
averages (1, A|1,), thus

(4) = )" P(a)(vhal Altba). (2.1.3)

If we now define the density operator p in this case, to be

p=> P@la)(al, (2.1.4)

it is clear that again
(A) =Tr{Ap}. (2.1.5)
In this form the density operator contains in a rather compact form both the statis-

tical and quantum mechanical information about the system.

2.1.1 Density Operator Properties

There are a number of properties of the density operator which are true in all situa-
tions, most of which depend on the representation (2.1.4):

a) Tr{p} =1 (2.1.6)
for  Tr{p}= Pulthalths) =) Pu=1. (2.1.7)
b) p is positive semidefinite: for any state |A)
(AlplA) =" Pul(Alsp)* > 0. (2.1.8)
c) If the ensemble of |i),) has only one member, then
P = [Ya) (Yal (2.1.9)

and this is said to be a pure state, since the system is always in the state |1,).
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In this case

p* = [ta) (Ya|¥ha) (%a| = p- (2.1.10)

Conversely, if p*> = p, we can write p in the form (2.1.9). We note that p is Hermi-
tian, and hence write a spectral representation

p= Nili)(i] (2.1.11)

where J; are the eigenvalues of p, and |7) is the corresponding eigenvector. Because
in this case p? = p, only A; = 0, 1 are allowable, and because Tr {p} = 1, only one
eigenvalue, say A, is 1. Hence

p=|m)(m| (2.1.12)
which is a pure state form, like (2.1.6).
d Tr{p’} <1 (2.1.13)
with equality only for a pure state. For

Tr {0’} = > PaPy|(shalts)]*. (2.1.14)

ab

Since

|(Wa|tbs)|* <1, and EPb =1 (2.1.15)

Y PBf(ghaln)? <1 foranya (2.1.16)

b

hence

Tr{p’} <) P=1 (2.1.17)

a

Furthermore, if

Tr{p’} =1, (2.1.18)
we can write (2.1.14) in the form

> Pua =1 (2.1.19)
where

$a =Y Pol(vhaltpy)]* < 1 (2.1.20)

b

from (2.1.16). The only way (2.1.19) can be satisfied is if

P, =044, forsome ay. (2.1.21)

In this case ¢, = 04.4,, and hence Tr {p?} = 1 and
P = [Ya) (Yao| (2.1.22)

that is, a pure state.

]
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2.1.2 Von Neumann’s Equation

The equation of motion for the density operator in the form (2.1.4) is obtained
directly from the Schrodinger equation for the time development of the state vector,

d
=ik — (2.1.23)
H|,, 1) 7hdt|¢a,t>
as
p(t) = —%[H .p@)] (2.1.24)

| where H is the Hamiltonian for the system. This equation has the formal solution

p(t) = exp <—%Ht) p(0) exp (%Ht) . (2.1.25)

In contrast to von Neumann’s equation, Heisenberg’s equation of motion for dy-
namical operators (in the Heisenberg picture) is

At) = %[H LA (2.1.26)

which differs in sign from (2.1.24).

2.2 Quantum Theory of Measurement

From the early days of quantum mechanics the contradiction between our experi-
ence that quantities can be measured and the quantum mechanical formulation of
physics only in terms of probability amplitudes has given the field of quantum mea-
surement theory a rather metaphysical character. There is a certain way in which
the theory of quantum noise can clarify matters, as will be shown in Chap.7.

The original formulation of measurement theory is that of von Neumann [2. .1],
and in spite of its rather artificial appearance, it does seem to be in accord Wlth
reality. Thus, in this section, this basic and traditional formalism will be outlined
and developed along the lines of Caves [2.2] to give us in the end a theory of re-
peated measurements on the same system. From this we can develop the theory of
correlation functions as the basic measurable quantities of quantum theory.

This section will discuss only the basic and traditional formalism of quantum
measurement theory. There are some mysteries in this formalism, which impinge
directly on the field of quantum noise, and these will be discussed in Chap.7.

2.2.1 Precise Measurements

Von Neumann’s theory of measurement is very simple in the case that the specifi-
cation of the eigenvalue of one variable A specifies the state of the system—thus
we can label the states as |a) where a is the eigenvalue of A. The measurement
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postulate states that if the system is originally in the state [t,t) and the value a of
A is measured then

i) The value a is found with probability |(a,t)|?
i) The state after the measurement is |a).

Thus the state vector is “instantaneously” reduced from [1),t) to |a). (A more mod-
est interpretation is that the state transforms from [1,1) to |a) in the time taken to
make the measurement.) This may be symbolized as

[¥.t) = P, t) = (|a)(al) |, t) (2.2.1)

Note that P, is a projector, i.e. Pa2 = P, so that the evolution implied by (2.2.1)
is not unitary, as is obvious from the fact that the norm of the right hand side is
[{a|1,t)[?, and not one.

The measurement postulate as it stands is a postulate on its own, which has been
shown to be compatible with quantum mechanics, but has not yet been satisfactorily
derived from the dynamical postulates of quantum mechanics. (See however [2.3]
for an interesting attempt.) Most physicists are uncomfortable with the idea of
measurement as being in some way in addition to dynamics—it is felt that we are
all part of this physical world, and any conclusions we draw about it should arise
from the same dynamical description that we apply to it.

2.2.2 Imprecise Measurements

[t is not possible to build a measurement theory solely on the basis of precise mea-
surements, for two reasons:

1) No perfect measuring apparatus has ever been built, so there is always some
intrinsic error to any measurement in addition to that required by quantum
mechanics.

i) Usually a complete description of a system is effected most naturally by the
use of more than one operator, e.g., the operators for z,y and z coordinates are
necessary to specify the position of a particle.

We therefore have to work out a theory of measurement in which we do not measure
sufficient variables to specify precisely what the final state is.

We will consider a system describable as above, by the eigenstates |a), and as-
sume that these have a discrete spectrum. It is obviously possible to approximate
any situation by this kind of description, since a discrete set can always be ordered,
and hence described by a single operator whose eigenvalues represent the position
in order.

It is experimentally true that a measurement of any kind appears to leave the
system in a final state which is a linear function of the initial state, in the sense
implied by (2.2.1), that the final state is given up to a normalization factor by a
linear operator acting on it.

With an imprecise measurement there is some arbitrariness in defining what the
measured value obtained by a measurement actually is. An imprecise measurement
necessarily will sometimes give a wrong answer! A more balanced point of view
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is perhaps that the value we infer from a measurement of A has an error associated
with it, and we can only say that the “true value” lies within some range of the

measured value. .

All of this can be compactly put together into a rather elegant formalism. Sup-
pose a are the possible “measured values” of A which result as the end result of a
measurement process. For each a we introduce the amplitudes 73, and the operator

T =Y Yudla)a|= ) TaPu. (22.2)

This definition of the operator T, actually means that 77 is a function of the operator
A which is being measured.
We assume that the amplitudes are normalized

> el =1 (2.2.3)

This normalization property is related to the completeness of the possible measured
values a, and can be interpreted as meaning that the probability of obtaining one of
all the possible values a is one—there are therefore no other possible values.

We can also introduce another operator, called an effect, F3, given by

Fry =717, = E |Via|* P (2.2.4)

Notice that there is a completeness relation
YoE=) TawlP=) P=1, 2.2.5)
a ada a

which follows by use of (2.2.3). . ‘
We can now put all of this together to give a theory of imprecise measurement,

via two postulates.
i)  The probability of obtaining the value @ as a result of this kind of measurement
is

P@) = (¢.t

Ealg,t) = ) |Taal?|(alip t) 2. (2.2.6)

ii) If the measured result is a, then the state of the system immediately after the
measurement is

>

_Tiy.t) Yaa(alt).t) 2.2.7)
Vet = 5% ’Xa:"l) JP@
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Comments

i) Notice that this theory reduces to the precise measurement theory in the case
that 75, is zero unless @ = a.

ii) A particular case of great interest occurs when Y. is either 1or0, so that

A A

=15 (2.2.8)

SN

and thus 7 is a projection operator. If we further consider the situation that
each value of @ corresponds to a range of values of a which does not overlap
with that for any other value of a, we have the orthogonality condition,

T:1; = 6,375 (2.2.9)

In this case, the measurement of A is essentially equivalent to a precise mea-
surement of the reduced operator A = > T, in which the unmeasured range
is not affected. This happens in practice when the system can be described by
two commuting operators, A;and A, and we make a measurement simply by
applying the precise measurement theory to one of them, so that the relevant
projection operator takes the form

T, =E|51,az>(dlsazl. (2.2.10)

az

i) In general, however, the imprecise measurement does not correspond to the
precise measurement of any operator.

iv) The construction of £} shows that there are a large number of T; which give
the same effect, F}l, and from (2.2.6) it is clear that all the information about
the measured values obtained from the measurement is contained in the effect
[7’(—1. The phases of the 13, are essential only for the elucidation of the final state
of the system. However this information is very important if we wish to carry
out a further measurement after the first.

v)  In principle, any 13, are allowed for any possible basis set |a) in the quantum
mechanical Hilbert space.

2.2.3 The Quantum Bayes Theorem

Caves [2.2] has pointed out that the measurement formulation has a very suggestive
interpretation as a kind of quantum Bayes theorem. From (2.2.7) we can derive the
result

[{alh,t) *|Taal® = P@)|(a|ths, t) 2.2.11)
= P(a;a). (2.2.12)

We introduce the quantity P(a;a) as a joint probability that the system had the
cigenvalue a before measurement and the result @ was obtained as a result of the
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measurement, for we can make the two interpretations, depending on whether we
look at the LHS or the RHS of (2.2.11) :

LHS; Refers to the situation before measurement.

(probability that the system is in state a before measurement)
P(asa) = X (probability of getting the value a given that it was in the state a
before measurement)
RHS; Refers to the situation after measurement.
(probability that the result of measurement was a)
X (probability that the system was in the state a after measurement)

P(a:a) =

If we now consider two different reference states, |a) and |b), we can cancel out

P(a), to get

|<a'¢ﬁ»t> ’ — |<a|¢,t>12‘T(MfZ (2213)
[(bltba, t)[> [ (blh, t) || L |?

or, one sees that (2.2.13) can be written as

[(a|ta t)|* o [(alh,t)|*|Yaal*  for fixed a, (2.2.14)

which means, in words,
Probability the system is in the state |a), given that the result @ has been measured
o Probability that the system was in state |a) before measurement

X probability that the result is @ given that the state is |a).
This is in exact analogy to the Bayes theorem concepts of classical probability
theory. The term |(a|t.t)|* is the a priori probability of the value a. The term
|724]? is a conditional probability for getting the result a, given that we start with
|a)—this can be seen directly from (2.2.6), where we only need to set [, t) = |a)
to get

{P(a) given the initial state is |a)} = |T;m|2. (2.2.15)

Thus, like Bayes theorem, this result takes the conditional probabilities for a result,
given an initial value, and the a priori probabilities of the initial values, and yields
a result for the probability of a given value, given a particular result.

Finally we note that there is a more powerful result here, for probability ampli-
tudes, following from (2.2.7). We see that

(a|pa. t) | P(@)7 = (altp.t) Vaa- (2.2.16)

b), and cancelling P(a)* as above, we deduce that

Using different |a),
(a|va,t) o (a]v,t)Taa for fixed a, 2.2.17)

which gives an amplitude interpretation of Bayes theorem. This is a much stronger
result than the form (2.2.14), and fully embodies the quantum mechanical centrality
of the concept of a probability amplitude. The formulation (2.2.17) is fully equiv-
alent to the original postulates (2.2.6,7), but presents a much more natural way of
looking at them.
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2.2.4 More General Kinds of Measurements

We have to ask what kind of operations 'f”a are allowed by the theoretical devel-
opment of Sect.2.2.2. This is easily seen from (2.2.2), which implies that f‘,—l is a
function of the operator A which is itself Hermitian and an observable. This is of
course quite a restrictive requirement; that there must exist some observable A of
which f}l is a function, and indeed this is the observable which is being measured.

s this assumption needed? The reason for it lies in our concept of what we would

like to think a measurement is. This kind of measurement has the property that if
the initial state is the eigenstate |ao) of A, then the state after measurement is also
ap). In this sense we can say that the system is not disturbed by the measurement
when the initial value is precise. This arises basically by assumption, and as a
consequence, T; is a function of A. It is conventional to call this a measurement of
the first kind.

There are physical observations which do not have this property. For example
in photon counting we count photons by absorbing them, and no matter what state
the system is initially in, the final state will have fewer photons. The measurement
destroys the state being measured. We are all aware that this kind of measurement
is quite important in everyday life. For example, one usually tests the quality of an
apple by eating it. At the end of the experiment we have no apple, but consider the
information gained to be relevant to similarly prepared apples, which others may
choose to eat. Classical sampling theory does not normally take into account that
sampling may destroy the sample, even though it is obvious that such destructive
sampling is very common. It is conventional to say that these measurements are
measurements of the second kind. In quantum mechanics we can conceptualize
such a measurement very similarly to the way we have already done. The simplest
thing to assume is that the operator T, which is a function of the observable A, is
replaced by a general operator $(a), which can be represented as

b@) =) B(@)ala) (|- (22.18)
a.b

We now define the effect corresponding to the operator &(a) by
G@) = d'(@)da) (2.2.19)
and the assumption of completeness is

E G@)=1. (2.2.20)

The measurement postulates are now framed from the point of view that @ is not so
much the value of an operator A as a label of a possible outcome of the measure-
ment. We then postulate

1) The probability of obtaining the outcome @ as a result of the measurement is

P@) = (¢, t|G@)1h. t). (2.2.21)
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ii) If the outcome is a, then the state of the system immediately after the measure-
ment is

_ @(a)|¢ t) E [2)2@)as (bl t) (2.2.22)

[s.?) P(a)

The definition (2.2.18) of @(d) means that it is a completely general linear
operator; thus (2.2.22) will give the most general /inear functional of the initial
state which results from the process that we view as the measurement giving
the result a.

Notice that the completeness assumption (2.2.20) means that

E P@) =1 (2.2.23)

as required for a probability
Example: Let us consider a two level atom, described by the two states

wr=(3) . wr=() 0220

and assume that we wish to test whether the atom is in the excited state, u(+), by
absorbing the energy in it, and thus leaving it in the lower state. Let us also allow
the method of measurement to be somewhat imperfect, so that even if the atom is in
the upper state, we will not necessarily absorb the energy—however we do assume
that if the energy is absorbed, then we do detect it.

The first outcome is that the energy is detected, and the atom left in the ground
state; thus

é(1) = (f\) 8) (2.2.25)

is a possible choice. The only possible other outcome is that the energy is not
detected, in which case (because we assume that if the energy is released, it is
detected) the atom, if it is in either the ground or the excited state, remains there.
The only reasonable choice for the other operation is

T

@(2)_<0 1) (2.2.26)
where

> =1—|A]? (2.2.27)

which ensures that

d2)'d2) + (1) d(1) = 1. (2.2.28)
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u . .
We can then see that on a general state (v) the final state is

(2 8) (Z) = (/&) if the energy is detected, (2.2.29)
and
(g (l)) (Z) = <“vu> if the energy is not detected. (2.2.30)

2.2.5 Measurements and the Density Operator

The general measurement theory can be quite simply expressed in terms of the
density operator as follows. If the density operator is initially p, then the probability
of the outcome a is

P@)=Tr { d(a)p qﬁT(a)} (2.2.31)
and after the measurement, the density operator has the form
p@) = d@)pd'(a)/P@). (2.2.32)

This expression in terms of the density operator is merely a transcription from the
formulation in terms of state vectors. But there is a real generalization of the con-
cept of a measurement which can only be expressed using the density operator.
Let us return to the example of Sect. 2.2.4, and consider the situation in which
the energy may be absorbed from the atom, but yet not be detected, because the
detector is not perfect. It is natural to try to remedy this by including in &(2) an
amplitude to de-excite the atom, thus we might modify the expression (2.2.26) for

d(2) to < 5 ?) where the term 7 allows this possibility. However to preserve the

completeness (2.2.28), we find we have to modify both (1) and $(2) to

o 0 0

é(1) = (/\ e TR ) (2.2.33)

s o (p 0

602 = (T W ) . (2.2.34)
where |[A]* + |u|? + |7]*> = 1. The new expression for &(1) means that there is

a probability of detecting the energy even when the atom is in the ground state.
While this is not impossible, it is certainly not experienced in all detectors. It is a
particular (an unlikely) way in which inefficiency can arise.

A more natural way is to introduce a probability of detection of the energy re-
leased; i.e. we separate the detection of the energy once it has been released, from
the release of the energy by the atom. We can thus isolate three possibilities. If ¢ is
the efficiency of detecting the energy once it is released, the operations are:



32 2. Quantum Statistics
é(1) _ (0 O The atom is put into the ground state, and the energy
“\) 0 is detected, with probability e.

The atom remains in the ground or the excited state,
and no energy is detected.

2.5 = 0 0 The atom is put into the ground state, and no energy is
’ “\) 0 detected, with probability 1 — .

The observable outcomes of the 913(2, «) and 43(2, [3) are the same, and the density
operator after performing the detection, and observing outcome 2 (no energy de-
tected) is the average of the two. Thus, the probability of outcome 2 is

PQ)=Tr {qﬁ(z, @) pd(2, )+ — b2, 8) pdi, [9’)} (2.2.35)
and the density operator after measurement is given by

p(2) = P2)"! {qﬁa, @) p®'2, )+ (1 — ) (2. ) pcﬁT(z,ﬁ)} : (2.2.36)
On the other hand the probability of outcome 1 is

P(l):Tr{eqﬁ(l)pqﬁT(l)} (2.2.37)
and

p(1) = P(1)~ ' ed(1) pdT(1). (2.2.38)

Notice that the requirement P(1) + P(2) = 1 is ensured by the completeness sum in
the form

eI+ — D12, 8 P2, B) + 72, ) D2, ) = 1. (2.2.39)
General Formulation: We can now formulate this kind of generalized detection
as follows. We assume that the outcomes of a given detection process are labelled

by the index a, as before, and that each outcome can arise by a number of different
operations @(a, o). Then the probability of measuring the outcome a is

P@=3>Tr {qﬁ(a, a)p & (@, a)} (2.2.40)
and the density operator after the measurement is
p@ =Pa 'y @ wpd @ w. (2.2.41)

(63

[S§]
W

2.3 Multitime Measurements

Notice that the efficiency e of the example has been absorbed into the definition of
the effect; thus the completeness takes the form

Eéﬂ(a,a) d@, o) =1.

a,

(2.2.42)

The type of mapping p — p(a) specified by (2.2.41) is known as a completely posi-
rive map, since if p is itself a positive definite operator, i.e. one such that (u|p|u) > 0
for all vectors |u), then so is p(@) positive definite.

This is the most general kind of formulation of a measurement which is usually
made.

2.3  Multitime Measurements

We now want to extend the measurement theory developed for measurements at a
single time to a theory of measurements at several times. The basic process is quite
easy to formulate. A measurement at an initial time instantaneously transforms the
state of the system, which then evolves according to a Hamiltonian time develop-
ment until the next measurement which instantaneously transforms the state of the
system. The Hamiltonian evolution continues until the next measurement and so
on. Eventually we obtain the multitime joint probability for obtaining a sequence
of measured values corresponding to the measurements carried out sequentially.

We will be able to show that by means of such a process we can, in principle,
measure any time ordered correlation function of any quantum mechanical opera-
tors.

2.3.1 Sequences of Measurements

Let us, for simplicity, consider the process of carrying out a sequence of measure-
ments on a well defined initial quantum state |1,ty). We must first take account
of the fact that during the times between successive measurements the system will
evolve unitarily. Thus, provided no disturbance or measurement happens to the
system between t and t + 7,

[,t+7) = Ut +7,0)h, t). (2.3.1)

Suppose we will make measurements at times t,, ¢ = 1,2,3,..., where t, > t,_;.
We label the possible results of the gth measurement by a@,. At some initial time
top < t, we assume the state of the system is |1, to).

The result can be developed by iteration. We assume that the results of the first
g — 1 samples are @y, a»,...a,—;. The state of the system just after the (¢ — 1)th
measurement depends, in general, on the results of all previous measurements, so
we will denote it by [z, a,...a, ,-t4 1). The state just before the gth measurement is
given by the unitary time evolution from the state just after the (¢ — 1)th measure-
ment, namely

[Va1as....3,-1- tq) = Ultgs ta—1)|%a,as...3,-1> tg—1)- (2.3.2)
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We now use (2.2.6) to compute that the probability of obtaining the result @, at the
qth measurement, given the results of all previous samplings, is

P(aq|al’ Gz, ..., ‘—lq-'-l) = <¢a1 sl tq’Fﬁ,,|1/)&|....d,, - tq> (2.3.3)

and the wavefunction is
f}l a a »t
’¢(_l]...ﬁqatq> = : wa""' L q_) . (2.34)
\/P(@qidl,(_h, ceaGgo)
We can now iterate these equations to get
e
|"/)l_11,uflq’ tq) — [Hr:l Ta,U(tr,tr—~l)] |1,b(), t()) i (235)

P(dl;...;dq)

where the product in the numerator is ordered so that the times increase to the left,
and

q
PG@y:...:ap) = [[ P@lai.....a, . (2.3.6)
r=1

Since the state is normalized, we deduce that

tq
[ 75Uttt Dl t). 2.3.7)
r=1

q
P(ay;...:a0) = (o, to] [H Vo Utrot, 1)
r=1

2.3.2 Expression as a Correlation Function

If we define the Heisenberg picture operators corresponding to the fie by
Ta(t) = U't, to)TaU ¢, to) (2.3.8)
the formula (2.3.7) can be written

P(@13a2;. .. @g) = (o, to| T3, (t1) ... T t)Ta, 8) ... Tay D)0 t0).  (2.3.9)

This is a kind of correlation function of the operators f‘(—l(t) with each other.

2.3.3 General Correlation Functions

There is in principle no reason why the measurement cannot be a completely arbi-
trary operation 9(a), apart from the normalization necessary to make the complete-
ness assumption (2.2.20) possible. This means that the arguments of Sect. 2.2.4 can
be carried through to show that the joint probability for a sequence of outcomes
@y, as, ... can be related directly to the correlation functions of the ®(a;), which are
essentially arbitrary; thus following (2.3.9)

P(ay:as;...;a,.)
= (Y0.t0|®'@1.11) ... B @y, t)B(Gy, t,) . .. D@1, t)| o t0).  (2.3.10)
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We can use the polarization identity

A'MB =1 {(A+B)'M(A+B)~ (A- B M4 B)
~i(A+iB) M(A+iB)+i(A — iB) M(4 — iB)} 2.3.11)

to generate more general correlations by linear combinations of probabilities, and
by assuming that the &(a, t) are complete in the sense that any operator including
the identity, can be expressed in terms of a linear combination of them, we can
generate correlation functions of the kind

<",b()s t()|Al (tl )AZ(tZ) e An (tn )Bm(sm) e BZ(SZ)BI (SI )ld)()y t()) (2312)
where the A; and the B; are arbitrary operators, and s; and ¢; are times such that
t;StzS...St", S]SSzg...SSm. (23]3)

Such correlation functions are generally called fime ordered correlation Sfunctions,
and are the only kind of correlation functions susceptible to direct measurement in
this form.

2.4  Quantum Statistical Mechanics

The introduction of the density operator as a means of describing quantum me-
chanical states in the absence of complete information is the first step in formulat-
Ing quantum statistics. While the technique is very flexible, there is still a lack of
structure—we can conceive of large numbers of ways in which information may be
incomplete, but these may not be very relevant to real life. The contact with reality
comes from the introduction into quantum mechanics of the concepts of tempera-
Lure, entropy, and statistical ensembles, which were so successful in the nineteenth
century development of statistical mechanics. The formal method of doing this is
via the concept of entropy maximization, subject to constraints.

2.4.1 Entropy

The concept of a macrostate, defined by the values of certain macroscopic vari-
ables, such as temperature, pressure, momentum, etc., of a system composed of a
very large number of particles is fundamental to statistical mechanics. A macrostate
is represented microscopically by myriads of possible configurations of the micro-
scopic variables, (energy, momentum, etc., of the individual particles)—there is no
unique microscopic configuration corresponding to a macrostate (other than in very
exceptional cases).

The entropy of a macrostate is introduced as a measure of how many different
microstates represent the same macrostate. In a quantum mechanical system, this
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gives a particularly simple formula for entropy. If we consider a density operator p
which is diagonal in a certain basis, then p may be written as a matrix

P1 0 0 0
0 p2 0 0
p=|0 0 ps 0 ...} 2.4.1)

0 0 0 pu

Suppose N different quantum states contribute to this matrix in equal proportions:
then the logical measure of entropy is

S =klogN (2.4.2)

where k is Boltzmann’s constant. In this case, we have also

o
pi=y s N} (2.4.3)
-0 i>N

and we can use this to write the entropy in a form which does not depend on the
particular basis, for it is clear that in this situation

Tr{plogp} = Epi logp;, = —log N (2.4.4)

where we have used z log z = 0 for 2 = 0.
A change of basis is a unitary transformation, which leaves the trace invariant;
hence as a general form of entropy S when (2.4.3) is satisfied,

S =—kTr{plogp}. (2.4.5)

Obviously the form of distribution (2.4.3) is not always satisfied: in this case one
cannot easily say how many quantum states contribute to the density matrix, but
(2.4.5) gives a measure of the average number of states which contribute to the
density matrix.

2.4.2 Thermodynamic Equilibrium

The concept that thermodynamic equilibrium is obtained by maximizing entropy is
introduced by many compelling and ingenious arguments, which I do not choose
to repeat here. Excellent discussions are given by Tolman [2.4] and Landau and
Lifshitz [2.5].

The maximization is carried out subject to constraints, which specify the macro-
scopic knowledge we have of the system. Fundamental to the idea of equilibrium
is the idea that the system is stationary, i.e., the density operator has no time depen-
dence. From von Neumann’s equation (2.1.24), in the case that there is no explicit
time dependence of the Hamiltonian, one sees immediately that in equilibrium the
Hamiltonian and the density operator commute with each other. Maximization of
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entropy can be carried out on the assumption that p is diagonal in an energy repre-
sentation, so that

po=> pili)l (2.4.6)
H =) Eli)i| (2.4.7)
S =—k> pilogp. (2.4.8)

One is now in a position to specify exactly what is known about the system. The
most common assumption is that the mean energy content (essentially the temper-
ature) is known, i.e., that

(E)=) " piE; (2.4.9)

must be specified as a constraint when maximizing the entropy. Another constraint
is, of course, that

Tr{p}=> pi=1. (2.4.10)

This means that we must maximize using Lagrange multipliers: namely, one re-
quires

5{2pilogpi+azpi+,32Eipi}=0 (2.4.11)
for which the solution is

pi =exp(—a — SE;) (2.4.12)
which can be written as

p=exp(—a — BH). (2.4.13)
Using (2.4.10) we can solve for « to get the canonical density operator

p=Z(pB) " exp(~fH) (2.4.14)
where Z(f3) is the canonical partition function, defined by

Z(B) = Tr {exp(—SH)} . (2.4.15)
The most useful way of looking at 3 is to use it to define the temperature T through

B=1/kT (2.4.16)

where k is Boltzmann’s constant.

Other ensembles can be useful. There is always the possibility that certain other
constants of the motion may be specified; for the most general stationary solution
of von Neumann’s equation (2.1.24) is a density operator which is an arbitrary
function of any constants of the motion, and these may be included as additional
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constraints. The most well known is the grand canonical ensemble, in which the

A~

particle number operator, IV, is assumed to be a constant of the motion, and entropy

is maximized subject to a fixed (V). This leads to the grand canonical density
operator

p=ZB.p) " exp [-BH — pN)) (2.4.17)
where p is known as the chemical potential, and
Z(B, ) =Tr {exp [-BH — uN)]} (2.4.18)

is the grand canonical partition function.

2.4.3 The Bose-Einstein Distribution

a) A Single Harmonic Oscillator: A harmonic oscillator has states which can be
specified by the “number of quanta” of energy Aw; namely the states can be written
|n), each of which has energy (n + })hw. The canonical density operator in this
case is given by

(n|plm) = bume P+ 1 7(B) (2.4.19)

and

[ee]

Z(ﬁ) - E e“,(i(n+%)hw = ﬂhw/Z/(l o e—ﬂ’hw)' (2.4.20)

n=0

The mean occupation number is
(N) =" n(n|pln) = 1/ —1). (2.4.21)

Note that setting # = 1/kT and taking the limit T — oo, we find

kT

M
hw

(N) (2.4.22)
which is obviously to be interpreted as meaning that the mean occupation is the
mean energy available divided by the energy of a quantum.

This is the prototype of the Bose-Einstein distribution. If we have many oscilla-
tors, then the distribution is obtained simply by multiplying many copies of (2.4.19)
together for each oscillator, provided there are no constraints, in which case it is
more appropriate to use the grand canonical density operator.

b) General Bose-Einstein Distribution: This kind of distribution is most gener-
ally applied to assemblies of atoms or molecules, such as “He atoms, which have
integer spin, and therefore obey Bose statistics. A state of the system can therefore
be written as the direct product of harmonic oscillator states, one for each mode.
Thus the states are written |ny,n2,n3, ... ng, . . .), and the energy of one quantum of
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the state k is hwy. The grand canonical density operator will be given in this case
by
1

S )H5,Lk,mke-ﬂ[<"k+%”’Wr””k], (2.4.23)
g7

k

(ni,ma, ... |plmi,mo,...)

where the grand canonical partition function is

o~ Bhu/2
Z(\B,p)= H 1= o Btum (° (2.4.24)
k
and
1
(Nk) = qom — 1 (2.4.25)

The chemical potential y is determined from the constraint that the total number of
particles is NV, so that

N = (Ny). (2.4.26)
k

¢) Fermi-Dirac Distribution: Here the particles under discussion obey the exclu-
sion principle, so that the states are written |ny,no, ..., n,...), Where each of the
ny can only be 0 or 1, and the term (nj + 1 )hwy is merely nihwg. Thus the grand
canonical partition function is

zB.m=]] {1 + e—'ﬂmwv'w} (2.4.27)

k
with

1
(Ni) = ST (2.4.28)

and u is determined by the same constraint, (2.4.26).

2.5 System and Heat Bath

Statistical mechanics often makes use of the idea of a rather small system which is
brought into contact with a very large system, usually held at some definite tem-
perature. The origin of this concept is presumably the study of the Carnot cycle,
where a finite volume of gas is transferred from an environment at one temperature
to another environment at a different temperature. This could be achieved with a
small piston assembly of high conductivity metal, which is transferred from a large
tank of water at one temperature to another tank at another temperature—hence the
idea of a “heat bath”.
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In more general situations the heat bath need not be so explicitly constructed. For
example, in a chemical reaction taking place in solution the “system” consists of
the molecules of the particular species which react, while the “bath” consists of the
non-reacting degrees of freedom of the solution as a whole. The “system” and the
“bath™ occupy the same space! Indeed, it may be possible, if the reaction does not
liberate any significant amount of heat, to operate the reaction without a solution,
e.g.. a gas phase reaction, and in this case the “bath” consists of the kinetic degrees
of freedom only.

2.5.1 Density Operators for “System” and ‘“Heat Bath”

We shall therefore consider the situation in which the physics as a whole does admit
a rather clear separation into “system” and “bath”, but will not enquire exactly as
to how this is achieved. We will therefore suppose that the states of the physical
system as a whole can be written

z,a) = |z)|a) (2.5.1)

where

a represents the bath degrees of freedom,

x represents the system degrees of freedom.
For simplicity, let us assume the ranges of both a and z are discrete sets. We can
consider now operators which act in the system only, and operators which act in the
bath only. Of greatest interest are those of the system, since this is what is under
study—the bath is merely an environment.

Suppose we are interested in the mean of a system operator, M. Since this is an
operator in the system space only, we can write:

(z'a'|M|za) = 6,0 (' | M |z). (2.5.2)

If [4) is any quantum state, the mean of M is

(| M) = E z(¢|za)(za|M|z'a') (z'ad'|¢) (2.5.3)

zz'  aad

and using (2.5.2)

=3 > (plwa) (@alp) (x| M[s") 2.5.4)
= Tryys { poysM } (2.5.5)

where
poys = D ) |2) (aaly) (v|za) (x| (2.5.6)

[

is called the reduced density operator for the system. This expression makes it clear
that

psys = Trg {[¥) (¥[}, (2.5.7)
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that is, it is the partial trace of the density operator for the whole physical system
taken over the bath variables only. Alternatively, we can write

Psys = z P(a)|"/)a><¢a| (2.5.8)
where
P(a)=" |{zal)[’ (2.5.9)

and [th,) is a system state, given by
[Ya) = E |z)(zaly)/\/P(a) . (2.5.10)

The form (2.5.8) makes it clear that Psys 18 a density operator such as was conceived
in Sect. 2.1, and it is positive definite. It shows that a subsystem of a system de-
scribed by a pure state density operator [¢) (1| must be described by a mixed state
density operator pgys. Of course if the whole physical system is itself described by
a density operator p, then the generalization of (2.5.8) is

psys = Trg {p} . (2.5.11)

2.5.2 Mutual Influence of “System” and “Bath”

The separation into “system” and “bath” is usually quite clear where it is appropri-
ate, for example in quantum optics, the system could be the atom, and the heat bath
the radiation field. We are often interested in the atoms only, and use the radiation
field merely as a probe to investigate the atom, but there are situations in which the
precise state of the radiation field which arises can be of interest.

The separation into the “system” and the “bath” then brings to mind the matter
of their interaction with each other. The general supposition is that the bath is so
large that the system can only have a negligible influence on it, and it is therefore
possible to make approximations which depend on this assumption. This will be
done in Chap.5. However, the influence of the system on the bath can be quite
significant, for example, in the case of an atom in a radiation field, the atom may
fluoresce, and the fluorescent light is itself the effect on the radiation field, without
which the atom could not be detected.

The influence of the “bath” on the “system” is rather more obvious. The system
and the bath can exchange energy, and this leads to dissipation, and to fluctuations.
An excited atom will lose its energy by radiation into the bath, but it will also feel
the random fluctuations of the electromagnetic field which pervades all of space—
even at zero temperature there are still vacuum fluctuations. How to write and
compute these effects is the subject of this book.
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The mutual influence of a “system”, with few degrees of freedom, and a “heat bath”,
with many degrees of freedom, on each other is the central concept in the physics
of noise, both quantum and classical. The action of the many variables of the bath
on the system is to modify the equations of motion of the system by the inclusion
of apparently random terms. The archetypal version of this concept dates back to
Langevin’s introduction of the kind of equation which now bears his name: the
equation for a Brownian particle moving in a viscous fluid under the influence of a
potential in the form

mi = —V'(z) — vi+\/27kT £@@).

The aim of this chapter is to derive analogous equations for quantum systems, and to
develop some of the basic methods of using them in situations of physical interest.

No derivation can be carried out without some basic assumptions, and so far the
only usable basis for a derivation has been the assumption that the heat bath consists
of an assembly of harmonic oscillators. This is not a bad assumption, since the most
useful form of quantum noise theory is that developed for quantum optics, in which
the relevant heat bath is the electromagnetic field, which is exactly equivalent to
such an assembly of oscillators. In other systems, arguments can be made that
the bath can be so approximated, but there will always remain some doubts, based
on the knowledge that the harmonic oscillator is special, so that generalizations to
other systems can be misleading.

We will also find that the assembly of harmonic oscillators must have some rather
special properties. In particular:
i) There must be a smooth dense spectrum of oscillator frequencies.

ii) The coupling of the system to the bath operators must be linear in the bath
harmonic oscillator operators.

iii) The coupling constants of the system to the bath operators must be a smooth
function of the frequency of the oscillators.

These properties are all provided rather naturally by a quantum field, of which the
electromagnetic field is the foremost example. The oscillators which arise as the
normal modes of a field in a large (or possibly infinite) volume do have a smooth
dense frequency spectrum. Non-trivial couplings do arise which are linear in the
field variables. Finally, the most natural coupling of a small system to a field is a
local coupling, in which the coupling depends only on the value of the field at a
single point. The fact that the normal mode variables of the field are essentially
spatial Fourier transforms of the field variables means that such a local coupling
corresponds to taking a coupling to the normal modes which is in fact independent
of mode frequency.
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In fact it will turn out that a field interpretation of the heat bath is almost always
possible—indeed it may be possible in several ways. The most important conclu-
sion to be drawn from this can be seen by considering the case of a single atom
in the electromagnetic field. When viewed from the position of the atom there are
two kinds of field modes, incoming and outgoing. The incoming modes influence
the motion of the atom, whereas the outgoing modes are produced by the atom—
they affect the atom because they carry away energy, and thus give rise to damping.
The effect of the incoming modes is to produce random noise effects and to feed
energy into the atom, which is carried away by the outgoing modes. Thus the kind
of damping produced is radiation damping. However this view will always be true
whenever a field interpretation of the bath is possible, and in my experience this is
always possible.

We are then led to the concepts of noise inputs and outputs. Every system which
can be modelled as being coupled to a bath of harmonic oscillators can be consid-
ered as being driven by a noise input and as radiating a noise output. In optical and
transmission line systems the noise outputs may be directed into other systems for
which they become the inputs. However, the inputs may consist of both noise and
possibly a well defined coherent part which is perhaps best called a signal. Revert-
ing to the case of an atom in an electromagnetic field, we can identify three parts in
the input:

i) A signal which could arise from shining light from a light source such as a
laser on the atom.

ii)  Noise which arises from the fluctuations in the laser light, and is produced by
random effects in the laser. Such noise could also arise from other sources of
light, such as sunlight, which impinge on the atom.

iii) Vacuum noise, which arises even when there is no light source. The vacuum
state of a quantum field is a state in which the mean square field is non-zero.
Thus, these vacuum fluctuations will always be present, and must satisfy the
equations of motion. Even in the vacuum—that is, in a completely dark room
at absolute zero—the atom experiences a vacuum noise input, and radiates a
vacuum noise output.

Mathematically, the effect of the vacuum noise is to ensure that the Langevin equa-
tions always have a driving term as well as a damping term. As explained in Chap.1,
without some such term the canonical commutation relations would decay to zero,
violating quantum mechanics. Physically the effect is slightly alarming, since the
effect of this vacuum noise can be viewed as rather small, or infinite, depending on
one’s point of view.

In one sense the noise is infinite, because, as mentioned in Chap.1, the spectrum
of quantum noise rises in proportion to the mode frequency, so that the total power
is infinite. However, the net effect is to renormalize the constants involved. As a
result the vacuum noise shifts the energy levels of an atom to give the Lamb shift,
which is dealt with by the renormalization techniques of quantum electrodynamics.
The net effect is very small. For lumped systems, such as the Josephson junction,
the finite size translates into a high frequency cutoff, which makes the effect of
the rising noise spectrum finite, and able to be calculated. However, this does not
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mean that it is easy to calculate in all cases, and considerable care must always hg
taken. For example, it is natural to assume that we can use an initial condition fop
the system-bath density operator which is the direct product of an operator for the
system and one for the bath. In general this is true, but it may be a very exceptiong]
kind of state, since the effect of the high frequency modes is very strong, and thug
such a state will experience a very large transient as the bath and system come g
equilibrium with each other. For example, a harmonic oscillator coupled to such g
bath experiences a very large input of energy, which effectively raises the energies‘
of all the energy levels. Nevertheless, measurable energy differences between the
levels are only slightly affected. “
All of this is rather daunting, but fortunately, we can get away with a drastic ap-
proximation which eliminates all these effects, known as the rotating wave approx-
imation. This eliminates all the terms in the Hamiltonian which cause the undesired
effects, while leaving the measurable effects much the same. It is only valid if the
damping is very weak, but that is very often true. However, this does not eliminate
vacuum noise—it merely eliminates the infinite effects, and is equivalent to a kind
of renormalization. The remaining part of the vacuum noise is still there, and serves
to preserve the commutation relations in this approximation. '

3.1 The Harmonic Oscillator Heat Bath

The model of a heat bath as an assembly of harmonic oscillators has a Hamiltonian
which can be written in the form

2 2
_ Dy, k”qn
Ha= Y { o+ B},

n

(3.1.1)

The system Hamiltonian can be left arbitrary. There must, however, be a number of
system variables which we can write as a vector Z, with a finite number of elements:
Z;. Thus the system Hamiltonian is called

Hsys(Z)~ (312)

This kind of heat bath could be a model of an elastic solid, or indeed of the elec-
tromagnetic field (since both of these can be viewed as assemblies of harmonic
oscillators, one for each normal mode). The system could be an atom, as in quan-
tum optics, or something like a macroscopic LC circuit. Examples will be treated
later.
a) Coupling Between System and Bath: We can get a coupling between bath and
system which yields an exact quantum Langevin equation, by writing i

l kn b
H=Hsys(Z)+2{5‘;)‘1’%"’7(%*‘}02}, (313)

where X is a particular one of the system operators Z. The coupling is physically
very simple—it makes the potential energy depend on the deviation of X from all
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the gn: In other words, it is as if each co-ordinate g, is harmonically bound to a
"possition” X . Conventionally, the interaction term is often written as — Yonkngn X
omitting the term . k,X?. This second term is a function only of the system
operators and thcrefore can be .absorbed into the system Hamiltonian, so the two
formulations are physically equivalent. However the formulation in terms of (3.1.3)
turns out to be simpler, since the observed systematic motion is in fact given by
Hes, without the need for any correction. The Hamiltonian (3.1.3) can be simplified
considerably by the canonical transformation

Gn - p”/\/k_”
pe — iV

3.14
kyp/mn — w? ( )
\//—‘T/ — Kn

which gives the Hamiltonian
H=Hy(Z)+ 1> {0 — 62X +w2¢?}. (.15)

n

For future reference, the equal times commutation relations implicit in this Hamil-
tonian are

[va)'l] = [qu'n,] = O
[pnapm] e lQns Qm] =0
[q”,pm] = ih(sn'm,c

(3.1.6)

but no particular commutation relations are specified between the different compo-
nents of Z—these will depend on the system under consideration.

b) Non-Linear Couplings: This kind of coupling to the bath is linear in the bath
variables, and corresponds to energy being transferred to and from the bath by the
absorption or emission of bath quanta. This is certainly what happens in the case of
electromagnetic radiation, but in something like the theory of electrical resistance in
ametal, a different formulation is appropriate, since it is known that electrical resis-
tance arises from scattering of electrons by phonons and impurities. The scattering
by.phonons gives a temperature dependent resistance which arises because scat-
tering depends on the average number of bath phonons, which of course depends
on temperature. This cannot be reproduced by the linear coupling assumed. Non-
linear couplings are not easy to create by the quantum Langevin equation, but can
be dealt with by master equation methods, as will be shown in Chap.5. The resid-
ual scattering by impurities does not have this temperature dependence, but it is not
really an incoherent effect, as was pointed out many years ago by Landauer [3.1].
The scattering randomly changes the phase of the electron wavefunction, but if
the scatterer is fixed, this does not change the coherence, and interference between

:}IfCtgon waves can be observed. However, this phenomenon is outside the scope of
1S book.
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3.1.1 Derivation of the Langevin Equation

The Langevin equation can be derived by solving the equations of motion for the
oscillators in terms of the variables Z, and substituting these back into the equations
of motion for the Z. The result is an equation involving only the system variables
and an operator function of time, £(¢), which is determined by the initial values of
the bath variables.

We therefore first write the Heisenberg equations of motion for the oscillator
variables,

i
Q71 = E[H7 Qn] =Pn — ’CnX
(.1.7)

i
pn = E[H’ pn] = _wyzLQH-

The solution of these is most easily accomplished in terms of the creation and de-
struction operators, a], and a,, defined for this system by

_ WnQqn t ipn aT — WnGn — ipn (3.1.8)

n = /2 hw, " 2hw,

whose equations of motion are

. W,
In = — 1WAy — Ky — X 3.1.9
a iwnan — Kny[ > ( )

with the solution

t
an(t) = e Wa, (tg) — n,l,/;—"% / ) (Y (3.1.10)

to

and the corresponding Hermitian conjugate equations for af. The equation of mo-
tion for an arbitrary system operator, Y, is obtained by commuting with H, (and
using the commutation relations (3.1.6)) in the two alternative forms

. i i i
Y - ﬁ[H’ Y] - E[HsySa Y] + ﬁ Z |:[Y’pn - K:’I'LX]-F’ K:TIX}
" (3.1.11)

i i
= ﬁ[Hsys, YT+ ﬁ |:[Ya kn X1, pp — K:nX] .

n +

We now substitute for p,, using the definition (3.1.8) and the solution (3.1.10). After
a partial integration with respect to t', we can collect everything into one equation,
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which can be correspondingly written in two forms:

——

Lo i
Y= E[Hsys, Y]

) t
1 .
37 | X0 - [ fa- Xt — g - wXeoL | G.112)

to

i
= E[Hsym Y]

t

i .

T [X.Y],&@®) — /f(t = tXEdt' — f(t — t0)X(to) (3.1.13)
to

+

in which
-
[ ) =1 Ky \/g [—an(to)e‘iwn“"t“’ - ajl(t(,)e‘w"“*t“)} (3.1.14)
and '
f@®) =" k2 coswyt). (3.1.15)
n

The equations (3.1.12,13) will be called the quantum Langevin equations, provided
the function f(t) satisfies appropriate conditions which make the terminology rea-
sonable.

a) A Particle Moving in a Potential: In order to see what these conditions are,
consider the quantum version of Langevin’s original equation for the motion of a
particle in a potential under the influence of viscous drag and a fluctuating force.
The system then has canonical co-ordinate ¢ and canonical momentum p, and the
operator X which couples to the heat bath will be chosen to be g—this is exactly
the model of Ford et al. [3.2]. Thus,

2
_p
Hgys = - +V(g). (3.1.16)

There are then two quantum Langevin equations obtained by explicit substitution
in (3.1.13):

q(t) = p(t)/m (3.1.17)
t

pt)=—V'(q@®)) — [ ft —thgt)dt' — [t — to)q(te) + £(b). (3.1.18)
to

The function f(¢) can be seen to have the form of a memory function, since it makes
the equations of motion at time ¢ depend on the values of q(t) for previous times.
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If f(t) is a rapidly decaying function, the equations can be said.to have a short
memory. More precisely, if f(t) goes to zero in a time scale which is much less that
the time over which ¢(¢) changes, then we can replace G(t") by ¢(t), and for ¢ not
close to ty, the initial time, we can drop f(t — to)q(to). .

These equations then take on exactly the form of Langevin’s original equation.
Formally, we can assume the function f(¢) has the delta function form

f(@) =276(). (3.1.19)

This will be achieved if the coupling constants have the form described in the fol-
lowing.

b) The Nature of the Coupling Constants: In principle we know nothing abogt
the coupling of the system to the heat bath. However, to ensure that the energy is
dissipated among the many modes, there must be some significant coupling to all
of the modes. Further, the only distinguishing feature between the different modes
is their frequency. There may, however, be a number of modes which all have Fhe
same frequency. We can take account of this by introducing a parameter g, wh¥ch
is the number of modes of frequency w,, and introducing another index m which
distinguishes the different modes of frequency w,. In this case, we deduce that
instead of (3.1.14,15), we can write

gn

e, —iwn (t—to iwn (t—to)
e=iy > o [~ anmlt)e 1 al )] (3.1.20)

2 m=0
and
n
f&) =" coswyt) {E ni,m} : (3.1.21)
n m=0

Finally, we have to consider what frequencies w,, might be available. If tl?ese
are phonon modes, or photon modes, we would expect the spectrum to be given
by the normal modes of a large cavity, and if the modes are very close together in
frequency, i.e., the cavity is very large, then we might approximate the spectrum by
a continuum. Writing

gn
> K2 =Glwn) (3.1.22)

m=0
we arrive at

dn(w)

dw (3.1.23)
dw

n

J@®) =) coswat)G(wn) — / cos(@WhG(W)
0

in a continuum limit where only G(w)dn(w)/dw is of real significance, and is the
factor which governs all the main damping features.

3.1 The Harmonic Oscillator Heat Bath 49

¢) The First Markov Approximation: The simplest situation, and one which is
considered the ideal situation, occurs when G(w)dn(w) /dw is constant, i.e.,

d 2
G = (3.1.24)
dw T
so that
2~ Vi
f@) = - / cos(wt)dw = 2~6(t) (3.1.25)

0

which is the form required to give the Langevin equation in the form

qt) =pt)/m (3.1.26)
p@) = =V'(qt)) — v4(t) + &t) (3.1.27)

which is the same as Langevin’s original formulation, but is an operator equation,
and is thus fully quantum mechanical.

d) General Quantum Langevin Equation in the First Markov Approximation:
The forms (3.1.20,25) for f(t) and &(t) can be assumed for the more general form
of the quantum Langevin equation (3.1.13), and this yields the results

=
|

|

. 1 1 .

(where only half the weight of the §(¢ — ') has been counted since it occurs at the
end of the interval of integration.)

The most important result of the assumption (3.1 .24) is the fact that the equation
is now a simple first order differential equation. This means that the future time
development of any operator is determined simply by the knowledge of all the sys-
tem operators in the present. It is for this reason that it is called the first Markoy
approximation. However this differential equation does not represent a Markovian
physics, since the physics also depends on the choice of physical state vector or
density operator, and we will see later that this usually requires the operator £(t) to
have a stochastic nature with a non-zero correlation time. This means that the equa-
tions of motion for any averages are not simple first order differential equations, and
the future time development of them depends on both their present values and their
values in the past.

3.1.2 Commutation Relations for Noise Sources

The quantity &(t) takes the part of noise in (3.1.12,13), which are equations for
system operators driven by this operator. However, &(t) is itself not a system oper-
ator, but rather an externally specified operator—it can be seen from (3.1.14) that
&(t) in fact depends only on the initial bath operators—its time development is then
implicit in its definition, and is not given by a Heisenberg equation of motion.
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The most important quantum-mechanical aspect to be borne in mind is the matter
of commutation relations. Thus, we can compute that

d
HORDIE ihaf(t —t') (3.1.29)

as a straightforward consequence of the definitions (3.1.14,15) and the creation and
destruction operator commutation relations.

A more interesting commutation relation is that between the noise operator and
the system variables. From (3.1.8) we can note that a,,(¢) is related to the canonical
operators p,(t) and ¢, (t) at the time ¢, and therefore commutes with all the system
operators at the same time. Hence we deduce the general result, for any system
operator Y (t), that

t
(Y (1), an(to)] = 'cn,/% / ey (¢), X (#)] dt’ (3.1.30)
to

and by using the definitions (3.1.14,15) of £(¢) and f(t), we find

t
d
[Y(®). &(s)] = /[Y(t), X(t’)]Ef(s —thdt'. (3.1.31)

to

This relation will be of great utility in formulating the theory of noise inputs and
outputs in Sect. 3.2. From its derivation it is clear that (3.1.31) must be consistent
with the equation of motion in either of the forms (3.1.12,13), though this is not at
all obvious at first glance.

a) Commutation Relations in the First Markov Approximation: Correspond-
ing to the first Markov approximation, the commutation relations for the noise op-
erators, (3.1.29,31) become (assuming s, t > t),

[E@t), £ = 2ih7%6(t -t (3.1.32)
[Y (@), &)1 = 27;1—8 {ut — Y (1), X(s)]} (3.1.33)
where
1, x>0
w(z) = 3, =0 (3.1.34)
0, z <O0.

Apart from the rather singular nature of the commutator at ¢ = s, (3.1.33) has a very
straightforward interpretation. Namely, for s in the future of ¢, this commutator
vanishes, which means that one can specify the system variables independent of
the future behaviour of the driving force. But the past behaviour of £(¢) does affect
Y (t), so this commutator does not vanish.
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Fig. 3.1 The field interpretation of a system interacting with a heat bath. The system is a
rather small localized object which interacts with a one sided field which streams in from the
right, interacts with the system, and streams out to the right. Damping appears as radiation
damping

3.2 The Field Interpretation—Noise Inputs and Outputs

In this section we will consider a particular implementation of the harmonic oscil-
lator heat bath, in the form of a semi-infinite transmission line. Let us consider the
system to be described by a Lagrangian Lyys(Z) interacting with a one dimensional
electromagnetic field, A(¢, z), as in Fig.3.1. The full Lagrangian is then

[o¢]

L=Ly(Z)+5 / dz {A(t.2)’ — P[0, At, )P} + X / dz k(@) A(t, ).
3.2.1)

Here the notation is as in Sect. 3.1; Z are the system operators, and X is the partic-
ular operator which interacts with the heat bath. The function x(z) determines the
range of the interaction, and will be considered to be zero except for a small region
in the vicinity of z = 0. Thus, the system can be viewed as being localized near
= = 0, where it interacts only with the field A(t, x) in that vicinity. The Hamiltonian
corresponding to (3.2.1) is

H = Hy(Z)+ § / dz {[r(t, 2) — Xk@))’ +c*[9, At, 2)]*} (3.2.2)
0

where the canonical momentum w(t, ) is given by
n(t,z) = A(t, z) + Xk(z), (3.2.3)

and Hsysh(Z ) is the Hamiltonian corresponding to the Lagrangian Lyy(Z), since the

Lagranglan L contains no terms which depend on derivatives of Z other than those

t\;v'hlch already occur in Lsy(Z). We can define some Fourier transform variables
y

[ee]

2
Alt,z) = ‘/ — /q(w, t) cos(wz /e)dw, (3.2.4)

0
=)

2
w(t,z) = ‘/;E /p(w,t) cos(wz/c)dw, (3.2.5)

0
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and

k(z) = ‘/ % / R(w)cos(wz /c)dw, (3.2.6)
0

in terms of which the Hamiltonian takes the form

[ee]

H=Hy(Z)+} /dw {lp(w.t) — RW)X]* + wqw)*} (3.2.7)
0

which is a continuum version of the Hamiltonian chosen in Sect. 3.1, and given in
(3.1.5) in which dn(w)/dw = 1. We make the following comments.

a) Damping and Locality: The assumption made in Sect. 3.1.1c¢ that gives rise to
the first Markov approximation amounts to assuming that

R(w) =+/27/7 (3.2.8)

since dn/dw = 1 has been assumed. From the definition of &(w) in terms of &(z),
(given in (3.2.6)), this corresponds to

K(z) = 2,/7¢C 6(2), (3.2.9)

so that the assumption of constancy of K(w) is equivalent to the locality of the
interaction in the x space. Although the three dimensional aspect of an atom is
important, it is easy to see that this is the kind of interaction that an atom has
with the radiation field, since the size of an atom is very small compared to the
wavelength of the light with which it interacts. This is known in atomic physics as
the electric dipole approximation.

b) The Process of Damping: Viewed from the perspective of a localized system
interacting with a semi-infinite field, the process of damping is essentially that of
radiation. The system may start with some energy, but this will induce outgoing
waves which take the energy away. The ensuing wavetrain proceeds out to infinity,
and as far as the system is concerned, the process is irreversible. However, at any
finite time, it is possible to reflect the outgoing wave back and reverse the motion
of the system.

oo

¢©) Renormalization: The term } [ dwk(w)?X? appears quite naturally as a result
0

of the assumption of the straightforward Lagrangian (3.2.1), whereas in Sect. 3.1

it appeared almost arbitrary. The Lagrangian assumed here is a simplification of a
full three dimensional electromagnetic Lagrangian, so that this “renormalization”
of the system Hamiltonian can be considered quite natural.

3.2.1 Input and Output Fields
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