
Chapter 4

The master equation

The master equation is another particular case of the Chapman-Kolmogorov equation for a
discrete, homogeneous, Markovian process that we denote by n(t). In contrast, the Brow-
nian motion was considered as a continuous process.

For instance, n(t) can represent the number of particles at time t (photons, radioactive
nuclei, molecules in a chemical reaction), the number of people in a queue or infected by a
disease, etc.

In a general manner, the system contains a set of states Σ that are distinguished by an
appropriate indexing (eigenstates of a quantum system, particles or spins configurations
on a lattice, etc.). Throughout the rest of the document, n will denote the states indices
and n(t) the corresponding process.
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Figure 4.1: Representation of a discrete process n(t). Note that we do not exclude increments larger than
1, that is |n(ti) − n(ti−1)| may be bigger than 1 ∀i.

4.1 Derivation of the master equation

We consider a homogeneous Markov process on a set of states Σ labeled by n. Our aim
is to derive a differential equation, called the master equation that gives the transition
probability P (n1|n2, t) of the process with P (n1|n2, t = 0) = δn1,n2 . The basic assumption
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82 CHAPTER 4. THE MASTER EQUATION

is the existence of a transition rate W(n1|n2) from n1 to n2, n1 6= n2, defined as

W(n1|n2) = lim
t→0

P (n1|n2, t)

t
=

∂

∂t
P (n1|n2, t)

∣∣∣∣
t=0

. (4.1)

This rate gives the probability per unit of time to have a transition from state n1 into n2.
Thus, when n1 6= n2 and t → 0,

P (n1|n2, t) = W(n1, n2) t + o(t). (4.2)

To derive the master equation, we first note that

P (n1|n2, ∆t) =

{
probability to stay in
n1 during ∆t if n1 = n2

}
(4.3)

and

P (n1|n2, ∆t) =

{
probability to reach n2 during
∆t starting from n1 if n1 6= n2

}
(4.4)

Now,
{

probability to stay in
n1 during ∆t if n1 = n2

}
=

{
1 − probability to leave

n1 during ∆t

}

n1=n2

=
(
1 −

∑

n2∈Σ
n1 6=n2

W(n1|n2)∆t
)
δn1,n2 , (4.5)

and 1 {
probability to reach n2 during
∆t starting from n1 if n1 6= n2

}
= W(n1|n2) ∆t (1 − δn1,n2). (4.6)

By introducing the probability a(n1) per unit of time to leave n1 ,

a(n1) =
∑

n2∈Σ
n1 6=n2

W(n1|n2), (4.7)

it follows from (4.5) and (4.6) that

P (n1|n2, ∆t) = (1 − a(n1)∆t)δn1,n2 + (1 − δn1,n2)W(n1|n2)∆t. (4.8)

As the process is Markovian, the Chapman-Kolmogorov equation in the discrete case reads

P (n1|n3, t + ∆t) =
∑

n2∈Σ

P (n1|n2, t) P (n2, t|n3, t + ∆t)︸ ︷︷ ︸
=P (n2|n3+∆t)

(4.8)
=

∑

n2∈Σ

P (n1|n2, t)
(
(1 − a(n2)∆t)δn2,n3 + (1 − δn2,n3)W(n2|n3)∆t

)

= P (n1|n3, t) − P (n1|n3, t)a(n3)∆t +
∑

n2∈Σ
n2 6=n3

P (n1|n2, t)W(n2|n3)∆t

(4.7)
= P (n1|n3, t) − P (n1|n3, t)

∑

n2∈Σ
n2 6=n3

W(n3|n2)∆t +
∑

n2∈Σ
n2 6=n3

P (n1|n2, t)W(n2|n3)∆t.

1From now on we will omit the term o(∆t).
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By rearranging the terms and taking the limit ∆t → 0, this leads to

lim
∆t→0

P (n1|n3, t + ∆t) − P (n1|n3, t)

∆t︸ ︷︷ ︸
= ∂

∂t
P (n1|n3,t)

=
∑

n2∈Σ
n2 6=n3

(
P (n1|n2, t)W(n2|n3)−P (n1|n3, t)W(n3|n2)

)
.

(4.9)
We see that the term n2 = n3 of the sum (4.9) is zero, hence we can remove the restriction
n2 6= n3.2 If the initial conditions are randomly distributed with P0(n0), then by linearity
P (n, t) =

∑
n0∈Σ P0(n0)P (n0|n, t), where P (n, t = 0) = P0(n), still satisfies (4.9).

From now on, we will omit to write the initial condition, thus the master equation reads

∂

∂t
P (n, t) =

∑

n′∈Σ

(
P (n′, t)W(n′|n) − P (n, t)W(n|n′)

)
, (4.10)

with
P (n, t = 0) = P0(n). (4.11)

The physical meaning of the master equation (4.10) is clear: it is a gain-loss equation
for the probability of the state n. The first term is the gain due to transitions from other
states n′ whereas the second one is the loss due to transitions into other states n′.

W(n|n′)

n′n

W(n′|n)

Figure 4.2: Interpretation of the mater equation. The transition rate W(n|n′) yields a lost
−P (n, t)

∑
n′∈Σ

W(n|n′) for the state n, whereas W(n|n′) yields a gain
∑

n′∈Σ
P (n′, t)W(n′|n).

If the process is stationary, then there exists a distribution P s(n) such that for all time
t ∑

n′∈Σ

(
P s(n′)W(n′|n) − P s(n)W(n|n′)

)
= 0. (4.12)

The research and the study of the properties of the steady state are a key element of the
theory that we will address in section 4.3.

4.1.1 Birth-death process

Let us assume that the states of Σ can be classified in a linear order. Then, we can consider
the two neighbour states n+1 and n−1 of n. The existence of this order is obvious if n ∈ N
represents a number of particles. A birth-death process is a process where the transitions
occur only between neighbour states within an infinitesimal time. Mathematically, this
means that

W(n|n′) = 0, n′ 6= n ± 1. (4.13)

2Therefore we can assign an arbitrary value to W(n|n).
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For instance, if n describes a population, this condition means that when ∆t → 0 the
probability that n increases or decreases by more than one indivudual is negligible.

From now on, we will write W(n|n + 1) = gn, W(n|n − 1) = rn and P (n, t) = Pn(t).
The master equation then reads

∂

∂t
Pn(t) = gn−1Pn−1(t) + rn+1Pn+1(t) − (gn + rn)Pn(t). (4.14)

The first two terms of the right-hand side represent a gain for the state n, whereas the
third term is a loss.

. . . . . .n − 1 n n + 1

gn−1 gn

rn rn+1

Figure 4.3: The transition between two states of a birth-death process occurs only between nearest
neighbours because of the restriction W(n|n′) = 0 ∀ n′ 6= n ± 1. We denote the gain and loss (the increment
and decrement) of one unit by gn and rn, respectively.

4.2 Applications

We will assume that the following examples can all be treated as birth-death processes.

Example 1 (Poisson process) Suppose that some events occur independently over time
with the same probability and consider the number n(t) ∈ N = {0, 1, 2, . . .} of events that
occured until time t. For instance, n(t) is the length of a queue. Besides, we assume that
n(t) cannot increase by more than one increment per unit of time. Thus, it is a pure-birth
process, characterized by {

gn = α,

rn = 0.
(4.15)

The master equation reduces to

∂

∂t
Pn(t) = α(Pn−1(t) − Pn(t)). (4.16)

We can easily verify that

Pn(t) =
(αt)n

n!
e−αt (4.17)

is the solution of (4.16) with Pn(t = 0) = δn,0. (4.17) is the Poisson distribution. It is the
particular case β = 0 of the assymetric random walk. ⋄



4.2. APPLICATIONS 85

Example 2 (Continuous-time asymmetric random walk) Let n(t) be the position
of a particle on a lattice Z and let gn = α et rn = β ∀ n be the uniform probabilities
to jump right and left, respectively. Then, the master equation for the continuous-time
random walk is given by

∂

∂t
Pn(t) = αPn−1(t) + βPn+1(t) − (α + β)Pn(t). (4.18)

This master equation can be solved by the method of the generating function 3

G(z, t) =
∑

n∈Z
znPn(t). (4.19)

Consequently, Pn(t) is given by the zn coefficient of the Laurent series of G(z, t). The
corresponding equation for the generating function G(z, t) is given by

∂

∂t
G(z, t) =

∑

n∈Z
zn ∂

∂t
Pn(t)

(4.18)
= α

∑

n∈Z
znPn−1(t)︸ ︷︷ ︸

=zzn−1Pn−1(t)

+β
∑

n∈Z
znPn+1(t)︸ ︷︷ ︸

= 1
z

zn+1Pn+1(t)

−(α + β)
∑

n∈Z
znPn(t)

︸ ︷︷ ︸
=G(z,t)

=

(
αz +

β

z
− α − β

)
G(z, t). (4.20)

To solve this equation, we have to fix an initial condition. If the particle is in n1 at t = 0,
the transition probability P (n1|n, t) of the process satisfies P (n1|n, t = 0) = δn1,n, which
corresponds to

G(z, t = 0) =
∑

n∈Z
znδn,n1 = zn1 . (4.21)

In conclusion, the corresponding generating function is

G(z, t) = zn1e(αz+ β

z
−α−β)t. (4.22)

Fully asymmetric case (β = 0) By expanding the generating function (4.22) in Laurent
series, we find

P (0|n, t) = e−αt (αt)n

n!
= W (n, t), (4.23)

P (n1|n2, t) =

{
e−αt (αt)n2−n1

(n2−n1)! , n2 ≥ n1,

0, n2 < n1.
(4.24)

It is easy to verify that W (n, t) and P (n1|n2, t) define a homogeneous Markov process
which corresponds to the Poisson process.

3Do not confuse the moment-generating function of definition 2.7 on page 25 with (4.19). They are two
different definitions, however their power series provide both interesting quantities.
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Fully symmetric case (α = β = 1) Assuming the particle to be initially in the origin,
it follows from (4.22) that

G(z, t) = e−2te(z+ 1
z )t. (4.25)

Now, e(z+1/z) t/2 is the generating function of the modified Bessel functions In(t):

e(z+1/z) t/2 =
∞∑

n=−∞
znIn(t). (4.26)

Therefore,

P (0|n, t) = e−2t In(2t), (4.27)

and we have P (0|n, t) = P (0|−n, t), as a consequence of the symmetry G(z, t) = G(1/z, t).
The series expansion of In(t) is given by (using (4.26))

In(t) =
∞∑

k=0

(
t
2

)2k+n

k!(k + n)!
, n ≥ 0, (4.28)

hence

P (0|n, t) ≍ tn

n!
, t → 0. (4.29)

It follows from the behaviour In(t) ≍ et√
2πt

, t → ∞ that

P (0|n, t) ≍ 1√
4πt

, t → ∞. (4.30)

The probability of occupation of a point n tends to 0 as t → ∞: the particle escapes to
infinity. ⋄

Example 3 (Radioactive decay) Let n(t) be the population of radioactive nuclei, n ∈
N. In this model we only have losses, thus gn = 0. If the nuclei disintegrate independently
with a decay rate γ, then rn = γn. The master equation of the process is given by

∂

∂t
Pn(t) = γ(n + 1)Pn+1(t) − γnPn(t). (4.31)

This equation can also be solved by the method of the generating function (4.19), by writing
down a differential equation for G(z, t) with an appropriate initial condition for Pn(0). The
generating function G(z, t) satisfies

∂

∂t
G(z, t) = γ

( ∞∑

n=0

(n + 1)znPn+1(t) −
∞∑

n=0

nznPn(t)

)

= γ(1 − z)
∂

∂z
G(z, t). (4.32)

The general solution of (4.32) is a linear combination

G(z, t) =
∞∑

n=0

an

(
(z − 1)e−γt

)n
. (4.33)
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The particular solution corresponding to Pn(t = 0) = δn,n0 , that is G(z, t = 0) = zn0 , reads

Gn0(z, t) =
(
(z − 1)e−γt + 1

)n0

=
(
ze−γt +

(
1 − e−γt

))n0

=
n0∑

n=0

(
n0

n

)
zne−γtn

(
1 − e−γt

)n0−n
. (4.34)

Therefore, the probability to find n nuclei at time t with an initial population equal to n0

is given by

P (n0|n, t) =

(
n0

n

)
e−γtn

(
1 − e−γt

)n0−n
, n ≤ n0, (4.35)

⋄

Example 4 (photons-matter equilibrium) Let n(t) be the number of photons inside
a cavity at time t, n(t) ∈ N. Suppose that the photons are monochromatic and that they
interact with atoms having two energy levels E1 and E2. The energy conservation implies
E1 − E2 = ~ω, where ω is the photon frequency. The gains and losses of the process are
due to photons emission and absorption.

emission absorption

E1

E2

~ω

E1

E2

~ω

transition gn: n → n + 1 transition rn: n → n − 1

Figure 4.4: A photon emission corresponds to a gain n → n + 1, whereas a photon absorption is a loss
n → n − 1.

The gain term is
gn = λn + λ = λ(n + 1), (4.36)

where λn describes the stimulated emission and λ the spontaneous emission.

The loss term is
rn = µn, (4.37)

which describes atomic absorption. We further assume that atoms emit and absorb photons
independently from each other, thus

λ = γNE1 , µ = γNE2 , (4.38)

where NE1 and NE2 are the populations of levels E1 and E2, and γ is the probability of
emission or absorption per unit of time. These rates are deduced from quantum mechanics
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and one can show that they are equal. Therefore, the master equation reads

∂

∂t
Pn(t) = λnPn−1(t) + µ(n + 1)Pn+1(t) − ((µ + λ)n + λ) Pn(t). (4.39)

In reality, we should take into account the fact that the atomic populations NE1 and NE2

are also random quantities over time. In this example we neglect their fluctuations ∆NEi
,

so NEi
represent their average at a given time. Moreover, if we are only interested in the

stationary solution P s
n, the populations are constant, as well as λ and µ. Thus,

P s
n = C

(
λ

µ

)n

, (4.40)

where C ∈ R is a normalization constant. Indeed, by inserting (4.40) in the master equation
(4.39) we have

λn

(
λ

µ

)n−1

+ µ(n + 1)

(
λ

µ

)n+1

− ((µ + λ)n + λ)

(
λ

µ

)n

= n
λn

µn−1
+ (n + 1)

λn+1

µn
− (n + 1)

λn+1

µn
− n

λn

µn−1

= 0. (4.41)

Let us assume that this stationary solution corresponds to the thermal equilibrium of atoms
and photons. Then it follows from the Boltzmann statistics that

λ

µ

(4.38)
=

NE1

NE2

= e−β(E1−E2) = e−β~ω. (4.42)

Thus,

P s
n = Ce−β~ωn. (4.43)

The condition
∑∞

n=0 P s
n = 1 fixes the normalization constant to

C = 1 − e−β~ω, (4.44)

and therefore

P s
n =

(
1 − e−β~ω

)
e−β~ωn. (4.45)

The average number of photons 〈n〉s in the steady state is given by

〈n〉s =
∞∑

n=0

n P s
n

=
(
1 − e−β~ω

) ∂

∂(−β~ω)

∞∑

n=0

e−β~ωn

=
1

eβ~ω − 1
, (4.46)

which corresponds to the thermal distribution of a quantum harmonic oscillator (Bose-
Einstein statistics). The purely quantum effect of spontaneous emission λ in (4.36) is ab-
solutely necessary to recover the Bose-Einstein statistics, as Einstein had already noted. ⋄
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Example 5 (Chemical reaction) Consider the chemical reaction A
γ
⇄
γ′

B with rates γ

and γ′. The process that we are interested in is the number of particles B, n(t) = nB(t) ∈ N.
We assume that the number of particles nA(t) of the species A is constant, nA(t) = nA (this
can be realized by a flow of particles that compensates the variation due to the reaction
A ⇄ B). Therefore, the gain and loss rates of B molecules are given by gn = γnA and
rn = γ′n , respectively. The master equation reads

∂

∂t
Pn(t) = γ nAPn−1(t) + γ′(n + 1)Pn+1(t) − (γ nA + γ′n)Pn(t). (4.47)

The stationary regime is given by the Poisson distribution,

P s
n =

λn

n!
e−λ, λ =

γ

γ′ nA. (4.48)

Indeed, inserting (4.48) in (4.47) yields

γ nA
λn−1

(n − 1)!
e−λ + γ′(n + 1)

λn+1

(n + 1)!
e−λ − (γ nA + γ′n)

λn

n!
e−λ = 0, (4.49)

that is,
λn

n!
e−λ(λγ′ − γ nA) +

λn−1

(n − 1)!
e−λ(γ nA − λγ′) = 0. (4.50)

This relation implies λ = γ
γ′ nA, which is the average number of B particles. This is an

intuitive result: the production of B molecules increases with the ration γ/γ′. ⋄

Example 6 (Malthus-Verhulst logistic equation) Consider a population of n indi-
viduals n = 0, 1, 2, . . . occupying a territory Ω. Each of them has a probability α to die and
β to reproduce per unit of time. Moreover, because of the competition, each individual has
a further probability γ(n − 1) to die that is proportional to the population size. The loss
and gain terms rn and gn are then given by

rn = αn + γn(n − 1), (4.51)

gn = βn. (4.52)

Therefore, the master equation of the system reads

∂

∂t
Pn(t) = β(n−1)Pn−1(t)+(α(n + 1) + γn(n + 1)) Pn+1(t)−((β + α)n + γn(n − 1)) Pn(t).

(4.53)
This equation is difficult to solve because of the non-linearity of rn. However, in the limit
of an extensive territory Ω, we can study the asymptotic behaviour of (4.53).

Our aim is to derive a differential equation for the population density and its fluctua-
tions, starting from (4.53). If 〈n(t)〉 is the average population at time t in the territory Ω,
then the density is defined by

ρ(t) = lim
Ω→∞

〈n(t)〉
Ω

(4.54)

We assume that the population fluctuations around its mean value ρ(t)Ω is of order
√

Ω,
√

〈(n(t) − ρ(t)Ω)2〉 = O
(√

Ω
)

, (4.55)
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by analogy with thermal fluctuations. Note that in this case, the process n(t)
Ω has no fluc-

tuations in the limit Ω → ∞:
〈(

n(t)

Ω

)2
〉

− ρ2(t) =

〈
(n(t) − ρ(t)Ω)2

〉

Ω2
= O

(
1

Ω

)
Ω→∞

= 0. (4.56)

Let us now study the evolution of the average population. Substituting n → n − 1 and
n → n + 1 in the sums, we find from equation (4.53)

∂

∂t
〈n(t)〉 =

∞∑

n=0

n
∂

∂t
Pn(t) = (β − α) 〈n(t)〉 − γ

〈
(n(t))2

〉
. (4.57)

If we want a well-defined asymptotic behaviour, it is necessary to assume that the compe-
tition rate γ is of order Ω−1. Thus, we write γ = X

Ω , X > 0. Dividing equation (4.57) by Ω
and taking (4.56) into account, we find in the limit Ω → ∞

∂

∂t
ρ(t) = (β − α)ρ(t) − X ρ2(t), (4.58)

which is a deterministic differential equation for the density.

Let us assume that the birth rate is higher than the death rate, β > α. Besides the
trivial point ρ = 0, the equation (4.58) has the stationary point

ρs =
β − α

X > 0 (4.59)

that represents the population equilibrium density in the presence of a competition rate
X . By linearizing (4.58) around this equilibrium point, ρ(t) = ρs + X(t), we have

d

dt
X(t) = −(β − α)X(t), (4.60)

hence X(t) = e−(β−α)tX(0), i.e. the equilibrium is reached exponentially fast.

Note that if X = 0 (β > α), the solution of (4.58) is given by ρ(t) = e(β−α)tρ(0), i.e.
the population grows exponentially without competition (Malthus law). If the death rate
is higher than the birth rate, β < α, the only stationary point of (4.58) is ρ = 0 and the
population extinguishes.

Looking at (4.54) and (4.55), it is natural to write

n(t) = Ωρ(t) +
√

Ω ξ(t), (4.61)

where ξ(t) is the first-order fluctuations process. The fluctuations distribution Π(ξ, t) is
defined by

Π(ξ, t) = Pn(t) = PΩρ(t)+
√

Ω ξ(t). (4.62)

Note that with the change of variables (4.61) we have

∂

∂t
Π(ξ, t) = Ω

d

dt
ρ(t)

∂

∂n
Pn(t) +

∂

∂t
Pn(t)

=
√

Ω
d

dt
ρ(t)

∂

∂ξ
Π(ξ, t) +

∂

∂t
Pn(t). (4.63)



4.2. APPLICATIONS 91

By inserting (4.61), (4.62) and (4.63) in (4.53), we can write the equation that rules the
evolution of the fluctuations distribution Π(ξ, t). It follows from (4.63) that

Pn±1(t) = P
Ωρ(t)+

√
Ω

(
ξ± 1√

Ω

)(t) = Π

(
ξ ± 1√

Ω
, t

)
. (4.64)

Thus, for a fixed X , equation (4.53) becomes

∂

∂t
Π(ξ, t) −

√
Ω

d

dt
ρ(t)

∂

∂ξ
Π(ξ, t) = β

(
Ωρ(t) +

√
Ω ξ − 1

)
Π

(
ξ − 1√

Ω
, t

)

+

[
α
(
Ωρ(t) +

√
Ω ξ + 1

)
+

X
Ω

(
Ωρ(t) +

√
Ω ξ
) (

Ωρ(t) +
√

Ω ξ + 1
)]

Π

(
ξ +

1√
Ω

, t

)

−
[
(β + α)

(
Ωρ(t) +

√
Ω ξ
)

+
X
Ω

(
Ωρ(t) +

√
Ω ξ
) (

Ωρ(t) +
√

Ω ξ − 1
)]

Π(ξ, t). (4.65)

For large Ω we expand Π in powers of Ω−1/2

Π

(
ξ ± 1√

Ω
, t

)
= Π(ξ, t) ± 1√

Ω

∂

∂ξ
Π(ξ, t) +

1

2Ω

∂2

∂ξ2
Π(ξ, t) + O

(
1

Ω3/2

)
. (4.66)

By inserting the latter expression in (4.65), we can identify the power coefficients separately.

Order Ω. The terms compensate each other.

Ordre
√

Ω. We find

−
√

Ω
∂

∂ξ
Π(ξ, t)

d

dt
ρ(t) =

√
Ω

∂

∂ξ
Π(ξ, t)

(
−βρ(t) + αρ(t) + X ρ2(t)

)
, (4.67)

which is the deterministic equation (4.58).

Ordre Ω0. We find

∂

∂t
Π(ξ, t) = −(β − α)Π(ξ, t) − (β − α)ξ

∂

∂ξ
Π(ξ, t) + 2X ρ(t)ξ

∂

∂ξ
Π(ξ, t)

+2X ρ(t)Π(ξ, t) +
1

2

(
(α + β)ρ(t) + X ρ2(t)

) ∂2

∂ξ2
Π(ξ, t)

= − ∂

∂ξ
(h(ξ, t)Π(ξ, t)) +

D(t)

2

∂2

∂ξ2
Π(ξ, t), (4.68)

with

h(ξ, t) = (β − α − 2X ρ(t))ξ (4.69)

D(t) = (β + α)ρ(t) + X ρ2(t). (4.70)

The equation (4.68) is a linear Fokker-Planck equation (with time-depending coeffi-
cients) that describes a distribution of the Gaussian fluctuations around the average pop-
ulation density ρ(t). In particular, at equilibrium ∂

∂tΠ(ξ, t) = 0, we have

hs(ξ) = ((β − α) − 2X ρs) ξ
(4.59)

= −(β − α)ξ (4.71)
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and

Ds =
ρs

2
(α + β + X ρs) =

β(β − α)

X . (4.72)

The steady state equation is obtained by inserting (4.71) in (4.68):

−(β − α)
∂

∂ξ
(ξΠs(ξ)) +

Ds

2

∂2

∂ξ2
Πs(ξ) = 0. (4.73)

Multiplying this by ξ2 and integrating by parts, we find

〈
ξ2
〉

=
Ds

2(β − α)
=

β

2X . (4.74)

Thus, for large Ω, the fluctuations around the average population ρsΩ are of order
√

βΩ
2X .

⋄

Example 7 (Quantum states evolution) Consider a quantum system described by
the Hamiltonian H = H0 + V . The unperturbed part H0 leads to the time-indepedent
Schrödinger equation H0φn = Enφn. The transition probability from an initial state n to
a final state n′ can be calculated from the time-dependent perturbation (Fermi’s golden
rule)

W(n|n′) =
2π

~
|〈φn|V |φn′〉|2 ρ(En), (4.75)

where ρ(En) is the density of states. By inserting these transition probabilities (which were
calculated for short times) in the master equation and assuming the Markov property, we
can find the evolution for long times. The resulting equation is the Pauli equation. ⋄

4.3 The detailed balance

The master equation is fully determined by the transition probabilities W(n|n′). Before
studying the dynamics, we should examine if the latter give rise to a steady state, satisfying

∑

n′∈Σ

(
P s

n′ Wn′,n − P s
n Wn,n′

)
= 0, (4.76)

with Wn,n′ = W(n|n′). For instance, an isolated system (or a system in contact with a heat
reservoir) must approach the microcanonical (or canonical) equilibrium distribution P e

n, in
agreement with the second law of thermodynamics.4 In that case, the Wn,n′ must be such
that equation (4.76) admits a solution P e

n. A particular solution of (4.76) is the one where
each term vanishes separately.

Definition 4.1 (Detailed balance) The process is said to have detailed balance with re-
spect to the steady state P s if the transition probabilities Wn,n′ obey

P s
n′ Wn′,n = P s

n Wn,n′ , ∀ n, n′. (4.77)

This condition implies (4.76).

4P s
n refers to a steady state whereas P e

n indicates thermodynamic equilibrium. Thermodynamic equilib-
rium is a steady state, however there are many non-equilibrium steady states.



4.3. THE DETAILED BALANCE 93

The detailed balance means that for each pair of states n, n′, the transitions per unit of
time from n into n′ must be balanced by the transitions from n′ into n. If the system is

. . . . . .ps
n ps

n′ ps
n′′

Wn,n′

Wn′,n

Wn′,n′′

Wn′′,n′

Figure 4.5: The detailed balance asserts that each pair of states is in mutual equilibrium, that is
P s

n′ Wn′,n = P s
nWn,n′ , P s

n′′ Wn′′,n′ = P s
n′ Wn′,n′′ , and so forth.

in thermal contact with a heat reservoir, the stationary distribution corresponds to that of
thermal equilibrium

P s
n = P e

n = Q−1 dn e−βEn , (4.78)

where Q is the partition function, En the energy of the state n and dn its degeneracy. Thus,
the detailed balance condition takes the form

dn′e−βEn′ Wn′,n = dne−βEn Wn,n′ , ∀ n, n′, (4.79)

which provides a specific relation between the transition rates and the energies of the
system.

Remark (Microscopic foundations of the detailed balance) The relation (4.79)
can be derived from quantum or classical mechanics under several conditions, in particular
the time-reversal invariance of the microscopic dynamics (see section 5.1). It is character-
istic for a master equation that leads to the thermalization of the system. ⋄

4.3.1 Monte-Carlo Metropolis algorithm

The master equation is often used as a tool to describe the thermal equilibrium distribution
limt→∞ Pn(t) = P e

n. We suppose that the states of energy En are known and we construct
the rates Wn,n′ and Wn′,n such that the detailed balance is verified. Assuming dn = dn′ = 1,
we have

P e
n′

P e
n

=
Wn,n′

Wn′,n
= e−β(En′ −En). (4.80)

As we are only interested by thermal equilibrium, we can choose the rates Wn,n′ that we
want, even if they are not physical, as long as equation (4.80) is satisfied. The idea is then
to simulate the realizations n(t) of the process (whose evolution is described by the master
equation), while respecting (4.80).

Method. Let us choose a function F such that

F (x) = x F

(
1

x

)
, (4.81)
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and write

F

(
P e

n′

P e
n

)
= Wn,n′ (4.82)

so that the detailed balance condition (4.80) is satisfied:

Wn,n′

Wn′,n

(4.82)
=

F
(

P e
n′

P e
n

)

F

(
P e

n

P e
n′

) (4.81)
=

P e
n′

P e
n

F

(
P e

n

P e
n′

)

F

(
P e

n

P e
n′

)

︸ ︷︷ ︸
=1

. (4.83)

Two simple choices of F are given by

F (x) = min(x, 1), x > 0, (4.84)

F (x) =
x

1 + x
. (4.85)

The first choice (4.84) gives rise to the Monte Carlo Metropolis algorithm. By inserting
(4.80) in (4.82), we have

Wn,n′ =

{
1, En′ − En ≤ 0,

e−β(En′ −En), En′ − En > 0.
(4.86)

Thus, the rates Wn,n′ are fully determined by the energy differences En′ −En of the system,
a quantity that the physicist is accustomed to calculating.

Algorithm.

(i) Following a random or a determined procedure, create a state n′ starting from a first
state n.

(ii) Calculate ∆E = En′ − En.

(iii) (a) If ∆E ≤ 0, then Wn,n′ = 1 and retain n′.

(b) If ∆E > 0, then Wn,n′ = e−β∆E and choose a number r at random in the interval
[0, 1]. Retain the state n′ if r ≥ e−β∆E and reject it in the opposite case.

(iv) Repeat the procedure

In this way, we can construct a realization of the process n(t) that is governed by the
master equation. The random drawing of r simulates the arbitrary nature of the process,
by analogy with the one-dimensional random walk for which there are only two possible
situations (jump left or right depending on whether r ≷ 1/2). Going through this procedure
a lot of times, we can construct a large number of realizations of the stochastic process.
Their average taken for sufficiently long times reproduce the thermal means and allow to
find the absolute probabilities W as explained in section 2.1.1. For a system with a large
number of degrees of freedom, this procedure is often more efficient than calculating the
average by summing over all the configurations with weights P e

n (4.78).
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4.3.2 Stochastic dynamics of the Ising model

• Configurations. The states ω ∈ Σ = {−1, 1}N correspond to the 2N spin configu-
rations of a set of N lattice sites, ω = {σ1, . . . , σN }, σi = ±1. A realization of the
multi-dimensional process consists in the evolution ω(t) = {σ1(t), . . . , σN (t)} of one
spin configuration over time.

• Energy. Let Jij ≥ 0 be the coupling constants such that lim|i−j|→∞ Jij = 0, then the
energy of a configuration is given by the Ising Hamiltonian

H(ω) = −1

2

N∑

i6=j

Jijσiσj . (4.87)

• Possible configurations. We assume that only one spin at a time can be flipped be-
tween two successive states ω and ω′. Let ω(k) = {σ1, . . . , −σk, . . . , σN } be the con-
figuration obtained by flipping the spin k of ω, then the transition rates satisfy the
relations W(ω|ω′

) = 0 if ω′ 6= ω(k) and

W(ω|ω(k))

W(ω(k)|ω)
= e−β(H(ω(k))−H(ω)), H

(
ω(k))− H(ω) = 2mk(ω), (4.88)

where

mk(ω) =
N∑

j 6=k

Jkjσj (4.89)

is the local magnetization of the site k in the configuration ω.

The master equation associated to this process reads

∂

∂t
P (ω, t) =

N∑

k=1

[
W(ω(k)|ω)P (ω(k), t) − W (ω|ω(k))P (ω, t)

]
. (4.90)

We now construct the evolution of a configuration ω(t) by applying the Metropolis algo-
rithm. If t is large enough, we obtain in this way a typical configuration for the Gibbs
distribution ρ(ω) = 1

Qe−βH(ω), where Q is the partition function.

The problem can be solved analytically in two particular cases, the one-dimensional
spin chain and the mean field approximation. Let us begin by specifying the transition
rates in the form

W(ω|ω(k)) =
γ

2
[1 − σk th (βmk(ω))] , (4.91)

where mk(ω) is the local magnetization (4.89), and 2/γ determines the time scale in which
the process occurs. By using the relation (1−th x)/(1+th x) = exp(−2x) we can easily verify
that these rates satisfy the detailed balance condition (4.88). Thus, the master equation
(4.90) becomes

∂

∂t
P (ω, t) =

γ

2

N∑

j=1

[
(1 + σj th βmj(ω))P (ω(j), t) − (1 − σj th βmj(ω))P (ω, t)

]
. (4.92)

Consider the average value of the kth spin,

〈σk〉 (t) =
∑

ω

σkP (ω, t). (4.93)
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It obeys the equation of motion

d

dt
〈σk〉 (t) = −γ [〈σk〉 (t) − 〈th βmk〉 (t)] . (4.94)

Indeed, inserting (4.92) and isolating the term j = k leads to

d

dt
〈σk〉 (t) =

∑

ω

σk
∂

∂t
P (ω, t)

=
γ

2

∑

ω

(σk + th βmk(ω))P (ω(k), t) −
∑

ω

(σk − th βmk(ω))P (ω, t)

+
γ

2

∑

ω

σk

∑

j 6=k

[
(1 + σj th βmj(ω))P (ω(j), t)

−(1 − σj th βmj(ω))P (ω, t)
]
. (4.95)

We change the dummy variable σk to −σk in the first sum, which then becomes identical to
the second one (mk(ω) is independent of σk), hence (4.94). The third sum vanishes because
its terms are odd under σk → −σk.

One-dimensional spin chain

We consider a one-dimensional, infinite chain of spins σi. The spins are labeled by i =
. . . , −2, −1, 0, 1, 2, . . . and coupled to their nearest neighbours: Jii−1 = Jii+1 = J > 0,
Jik = 0, k 6= i − 1, i + 1. In these conditions, we have

mj(ω) = J(σj+1 + σj−1), th βmj(ω) =
1

2
(σj+1 + σj−1) th 2βJ, (4.96)

so that (4.94) reduces to the finite difference equation

d

dt
〈σi〉 (t) = −γ

[
〈σi〉 (t) − 1

2

(
〈σi−1〉 (t) + 〈σi+1〉 (t)

)
th 2βJ

]
. (4.97)

The problem is basically the same as the continuous-time random walk that we discussed
about in section 4.2 and can be solved by the method of the generating function G(z, t) as
in the second example. In our case, the generating function is given by

∂

∂t
G(z, t) =

[
γ

2
th(2βJ)

(
z +

1

z

)
− γ

]
G(z, t). (4.98)

If we take the initial condition 〈σi〉 (0) = 0, i 6= 0, 〈σ0〉 (0) = 1, we find

G(z, t) = e−γt exp

[
γ

2
th(2βJ)

(
z +

1

z

)
t

]
, (4.99)

and equation (4.26) leads to

〈σi〉 (t) = e−γtIj [γ th(2βJ)t]. (4.100)

The behaviours (4.29) and (4.30) of the modified Bessel function (4.28) show that

〈σi〉 (t)
t→0≍ Cti, i 6= 0, C ∈ R, (4.101)

〈σi〉 (t)
t→∞≍ exp[−γt(1 − th 2βJ)]√

2π(γ th 2βJ)t
. (4.102)
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For small times, the spins that are close to σ0 flip in the positive direction because of the
ferromagnetic coupling. For long times, the average value of each spin tends exponentially
to zero (regardless of the temperature) because there is no spontaneous magnetization in
the one-dimensional Ising model with T 6= 0.

Mean field approximation

We choose the coupling constants to be independent of the distance, written as Jik = J
N ,

J > 0, and we consider the average magnetization per spin in the macroscopic limit N → ∞

µ(t) = lim
N→∞

〈mN 〉 (t), mN (ω) =
1

N

N∑

i=1

σi. (4.103)

We assume that at any times, the fluctuations of mN (ω) are negligible when N → ∞, that
is

lim
N→∞

〈(mN )p〉 (t) = µ(t)p, p = 2, 3, . . . . (4.104)

We see that the local magnetization (4.89) is equal to the magnetization per spin up to a
term of order 1/N .

mk(ω) =
∑

i6=k

J

N
σi = J

(
mN (ω) − 1

N
σk

)
. (4.105)

Thus, taking (4.104) into account, it follows from (4.94) that in the limit N → ∞

d

dt
µ(t) = −γ[µ(t) − (th βJ)µ(t)]. (4.106)

The stationary points of this non-linear differential equation are given by the solutions of
µ−(th βJ)µ = 0, one of which is the point µ = 0. Using the Taylor expansion th x ≃ x−x3/3
around x = 0, the equation becomes in the vicinity of µ = 0

d

dt
µ(t) = −γ

[
(1 − βJ)µ(t) +

(βJ)3

3
µ(t)3

]
. (4.107)

If 1 − βJ > 0, or equivalently if T > Tc = J/kB, the stationary point µ = 0 is unique and
stable, and the relaxation is exponential

µ(t)
t→∞≍ µ(0)e−t/τ(T ), τ(T ) =

T

γ(T − Tc)
. (4.108)

If T < Tc, the point µ = 0 becomes unstable and two new stable points appear,

µ+ = −µ− =

√(
Tc

T

)3 T

3(Tc − T )
. (4.109)

The latter correspond to the two possible values of the spontaneous magnetization, Tc being
the Curie temperature of the ferromagnetic phase transition of the Ising model in the mean
field approximation. Their approach is also exponential, however the relaxation time τ(T )
given by equation (4.108) diverges when T → Tc. At the critical point T = Tc, the equation
(4.107) reduces to

d

dt
µ(t) = −γ

3
µ(t)3, (4.110)
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whose solution is given by

µ(t) =

√
3µ(0)2

2γµ(0)2t + 3

t→∞≍
√

3

2γt
. (4.111)

The decreasing is not exponential anymore: this is the phenomenon of critical slowdown of
the equilibrium approach at the phase transition.

4.3.3 Resolution by the spectral theory

The detailed balance allows to solve the master equation by using the spectral theory. We
make the following assumptions.

Hypothesis 4.1

(i) There exists a unique steady state P s
n > 0 ∀ n.

(ii) The detailed balance is satisfied for the steady state P s.

(iii) The number of states N is finite.

The assumption (iii) is made for mathematical simplicity. Let us write the master equation

∂

∂t
Pn(t) =

∑

n′

(
Pn′(t)Wn′,n − Pn(t)Wn,n′

)
(4.112)

in the form of a linear system
d

dt
P(t) = M · P(t), (4.113)

where P(t) ∈ RN is a vector

P(t) =




P1(t)
...

PN (t)


 , (4.114)

and M ∈ MN (R) is a real N × N matrix whose components are given by

Mnm = Wm,n − δm,n

N∑

k=1

Wn,k. (4.115)

Definition 4.2 (Stochastic matrix) A matrix M ∈ MN (R) is said to be stochastic if
it satisfies the two following conditions.

(i) Mnm ≥ 0 ∀ n 6= m

(ii)
∑N

k=1 Mkm = 0 ∀ m

We can verify that the matrix M with components (4.115) satisfies these two conditions.
Let us define the matrix M̃ by

M̃nm =
1√
P s

n

Mnm

√
P s

m. (4.116)

Lemma 4.1 The detailed balance holds if and only if the matrix M̃ is symmetric.



4.3. THE DETAILED BALANCE 99

Proof (Lemma 4.1) Suppose that M̃ is symmetric, M̃nm = M̃mn, and consider the
non-trivial case n 6= m. According to the definitions (4.116) and (4.115), we have

1√
P s

n

(
Wm,n − δm,n︸︷︷︸

=0

N∑

k=1

Wn,k

)√
P s

m =
1√
P s

m

(
Wn,m − δn,m︸︷︷︸

=0

N∑

k=1

Wm,k

)√
P s

n, (4.117)

which is equivalent to the detailed balance condition

Wm,nP s
m = Wn,mP s

n. (4.118)

The same calculus holds for the converse, and this completes the proof. �

As the matrix M̃ is real and symmetric, it is diagonalizable and has N orthogonal

eigenvectors φ̃
(k) ∈ RN

φ̃
(k)

=




φ̃
(k)
1
...

φ̃
(k)
N


 , (4.119)

with eigenvalues λk, k = 1, . . . , N , and such that
〈
φ̃

(k1)∣∣φ̃(k2)〉
= δk1,k2 . The vectors φ(k)

with components φ
(k)
n =

√
P s

n φ̃
(k)
n diagonalize M ,

M · φ(k) = λkφ(k), (4.120)

and we have the orthonormality relation

N∑

n=1

φ
(k1)
n φ

(k2)
n

P s
n

=
〈
φ̃

(k1)∣∣φ̃(k2)〉
= δk1,k2 . (4.121)

Note that M̃ (or M) always has the eigenvalue zero. Indeed, if we set φ̃
(1)
n =

√
P s

n, or

φ
(1)
n = P s

n, then by definition of the steady state d
dtP

s = 0, the equation (4.113) implies

M · φ(1) = 0, (4.122)

and thus the associated eigenvalues is λ1 = 0.

Lemma 4.2 Let λk be the eigenvalues of the matrix M̃ , then λk < 0, k = 2, . . . , N .

Proof (Lemma 4.2) Let us show that M̃ defines a negative-definite quadratic form〈
φ̃
∣∣M̃

∣∣φ̃
〉

≤ 0.

〈
φ̃
∣∣M̃

∣∣φ̃
〉

=
N∑

n,m=1

φ̃nM̃nmφ̃m

(4.116)
=

N∑

n,m=1

φ̃n
1√
P s

n

Mnm

√
P s

mφ̃m

(4.115)
=

N∑

n,m=1

(
φ̃n

1√
P s

n

Wm,n

√
P s

mφ̃m − φ̃2
nWn,m

)
(4.123)
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Defining xn = φ̃n√
P s

n

, (4.123) becomes

〈
φ̃
∣∣M̃

∣∣φ̃
〉

=
N∑

n,m=1

xnxmWm,nP s
m −

N∑

n,m=1

x2
nWn,mP s

n

=
N∑

n,m=1

xnxmWm,nP s
m − 1

2

N∑

n,m=1

x2
n Wn,mP s

n︸ ︷︷ ︸
(4.118)

= Wm,nP s
m

−1

2

N∑

n,m=1

x2
nWn,mP s

n

︸ ︷︷ ︸
n↔m

=
∑N

n,m=1
x2

mWm,nP s
m

= −1

2

N∑

n,m=1

Wm,nP s
m

(
−2xnxm + x2

n + x2
m

)

= −1

2

N∑

n,m=1

Wm,n︸ ︷︷ ︸
≥0

P s
m︸︷︷︸

>0

(xn − xm)2

︸ ︷︷ ︸
≥0

≤ 0. (4.124)

Moreover, as the stationary solution is assumed to be unique, the multiplicity of the zero
eigenvalue is 1. Thus, the other eigenvalues are strictly negative λk < 0, k = 2, . . . , N , and
this completes the proof. �

Remark A sufficient condition to ensure the unicity of the steady state is that all the
rates are strictly positive: Wm,n > 0 ∀ n, m. Indeed, in that case (4.124) implies xn = xm

∀ n, m, that is φ̃n√
P s

n

= φ̃m√
P s

m

= C is independent of n. Thus, φ̃n = C
√

P s
n = Cφ̃

(1)
n is pro-

portional to the vector of eigenvalue λ1 = 0, and the latter is not degenerate. ⋄

Any initial distribution P(0) can be represented in the basis of eigenvectors φ(k)

P(0) =
n∑

k=1

ckφ(k), (4.125)

and according to (4.121),

ck =
N∑

n=1

φ
(k)
n Pn(0)

P s
n

, c1 =
N∑

n=1

=P s
n︷︸︸︷

φ(1)
n Pn(0)

P s
n

= 1. (4.126)
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Thus, the general solution of (4.113) is given by

P(t)
(4.113)

= eMt · P(0)

=
∞∑

m=0

1

m!
tmMm · P(0)

(4.125)
=

∞∑

m=0

1

m!
tmMm ·

n∑

k=1

ckφ(k)

=
∞∑

m=0

1

m!
tm

n∑

k=1

ckλm
k φ(k)

=
N∑

k=1

φ(k)ckeλkt

(4.126)
=

N∑

k=1

φ(k)eλkt
N∑

n=1

φ
(k)
n Pn(0)

P s
n

. (4.127)

We know that λk < 0 ∀ k = 2, . . . , N , which implies the exponential approach to the
equilibrium

lim
t→∞

P(t) = c1φ(1) = Ps (4.128)

for any initial condition P(0).

The transition probability P (n, 0|m, t) of the Markov process from a state n into a state
m during time t is obtained by specifying the initial condition Pm(0) = δn,m, hence

P (n, 0|m, t) =
N∑

k=1

φ
(k)
m φ

(k)
n

P s
n

eλkt. (4.129)

The joint distribution of the process with steady state W (n) = P s
n is given by

W (n, 0|m, t) = P s
n P (n, 0|m, t) =

N∑

k=1

φ(k)
m φ(k)

n eλkt. (4.130)

Let us calculate the autocorrelation function of the process, defined as

K(t) = 〈n(0)n(t)〉 − 〈n(0)〉 〈n(t)〉 . (4.131)

As the process is stationary,

〈n(0)〉 = 〈n(t)〉 =
N∑

n=1

n P s
n =

N∑

n=1

φ(1)
n , (4.132)

and

〈n(0)n(t)〉 =
N∑

n,m=1

n m W (n, 0|m, t)

(4.130)
=

N∑

n,m=1

n m
N∑

k=1

φ(k)
m φ(k)

n eλkt

=
N∑

k=1

eλkt

(
N∑

n=1

n φ(k)
n

)2

, (4.133)
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then by inserting (4.133) and (4.132) in (4.131) we have

K(t) =
N∑

k=2

eλkt

(
N∑

n=1

n φ(k)
n

)2

. (4.134)

K(t) tends exponentially to zero as t → ∞, which means that the time correlations of the
system decrease exponentially.

4.4 The H-theorem

Whether the detailed balance holds or not, the master equation possess a remarkable
general property: there exists a functional of the state that is monotonic over time. Such
a functional is said to be Lyapunov in mathematics. In physics, it provides a model for
non-equilibrium entropy.

Theorem 4.1 (H-theorem) Assume that the number of states is finite 5 and that the
master equation admits a stationary distribution P s

n such that P s
n > 0, n ∈ Σ. Let f(x) be

a strictly convex (f ′′(x) > 0), bounded below (f(x) ≥ a ∈ R) function for x ≥ 0 . Then,
the functional

H(t) =
∑

n∈Σ

P s
n f

(
Pn(t)

P s
n

)
(4.135)

is monotonically decreasing over time.

Proof (H-theorem) We have to prove that d
dtH(t) ≤ 0. We start by noting that for

any sequence of numbers {an}n≥1, we have

∑

n,m∈Σ

P s
mWm,n(an − am) = 0. (4.136)

This follows directly from the fact that P s
m satisfies the stationary master equation,

∑

n,m∈Σ

P s
mWm,n(an − am) =

∑

n∈Σ

an

∑

m∈Σ

(P s
mWm,n − P s

nWn,m)

︸ ︷︷ ︸
(4.12)

= 0

= 0. (4.137)

5This will avoid us the problems of the limit and convergence of infinite sums.



4.4. THE H-THEOREM 103

Let us now set xn(t) = Pn(t)
P s

n
, and calculate

d

dt
H(t) =

∑

n∈Σ

P s
n

d

dt
f

(
Pn(t)

P s
n

)

=
∑

n∈Σ

f ′ (xn)
∂

∂t
Pn(t)

(4.10)
=

∑

n∈Σ

f ′ (xn)
∑

m∈Σ

(Pm(t)Wm,n − Pn(t)Wn,m)

=
∑

n∈Σ

f ′ (xn)
∑

m∈Σ

Pm(t)Wm,n −
∑

n∈Σ

f ′ (xn)
∑

m∈Σ

Pn(t)Wn,m

︸ ︷︷ ︸
n↔m

=
∑

n,m∈Σ

Pm(t)Wm,n
(
f ′(xn) − f ′(xm)

)

=
∑

n,m∈Σ

P s
mWm,n

(
xmf ′(xn) − xmf ′(xm)

)
. (4.138)

We choose
an = f(xn) − xnf ′(xn), (4.139)

in (4.137). This choice leads to
∑

n,m∈Σ

P s
mWm,n

(
f(xn) − f(xm) −

(
xnf ′(xn) − xmf ′(xm)

))
= 0, (4.140)

that we add to (4.138) to obtain

d

dt
H(t) = −

∑

n,m∈Σ

P s
m︸︷︷︸

≥0

Wm,n︸ ︷︷ ︸
≥0

(
f(xm) − f(xn) − (xm − xn)f ′(xn)︸ ︷︷ ︸

>0

)
< 0. (4.141)

The result f(xm) − f(xn) − (xm − xn)f ′(xn) > 0 stems from the strict convexity of f(x),
as depicted in figure 4.6.

f(x)

x
0 a b

f(b)

f(a)

(b − a)f ′(a)f(b) − f(a)

Figure 4.6: The strict convexity of f(x) implies f(b)−f(a) > (b−a)f ′(a), thus f(b)−f(a)−(b−a)f ′(a) > 0.

�
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Corollary 4.1 (Equilibrium approach) Furthermore, if all the rates are strictly posi-
tive Wn,n′ > 0 ∀ n, n′, then for any initial condition Pn(0) we have

lim
t→∞

Pn(t) = P s
n. (4.142)

Therefore, the steady state is unique.

The corollary demands that transitions may occur between any pair of states. This
assumption is in fact too restrictive. The result remains true if each pair of states is con-
nected by a chain having a non-zero transition rate. The latter condition ensures that all
the components of P(t) may evolve towards those of Ps by successive transitions. If it were
not satisfied, the system might have several stationary distributions, each of them having
an initial conditions’ attraction area.

Proof (Equilibrium approach corollary) By the H-theorem, H(t) is bounded below
and decreasing, therefore limt→∞ H(t) exists and limt→∞ d

dtH(t) = 0. Consequently, it
follows from (4.141) that

lim
t→∞

d

dt
H(t) = − lim

t→∞

∑

n,m∈Σ

P s
mWm,n

(
f(xm) − f(xn) − (xm − xn)f ′(xn)

)
= 0. (4.143)

Since each term of the sum in (4.143) is positive and P s
m 6= 0, Wm,n 6= 0, we have

lim
t→∞

(
f(xm) − f(xn) − (xm − xn)f ′(xn)

)
= 0. (4.144)

The Taylor expansion of f(xm) around xm = xn gives

f(xm) = f(xn) + f ′(xn)(xm − xn) +
1

2
f ′′(xn)(xm − xn)2, xn ∈ [xm, xn]

=⇒ f(xm) − f(xn) − (xm − xn)f ′(xn) =
1

2
f ′′(xn)︸ ︷︷ ︸

=δ>0

(xm − xn)2, xn ∈ [xm, xn]. (4.145)

The strict inequality δ > 0 is ensured because of the assumption of strict convexity for
f(x). By inserting (4.145) in (4.144), we obtain with xn(t) = Pn(t)

P s
n

lim
t→∞

(xm − xn) = 0

=⇒ lim
t→∞

(
Pm(t)

P s
m

− Pn(t)

P s
n

)
= 0

=⇒ lim
t→∞

(
Pn(t) − P s

n

Pm(t)

P s
m

)
= 0. (4.146)

By summing over the states n with the normalization condition
∑

n∈Σ Pn(t) =
∑

n∈Σ P s
n = 1

∀ t, (4.146) becomes

lim
t→∞

(
∑

n∈Σ

Pn(t)

︸ ︷︷ ︸
=1

−Pm(t)

P s
m

∑

n∈Σ

P s
n

︸ ︷︷ ︸
=1

)
= 0

=⇒ lim
t→∞

Pm(t)

P s
m

= 1

=⇒ lim
t→∞

Pm(t) = P s
m, (4.147)

and this completes the proof. �
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Remark In the proof we have assumed that the existence of limt→∞ H(t) implies limt→∞ Ḣ(t) =
0. In principle this is not true if Ḣ(t) = dH(t)/dt is non-monotonic and starts to oscillate
when t → ∞. In that case, the demonstration remains valid provided that we replace Ḣ(t)

by its average over a time interval τ : 1
τ

∫ t+τ
t ds Ḣ(s) = H(t+τ)−H(t)

τ . ⋄

There is a model for equilibrium approach that is analogous to the second law of thermo-
dynamics. Let us assume that the steady state corresponds to the equilibrium state of the
system, P s

n = P e
n. We choose f(x) = x ln(x), so that

H(t) =
∑

n∈Σ

Pn(t) ln

(
Pn(t)

P e
n

)
. (4.148)

This function has the following properties:

(i) It is strictly decreasing.

(ii) It is extensive: if Σa and Σb are twoo independent systems, (Pn(t) = P a
n (t)P b

n(t)), we
have

H(Σa ∪ Σb) = H(Σa) + H(Σb). (4.149)

(iii) limt→∞ H(t) = 0.

Let us consider the equilibrium entropy Se, defined as usual by

Se = −kB

∑

n∈Σ

P e
n ln (P e

n) , (4.150)

where kB is the Boltzmann constant. We define the non-equilibrium entropy function of
the process as

S(t) = −kBH(t) + Se

= −kB


∑

n∈Σ

Pn(t) ln

(
Pn(t)

P e
n

)
+
∑

n∈Σ

P e
n ln (P e

n)


 . (4.151)

By the H-theorem, the non-equilibrium entropy function is monotonically increasing, and
we have limt→∞ S(t) = Se.

It should be emphasized that these considerations constitute by no means a demon-
stration of the second law of thermodynamics, because they rely on an evolution that is
described by an irreversible Markov process and not by a reversible microscopic motion.


