Chapter 3

Diffusive Markov processes

3.1 Fokker-Planck equation

We will now present particular cases of the Chapman-Kolomogorov equation for homoge-
neous Markov processes that turn out to be very useful to describe many physical systems.
From now on, we will only consider continuous Markov processes. They are said to be
diffusive in the sense that the theory provides a generalization of Brownian diffusion to a
large range of systems. The discrete-valued processes will be dealt with in the next chapter.

Let us come back to the Brownian motion and calculate the moments of the particle
motion starting from an initial position zy at time ¢y = 0. According to equation (1.24),

these moments read!

((a2)*) /R dz (x — a0)* P(xolz, 1)
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where C(k) can be calculated using the formula

n—1)!
9 ,,L1+1 %\/777, n even,
dz 2"e ™™ =( a2z 27
R 0, n odd.

(3.1)

(3.2)

The diffusive nature results in the fact that <(Al‘)2>m0 is of order ¢t and that the higher-order

moments <(Ax)k> , k> 2, tend to zero faster than ¢t as t — 0. These considerations lead
o

to the following definition.

YIf to # 0, we just have to replace t by t — to everywhere.
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44 CHAPTER 3. DIFFUSIVE MARKOV PROCESSES

Definition 3.1 (Diffusive process) A homogeneous Markov process is said to be diffu-
sive if there exists two functions a(z) and b(x) such that the transition probability P(xg|x,t)
satisfies

(i) (Az),, = Jgdz (z — z0)P(wo|z,t) = alzo)t + O, a>1,
(ii) ((Ax)?), = Jgdz(z —x0)*P(xo|z,t) 2 bao)t + O, a>1,
(iii) <(Aaj) > = Jrdz (x — z0)k P(x0|2, 1) 0 oY), a>1, k>2.

The functions a(z) and b(z) are respectively called drag et diffusion functions of the
process.

The transition probability P(xg|z,t) fulfills a second order differential equation called
Fokker-Planck equation

2
2 Plaole.1) =~ (ala) Plaolr, ) + 5 o (ba) Plaolz, 1), (33)

with initial condition P(xg|x,t =0) = §(z — z9).

Proof Since we have a homogeneous Markov process, the Chapman-Kolmogorov equation
for a time t + At gives

Plaola, t + At) = /R dy P(zoly, t) Py|z, At). (3.4)

We want to derive a differential equation for P(xg|z,t). Therefore we should consider
P(y|z,At) for an infinitesimal time A¢ and apply the conditions (i)-(iii). Let ¢(x) be a
bump function, then multiplying (3.4) by ¢(x) and integrating over z yields

/de xolz,t + At)d /dy/ dz P(xoly,t)P(y|x, At)o(x). (3.5)

Using the fact that = on the left-hand side is a dummy variable, we can rewrite x — y so
that

[y PGaoly,t+200(0) = [ dyPlaoly,t) [ dePlyle, 06, (36)
R R R

Given that At is infinitesimal and that limay_,o0 P(y|z, At) = §(z — y), the only values z
that contribute to the last integral are those in the vicinity of y. Therefore we can expand
¢(x) around x = y, so that

At 0
/R dy Pzoly, t + At)(y)

/dyP xoly, t /de ylx, At) X
< (60) + (@ - )é ) + 3o~ 96" w) + O (e~ )"))
[y PGl ) (60) + & laly) At + 36" ()bl At

At~0

+O((At)°‘)>. (3.7)
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In the last step we used the conditions (i) to (iii) of page 44 with z¢p = y. By rearranging
the terms of (3.7) and taking the limit At — 0 one obtains

a7 [ o) (Paly.t + 80 = Plaay. ) = [ dyPlaoly.t) (¢ W) + 30 whn))

At—0
=" [ () 5 P(aoly.t)

(3.8)
Finally, integration by parts yields
[ ayo) 2 Pl = [ ayots) (2 (@) Plaoly, ) + & 2 (o) Plaoly. 1)
]Ry yé)t LolY, —Ry Y 8yay LolY, 2 0y? Yy) L (ZolY, .

(3.9)
The latter equation is valid for any function ¢, and this completes the proof. |

Remarks

(i) The Fokker-Planck equation is defined by the drift function a(zx) that characterizes
a balistic motion, and the function b(x) > 0 that characterizes the diffusion.

(i) The Fokker-Planck equation is said to be linear? if
a(z) = a1 + asx, b(xz) = b, (3.10)

and quasilinear if a(x) is non linear and b(x) = b. If the equation is linear, then the
solution is Gaussian.

(iii) A solution of (3.3) with initial condition P(zg,to|z,t = to) = d(x — xp) is called
fundamental solution, and defines the transition probability of a diffusive Markov
process. To fully determine the process, we should find W (x,t). By linearity of the
Fokker-Planck equation,

Pla,t) = | dao W (a0, to)Plao, ol 1) (3.11)
is also solution, where W (xo, tg) is a distribution of initial conditions. We have
P(x,t)],—y, = W(z,t0). (3.12)
From now on, we will omit the initial condition in equation (3.3).

(iv) The distribution Ps(x,t) is stationary if %Ps(x,t) = 0. A stationary distribution (as
far as it exists) is then a solution of

10
552 b@)P(2)) = a(@)Py(x). (3:13)

(v) The distribution approaches the stationary distribution over time if
tlggo P(z,t) = Ps(x). (3.14)

<

2In the sense of the properties of a(x) and b(z). The Fokker-Planck equation is always linear fo P.
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3.2 Wiener and Ornstein-Uhlenbeck processes

The two processes that we will consider are particular cases of the Fokker-Planck equation
corresponding to some definition of a(z) and b(x).

3.2.1 Brownian motion (Wiener process)

The particular case a = 0 and b = 2D, D = (Bfmy)~!, in (3.3) leads to the diffusion
equation (1.17). The corresponding Markov process is defined by

(zg—21)?

1 _
P(.I’1,t1|.%’2,t2) = ——————-@¢€ DPUa—t1), to > 11, (3.15)
1

47TD(t2 — t1)

22
W(z,t) = e~ Dt t>0. (3.16)

Var Dt

This process is called Wiener process. It is homogeneous (but non-stationary), Gaussian
and has zero average. Its realizations are Brownian trajectories starting from the origin.
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Figure 3.1: Realizations of the Wiener process and Brownian trajectories. The bold curve represents
(x2)(t) = V2Dt, characteristic behaviour of a diffusive process.

We can check explicitely that the Wiener process defined by (3.15) and (3.16) satisfies
the Chapman-Kolmogorov compatibility relations (2.41) and (2.42).

The covariance of the Wiener process is given by
C(tl,tg) = <$(t1)x(t2)> = 2Dmin(t1,t2). (317)
The latter equation can be verified by calculating for to > t;

<£E(t1)l’(t2)> = A{2 dxl dZL’Q 1 T W(l'l,tl;l’g,tg)
— ——
=W (z1,t1) P(x1,t1;72,t2)
(3.15) ,
(3.16) 1 _L/ 1 _ (wo—=y)
= dz; = e 4Du dry x9 ——— ¢ 1D(2—%1)
R VIDh R JAD( — b))
=z
1 .
= d 2 4Dt
/]R SIVZy) T
2 9pt,. (3.18)

As (z(t1)z(t2)) is a symmetric function we find (3.17) in general.



3.2. WIENER AND ORNSTEIN-UHLENBECK PROCESSES 47

Application: random phase and spectral broadening.

We consider an electromagnetic field £(t) = Ege~“0t+1¢() where ¢(t) is a Wiener stochastic
process that obeys the diffusion equation with constant D. We will show that the Fourier
transform of the correlation function of the field

Ow) = / dt e*C(t), (3.19)
R
with
C(ty —t2) = (E(t1)E7(t2)) , (3.20)
is equal to the Lorentzian
~ 2D
= G — 21
Cw) = ool = e (321)

Therefore the spectral broadening is given by the diffusion coefficient D. Indeed, we have
(E(1)E(t2)") = |E[2e 0112 (eflett)=o(E))) (3.22)

Letting f(t) = 0(t — t1) — 6(t — t2), and using the fact that the generating function of the
Wiener process reads

<e¢ [, at f(t)¢(t)> _ oD frdt [ ds F(0)£(s) min(i,s) (3.23)

we can write

<ei(¢(t1)—¢(t2))> — o~ D(min(ty,t1)—2min(tyt2)+min(tz,t2)) _ e—D\tl—tzl7 (3.24)

whose Fourier Transform is given by (3.21).

3.2.2 Ornstein-Uhlenbeck process

This process is defined by a(v) = —vyv, b(v) = g—; = 292D and describes the thermalization
of a particle in a fluid at termal equilibrium. The Fokker-Planck equation (3.3) gives

0 0 5~ 02
—P(v,t) =v— (v P(v,t D——P(v,t). 2
SoP(0,0) =72 (v P(0,1)) +7° D55 P(0,1) (3.25)
The corresponding Markov process is defined by the transition probability that is solution
of (3.25) with P(Ul,t1|?)2,t2 = tl) = (5(’02 — 1}1) ,

51 (vz - v1e_7(t2_t1))2

2T ety |

mp 1
P exp |—
21 /1 — e—2(ta—t1)

and there exists a stationary distribution, which is nothing less than the Maxwell velocity

distribution
W(w) = | "0 - pm?, (3.27)
2w

The Ornstein-Uhlenbeck process is stationary and Gaussian with zero average

P(’Ul,t1|’l}2,t2) = (326)

(w(t)) = /]R dv v W (v) = 0. (3.28)
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Once more, we can check explicitely that the distributions (3.27) and (3.28) satisfy the
Chapman-Kolmogorov relations (2.41) and (2.42). By symmetry, the odd moments are
zero. Let us calculate the velocity autocorrelation function. Since the process has zero
average, it is the same as its covariance. Given an initial velocity v(ty) = vg, the average
velocity at time ¢ reads (according to (3.26))

/R dv v P(vg, tolv, £) = voe 10710 = (v) . (8), (3.29)
hence
(v(to)v(t)) = / dvodv vov W (vo, to;v,t)
RQ N ,

W(Uo,to)P('Uo,to"U,t)
= / dvg vo W(vo)/ dv v P(vg, to|v, t)
R R

(%:29) /dvo V2 W (vg)e 7t
R

1
- = g(t—to) 3.30
o (3:30)
As the process is a solution of Fokker-Planck equation, it is a stationary Gaussian Markov
process. Therefore, Doob’s theorem implies that its covariance must be exponential. This
is confirmed by equation (3.30). Thus, the Ornstein-Uhlenbeck process (up to the choice
of B, m, v 3) is the only process that is both stationary Gaussian and Markovian.

Let us calculate the velocity fluctuation, given an initial condition {vg, to}.

<112> (t) = / dv v? P(vg, tolv, t)
vo,to R

= 1 (1 _ e—2v(t—to)) + 2 2(t=to) (3.31)

Bm ’

The equations (3.29) and (3.31) show that the memory of the initial condition is lost for
t — oo, whereas (3.30) and (3.31) state that the fluctuations approach the value of thermal
quilibrium ﬂim More generally, we see from (3.26) that P(v,to|v,t) tends to the Maxwell
distribution (3.27) as t — tg — oo.

3.3 Link with the Langevin equation

We note that (v), , (t) and <v2>vo i, (t) have exactly the same value than in Langevin
theory (see equations (1.82) and (1.91) of pages 17 and 18 respectively).

In what way does Langevin equation define a homogeneous Markov stochastic process?

3.3.1 White noise

To address this question, we should define the correlations of v(t) from those of the random
force f(t). In section 1.2, we made the assumption of instantaneous correlation for the force

3By rescaling /Bmv = u we recover the notations used in the demonstration of Doob’s theorem, section
2.3.2.
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(1.86), without mentioning the higher-order correlations. From now on the whole process
associated to f(t) will be defined as Gaussian with covariance (f(t1)f(t2)) = ' (1 — t2),
(f) (t) = 0. Such a process with singular covariance is called white noise. The reason why
we associate the process with white color comes from the fact that the fourier transform of
(f(t1)f(t2)) is constant, hence all the frequencies of the spectrum have the same weight.

(i) The generating function of white noise reads
G(f) = e 2 Jn IO, (3.32)
Indeed, the generating function of a Gaussian process with covariance C(t1,t2) is
G(f) = e_% fR2 dtq dto f(tl)f(tQ)C(tl,tQ)’ (3.33)

Therefore, equation (3.32) follows directly from

C(tl, tg) = F(S(tl — tz). (3.34)

(ii) If f(¢) is a white noise, then fg ds f(s) = x(t) is a Wiener process. As the white noise
is Gaussian and that the relation between x(t) and f(¢) is linear, the process x(t)
is also Gaussian (see lemma 2.7 of page 38). Therefore it is entirely defined by its
covariance

(e(t)a(ts)) = T /0 " s, Otz dss 6(s1 — s9) = T min(t1, t2), (3.35)

which is identical to that of Wiener process.

(iii) The Gaussian process with covariance (f(¢1)f(t2)) =T (t2—t1) where I'(¢) is a rapidly
decreasing function is called colorful noise.

Lemma 3.1  The velocity process described by Langevin equation

d 27

&U(t) = —yv(t) + %f(t)v (3.36)
where f(t) is a white noise, (f(t1)f(t2)) = 0(t1 — t2), with a thermal distribution of initial
velocities is identical to the Ornstein-Uhlenbeck process.

Proof (Lemma 3.1) In Langevin equation, the relation between v(t) and f(¢) is linear.
Therefore, lemma (2.7) states that v(t) is a Gaussian process. Moreover, the two processes
have the same average (v) (t) = 0 and the same covariance (v(t1)v(t2)) = ﬁime_w(m_tl). As
a Gaussian process is fully determined by its covariance, we conclude that the two processes
are equal. The Ornstein-Uhlenbeck process being Markovian, the velocity process described
by (3.36) has the Markov property as well. [ |

We see that the two descriptions given by Langevin and Fokker-Planck equations are
closely related. In a physical point of view, the evolution is ruled by a general deterministic
differential equation
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d
Salt) = F(a(t). (3.37)

If the system undergoes random perturbations that change much faster than the evolution
of z(t), it is natural to introduce a model & la Langevin by adding a white noise

d

—z

dt
I" has to be determined by the physics. For instance, if there is a steady state, I' is given

by its fluctuations.* As the solution of (3.38) is fully determined by the initial condition o
in ¢g, any realization f(t) has the Markov property (see example 1 of page 28).

(t) = F(z(t)) + f(t), (f(t1)f(t2)) =T 6(t1 — ta). (3.38)

We are now going to show that z(t) remains Markovian after averaging (-),,,, over the
white noise realizations. For a white noise realization f(t) the process distributions read

Wf(xl, t1;...3 C(,‘mtn) = Pf(CC(), to‘l‘l, tl)Pf(xl, t1|$2, tg) ce Pf(:L‘n_l, tn_1|l‘n,tn), (339)

with Py(xo,tolx1,t1) = d(x1 — ¢f(xo,to;t1)). Here, the flow ¢r(xo,t0;t) depends on the
action of the force between tq and ¢. The average of Wy(x1,t1;...;2y,t,) over the force
f(t) can be factorized and keeps Markov property because there isn’t any correlation of
the force between the consecutive time intevals tg — t1, t1 — to, to — t3, etc.

W(xl, t1;...;%p, tn) = <Pf(.%’0, t0|$1, t1)>wn <Pf(x1, t1|$2, t2>>wn - <Pf(.%’n_1, tn_1|.%'n, tn)>wn .
(3.40)

Consequently, all the properties of the process are determined by P(x1,t1|x2,t2) =

(Pg(x1,t1|z2,t2)),,,, Which obeys Fokker-Planck equation. Moreover, as the correlations of

the white noise are invariant under time translation, the averaged probabilities (Py(x1,t1|z2,t2))

inherit this property. Thus, the process induced by white noise starting from equation (3.37)

is homogeneous and Markovian. The Markov property is lost if the noise is colorful.

wn

In order to find the corresponding Fokker-Planck equation, we have to determine the
drift and diffusion functions a(z) and b(z). To do so, we use equation (3.3) to calculate
the moments of displacements starting from xy at time ¢ty and we identify them to the
quantities (i) to (iii) of page 44.

(i) a(z). By integrating (3.38) over a small time interval ¢t — ¢ , we have

¢ ¢ ¢
ds iJ:(.s:) = [ dsF(z(s))+ [ dsf(s). (3.41)
to ds to to
=z(t)—zo

20 P (20) (t—to)

By averaging (3.41) over the white noise realizations, taking into account the fact
that F'(zo) is not random (g is fixed) and using (f),,,, = 0, we find

(@00) = 20} = Flzo) —1o) + [ s (1) (5), (3.42)
to R/_/:O

hence
a(xzo) = F(xo). (3.43)

“The T coefficient that measures the white noise amplitude can be inserted in the covariance as in (3.37),
or in the differential equation by substituting f(t) — VT f(t) as in (3.36).
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(ii) b(y). In the same manner we have

() =o02),, = [ [ dsa((Flalor) + fo0) (Flalo) + £(52))

. t t
e F(:EO)Q(t—to)Q-i-/ ds; / dso (f(s1)f(s2))
to to —
=I'6(s1—s2)
= F(x0)’(t—to)* + T (t —to)
= T(t—to) + 0 ((t—t)?), (3.44)
hence
b(xg) =T. (3.45)
Thus, the corresponding Fokker-Planck equation reads
0 0 r o2
—P =——(F(x)P ——P . A
Y (x,t) ax( (z)P(z,t)) + 5 92 (x,1) (3.46)

Example (Smoluchowski equation for the position) A particle in a force field F(z)

with friction ~ satisfies
d 1
&v(t) = —F(x(t)) — you(t). (3.47)

m
We assume a strong friction, so that the acceleration is negligible %v(t) ~ 0 in comparison
with the other terms. Adding a white noise f(¢), this equation becomes

d _ F(z(t)
&x(t) =

IO (3.48)

Applying (3.43) and (3.46), we find

a(zo) = ngo) , b(xo) =T, (3.49)

which gives the following Fokker-Planck equation

) 9 (F(m)

P t) = ==

2
= P(x,t)) + L9 b, (3.50)

mry 2 0x?

This is the Smoluchowski equation (1.48) that we derived when we studied the assymetric
random walk. If F'(z) = — LV (z), we have the stationary state Ps(z) determined by

ro 1 d
55 P@ == (LV@) P, (351)
with solution
(e T V(@
Py(z) = Ce Tmy "\ (3.52)

C being a normalization constant. In order to have thermal equilibrium P,(z) = C' e #V(@)

we must set F’yim = [, which leads to the Einstein equation D = g = 671rw' o
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3.4 Multivariate Fokker-Planck equation

Consider a vectorial stochastic Markov process with n homogeneous components, x(t) =
(z1(t),...,2n(t)). We assume that the n variables of the process satisfy similar conditions
that definition 3.1
d3x (z — z0); P(x0|x,t) = a;(x0) t + O(t%), a>1, (3.53)
R’n
d*x (z — z)i(x — m0); P(x0|x,t) = bij(x0) t + O(t*), a>1, (3.54)
]Rn
with a € R" is the drift vector and b € M,,(R) is the n x n symmetric real b;; = bj; € R
diffusion matrix. The associated multivariate Fokker-Planck equation (without writing the
initial conditions) reads

9 "9 1 & 92
aP(x t) = ; a—%(ai(x)P(x,t)) + §i,jzzl m(blj(x)P(x, t)). (3.55)

Its derivation is the generalization of the scalar case (3.3).

3.4.1 Kramers equation

The Kramers equation (a particular case of Fokker-Planck equation (3.55)) describes the
random motion of a particle in phase space. The process {x(t), v(t)} is vectorial. For sim-
plicity we will restrict ourselves to a one-dimensional space, so that the process {z(t), v(t)}
has two components. The study of Kramers equation generalizes the analysis of Brownian
motion and Langevin equation in the sense that the latter dealt only with position z(¢)
and velocity v(t), respectively. We start from the equations of motion in a force field F(x)
with friction v and white noise f(t)

d
Sa(t) = o), (3.56)
o0 ==+ T8 2 g (357)

To derive the corresponding Fokker-Planck equation, called Kramers equation, we have to

find the functions
a(z,v) = (al’(‘”’”)) , (3.58)

ay(x,v)
and
[ bga(z,v)  byo(z,0)
b(z,v) = (bw(aj,v) bw(w,u)) , (3.59)

with by (2, v) = byz(x,v). Using the method of page 50 we have for ¢t — £

((z(t) = z0))p =~ vo(t — to) = a.(20,v0) = o

(0() = v0))y ~ (—yvo + W) (t—to) = au(z0,v0) = —yvo + o)

<(x(t)_ xO)Q bb ( (t - tO)) =0 ((t - tO)Q) = bm(%, UO)— 0

{(@(t) = 20)(v(t) = v0) by = vo (—yvo + 220 ) (£ — 10)* = by (w0, v0) = bu (w0, v0) = 0

((W(t)=v0)*)y, = /3%(15 —to) = buy (20, v0) = 52%
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Substituting these values in (3.55) leads to the Kramers equation

Flz) 2P(:zc v, t)

QP(I,UJ) + ’ng(x,l}, t) + 50

ot ox

) (3.60)
— (({i}(v P(x,0,t)) + %;#P(x, v, t)) :

This equation is the starting point of many studies, e.g. the analysis of metastabilities (see
section 3.5 of page 54). We introduce the particle density®

plx,t) = / dv P(z,v,t) (3.61)
R
and the particle current
(e t) = / dv v P(z, v,1). (3.62)
R

Assuming lim,_, 4+ P(z,v,t) = 0, we can integrate (3.60) over v to obtain the continuity
equation that links p(z,t) and j(z,t)

d 0 . B
ap(m,t) + %j(x, t)=0. (3.63)

By multiplying (3.60) by v and integrating it over v, one obtains the equation satisfied by
the particle current j(z,t)

J .

el F(x)

0 9 .
x,t) + e /Rdv v° P(z,v,t) + Tp(x,t) = —vj(x,t). (3.64)

Remark The Kramers equation has the structure of a kinetic equation

0 0 F(z) 0 B
aP(m, v, t) + U%P(l‘, v, t) + - %P(x,v, t) = Ip(z,v,t). (3.65)

The linear operator Ip is a collision operator. It contains all the effects of the collision of
the particle with its environment. In our case, Ip(z,v,t) takes only into account the effects

of friction, that we describe phenomenologically, and the collisions, that we describe with
the white noise. The Boltzmann equation will have the same structure with Ip describing
the microscopic dynamic of collisions.

If Ip(z,v,t) = 0, the knowledge of the flow of the differential system @(t) = v(¢),
mo(t) = F(x(t)) allows us to solve (3.65). Let w = (z,v), t = ¢(wo,t) = w(t) a trajectory
with initial condition wy, and P(wp) a distribution of initial conditions, then the distribution
at time t is defined by

P(w,t) = /]R? dwo P(wo) § (w — ¢p(wp,t)) = P ((b_l(w,t)> (3.66)
and satisfies 5 5 Flz) 0
x
—P —P ——=—P =0. .
5 (w,t) + Vo (w,t) + — (w,t) =0 (3.67)
In general, as soon as Ip # 0, the Kramers equation cannot be resolved analytically and
we have to do approximations. o

This density is normalized to 1. If we consider N independent particles and rewrite p(z,t) — Np(z,t),
we can normalize it to N.
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3.5 Application to the metastability

As a direct application of the Kramers model, we would like to study the lifetime of a
particle located in a potential well and undergoing thermal fluctuations. Consider a particle
in the potential V' (x) depicted in figure 3.2.

| bruit%blanc : ;
ap. 0 a b o

: 7
<
N

A\
8

Figure 3.2: Particle fluctuating around its equilibrium position a in a potential V(z) and undergoing
a white noise (thermal fluctuations). Depending on the fluctuations amplitude, it can cross the potential
barrier Vy and go into region x > b. We simulate a steady state by introducing a pit term in by that absorbs
the particle and reinjects it in a source term in ag.

Suppose first that the particle is at its equilibrium position a. Because of thermal
fluctuations, it can cross the potential barrier of amplitude Vg in b. This process is called
thermal activation. It can describe for instance the dissociation of a molecule in a solvent
of temperature T'. Kramers assume that the particle is subjected to a random force f(¢)
representing the fluctuations of the medium, therefore we must solve Kramers equations
for the probability distribution. We are looking for the lifetime of a particle localized in
the vicinity of a at time ¢t = 0. As F(z(t)) = —%V(m(t)), then if f(t) = 0 we have the
deterministic equation

d? V'(x(t)

@x(t) e yu(t). (3.68)

A particle with initial condition zy < a, vg = 0 will evolve towards equilibrium position
x = a. If we switch the random force f(t) on and if thermal energy is smaller than V),
kpT < Vp, then the particle may get sufficient kinetic energy to cross the barrier. The case
kT > Vp is not of interest since the particle can freely escape the potential well. From
now on, we will assume kT < V. We still have to specify the concept of lifetime, which
can be defined in several ways.

In principle, we should solve (3.60) with initial distribution centered in a, and calculate
the probability of finding the particle in {x € [b,co[}. The lifetime can then be defined as
the mean time of the first passage in = b. There is no steady state in that case because
the particle is not confined, and the solution of (3.60) is hard to find.

We will describe the problem from a different point of view: imagine that when the
particle reaches a point by > b, it is absorbed and reinjected with the same velocity to the
left of the origin in ag. Formally, this effect is described by adding a term S(z,t) in Kramers
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equation which acts as a pit in by, as a source in ag, and that is zero for x €]ag, by[. These
conditions produce a steady state and a stationary current between ag and bg. We will not
have to explicit S(z,t) in the following as we will only focus on the properties of the steady
state, z € [ag, bo]. The absorption of the particle in by leads to the boundary condition

P(z = bg,v,t) = 0. (3.69)
Besides, as the potential is confining for x — —o0o, we will take ag = —oo.

First, note that the stationary current is uniform: it follows from the continuity equation
(3.63) in steady state that

0 0

5,7 (8) = —5.p(2) =0, (3.70)
hence j = C' € R is constant. The lifetime is then defined as
1
T = —. 3.71
; (3.71)

We will solve Kramers equation (3.60) in steady state and in high friction regime, v > 1.
We assume that P(x,v) can be expanded in powers of v as

1 1 1
P(z,v) = E: P(k)(x v) = P(O)(x,v)—l—fp(l)(x,v)—{—fzp(z)(x,v)—l—o(—3>, (3.72)
=" v Y Y

such that the terms of each order satisfy (3.60). Inserting (3.72) in (3.60) yields

Z ik (v %P(k)(w,v) + EQP(M (x, v))

>0 m Ov
= Z (v P*HD (2, v)) + — Lo —PED (@ 0) ). (3.73)
k>—1 v pm v
The coefficient of order v corresponding to k = —1 in the right-hand side must vanish,
0 1 92
il (0) _— “Z p =
50 <’UP (x,v) + Bm 61}2P (x, U)> 0. (3.74)
The solution reads
PO (z,v) = p(v)p(x), (3.75)
where
() = | D g-pm? (3.76)

2

is the Maxwellian and ¢(z) is an unknown function of z. The equality of the £ = 0 terms
in (3.73) yields

9 (vP(l)(x,v)—i-aP(l)(x,v)) = 83 PO (z,0) + Fla )a PO (z,v)

ov m Qv m
)4 (o) - BP@I6)) (o). (377)
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The solution of (3.77) for PM)(xz,v) is given by

PO(w,0) = = (56(@) = BE@)O() ) vplo) + v(a) (o) (3.78)
where 1(z) depends only on z. This follows from
5o (P00 4 52 we) = 5 (5re@) = —ve) G
~—_——

=g (v)—v2p(v)

Collecting the terms, we find

Pla) = g)e(e) 42 (6(@)ple) = (00) = SF@0() ) vplo) ) +0 (). (350

PO)(z,v)

:P(l)(z,v)

Using [ dvv?p(v) = ﬁm’ the current reads

jlx) = /]Rdv v P(x,v) (3.80) }Y (ﬁlm(vax) - st)qﬁ(x)) +0 (712) . (3.81)

As j(z) = j is uniform, we can determine the function ¢(z) in terms of j. Writing F(z) =
%V( ), (3.81) gives
5o00)+ 8 (527 (@) 6la) = —pmnj (3.52)
ox oz B - ’
Writing ¢(x) as
$(x) = e PV X(x), (3.83)
we have q
(@) =—pmyj V@), (3.84)
According to the boundary condition (3.69), the function X (z) satisfies X'(by) = 0 and
bo
X(z) = Bm’yj/ dz V@), (3.85)
which leads to ,
0
o(x) = Pmyj efﬁv(‘”)/ dz V@), (3.86)

Finally, the density is given by
(3.80) 1
plx) = / dv P(xz,v) =" ¢(x)+ 0O ) (3.87)
JR

The normalization condition ff%o dz p(z) = 1 implies at leading order

b b b
_ / " A (z) + O (1) GI) i / " dp eV / "y VW 4 0 (1) (3.88)
—00 Y —00 x Y
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To solve these integals, we assume kpT < V| such that the potential minimum in z = «a
and maximum in z = b are very narrow, and we do a parabolic approximation. The main
contribution comes from «a in the first integral and from b in the second one:

V(z) = V(a) + %V”(a)(x ~ 0?40 (e —af), (3.89)
Vi) = V(o) — 5 V'O (v~ 87+ 0 1y = ") (390)

As the integrand is quickly decreasing, we can extend the integrals over R, hence

97 BV D)~V ()

1 BV (0)-V (a)) / dp e ALV (@) / Qe BV Oy _ .
jhmye R Ve T V)

(3.91)
Thus, we find the Kramers formula
) BV (0)-V(a))
J V" (a) V()]

If V”(a) is big, then the well is tight and the particle is close to the barrier. Therefore,
the lifetime 7 inside the well decreases. In the same manner, if V”(b) is big, the barrier is
narrow and 7 also decreases. If V(b)) —V (a) is big, the barrier is high and 7 increases. Finally,
if the temperature rises, then the thermal fluctuations increase the crossing probability and
the lifetime diminishes.

It should be emphasized that we have considered a classical particle. For a quantum
particle, we should add the possibility of crossing the barrier by tunnel effect in the thermal
activation. The competition between these two phenomena leads to an interesting problem
in the quantum theory of open systems.

Using other methods, Kramers equation can also be studied in the weak friction regime
v < 1.

3.6 The laser

An interesting application of the multivariate Fokker-Planck equation is the study of the
phase and the intensity of a laser beam. The evolution equation for the amplitude E of a
laser mode can be written as

;tE (a —c)E —b|E]*E +£(t), (3.93)

where a, b, ¢ are the pumping, damping and interaction coefficients, respectively. h(FE)
contains the deterministic part of the model, which is non linear, whereas f(t) is a white
noise such that

(f() = (3.94)
(f(t1) f(t2)) = (3.95)
(f(tr) f(t2)") = 5(t1 —12). (3.96)
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This white noise represents the different fluctuation sources acting on the laser operation

such as cavity vibration, spontaneous emission in other modes, etc.

Let us start with the deterministic part of the problem (f(t) = 0). We deduce the
evolution equation for the luminous intensity I = |E|?

SI(t) = 2I(t)(a— ¢ — bI(t)) = F(I(t)). (3.97)

By writing F'(I) = —%V(I) where V(I) = —(a — ¢)I? + %bf?’ acts as a potential, we find
the stable equilibrium points corresponding to the minima of V(I), i.e.

- below threshold a < ¢: Iy = 0,
- above threshold a > ¢: Iy = %3¢ > 0.

If there is some white noise, the probability distribution P(E, E*,t) (considering E and
E* as independent variables) of the amplitude satisfies the Fokker-Planck equation

éP __92 (h(E)P) — 0 (W (E)P) + DiP (3.98)
ot 0E OE* OEOE*"" '
Indeed, in our case the Fokker-Planck equation (3.55) reads
d 0 0 1 9 1 0 1 9
ot = "op Bl " gpr (0m P 55 UeP) F 5o e beP) T S G reEs <bEE(;1;>9’)

where ap, ag«, bg, bg» and bgp+ are the drift vector and diffusion matrix components.
The latter are found using the method of page 50. Let us write AE = E(At) — Ey and
AE* = E*(At) — Ej, where Ej is the initial condition.

(1) ag:
At
arn, = (" as e o)
At At
= ds h(E) + ds (f(s))
0 0 ——
@99
S0 h(By) At (3.100)
—ag
(ii) Ap*.
. At . . At~ .
(AE"),, = < ds (M(E*)+ f (s))> ~  h(Ej) At (3.101)
0 5,_/
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At At
((AEP) = < | s [T as <h<E<sl>>+f<sl>><h<E<sz>>+f<sz>>>

At At
_ / dsy [ dss h(E(s1)h(E(s2)) + / dsi | Ydsy (1)1 (52))
0 0 N———

@.95)

At At
) / ds; [ dsy h(E(s1)) (f(s2))
0 0

——

(3.94)

=0
B0 h(Bo)h(ED) (A2, (3.102)

hence
bp = 0. (3.103)
(iv) bp«: similarly, we find

b = 0. (3.104)

(V) bEE*5

At At
(ABAEY),, = </O dsy | dsy (h(E(81))+f(51))(h*(E(SQ))+f*(S2))>

A{If\"jo 2
© \D/At—i-O(At) (3.105)

=bpp*

By inserting these expressions in (3.99) we actually find the Fokker-Planck equation (3.98)
of our model.

Let us write £ = E(I,¢) = Ve and consider I = EE* and ¢ = % (In(E*) — In(E))
as independent variables. Using the relations

) L 09 oo 0

OE ~ OFEJI ' OEd¢

o o a¢¢ (3.106)
OFE* — QE*0I ' OFE*d¢

we calculate the right-hand side terms of the Fokker-Planck equation

L (WEP) = PLn(B)+h(B)
= ((a=c) =2 P+ ((a— )l —bI?) ;)IP—2((a—c)—bI)(%P
_ %([(a—c)f—bﬂ] P) - ;((a—c)—bl) 85; (3.107)
8Ea*28EP B %P+E*az*% _;Eafaz’*;;
_ Qp+132 pr 19, (3.108)

oI o1z " 41 9¢?
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By inserting (3.107), its complex conjugate and (3.108) in (3.98), we find for P(I, ¢, 1)

o .0 ) o (.0 D o2
P =2 (((a=c)r—b1%) P) + D (I§P> + o’ (3.109)

Consider the laser intensity distribution P(I,t) = 02 "de¢ P(I,¢,t). P satisfies equation

(3.109) without the last term®. The stationarity equation for P is therefore

0

a {72 ((a—)1 - bﬂ)ﬁunﬁﬁ} ~0. (3.110)

ol

As limj_, o P(I) = 0, we have
P=(2(a—c)—0bl)P, (3.111)
thus the stationary solution is given by
P(I) = Ceplla=al=35I") (3.112)
where C' is such that [°dI P°(I) = 1. (3.112) can also be written as
a—c

P(I)=CepI=D?  [= - (3.113)

When a — ¢ > 0 (operating laser), the maximum of P°(I) is located in Iy = %3<.

PI)
A

Figure 3.3: The stationary probability distribution of the laser intensity is a Gaussian centered in Iy with

width 4/ 2%.
The average intensity does not exactly coincide with to Iy:

(), :/ AL TP = Io+C [ do (x— Ip) e B*. (3.114)
0 Iy

I,

b
The correction is of order e 5% , which is very small for a weak noise (small D).

SWe assume that P(I,¢,t) and its derivatives vanish as I tends to infinity and that P(I,¢,t) is 2m-
periodic in ¢, thus fo% do %;P =0.
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We will now study the non-stationary regime within a linear approximation. We lin-
earize the Fokker-Planck equation (3.109) by expanding the drift term at first order in the
vicinity of Iy and by replacing the diffusion coefficients with their value in Iy. Inserting
I = Iy + x in the drift term, we find at first order

(a—c)I —bI* ~ —blyz. (3.115)
Thus, the linearized equation for P(x, ¢,t) is given by

0 7] 0? D ?

With this approximation, the evolution of x = I — Iy and the phase ¢ are independent.
Indeed, we can solve (3.116) for a factorized distribution P(x, ¢,t) = Pi(z,t)Pa(¢,t) with

b —op, 2 (xPy) + DI 8—2P (3.117)
8t 1 — Oax 1 08$2 1, .

B D 2

“p=="2p, 11
ot 2 Al o2 2 (3.118)

First of all, equation (3.117) states that x(t) = I(t) — Iy is an Ornstein-Uhlenbeck process.
Using the properties of this process that we have already studied, it is straightforward

to show that the average intensity approaches Iy within a relaxation time 77 = ﬁ =
1

2(a—c)"
(I(t) = Ip) = (x(t)) = e 2ot (3.119)

and the intensity correlations are given by

((1(01) ~ To) (I(02) ~ o)) = o Dl (3.120)

Secondly, equation (3.118) states that the phase undergoes a Brownian diffusion, and that

its fluctuations characteristic time is given by 74 = %:

(6*(t) = o7t (3.121)

This linear description, where phase and intensity evolve independently, is valid if 75 > 77,
ie.ifa—c> %\/bf When the intensity reaches its stationary value (during time 77), the
phase undergoes a Brownian diffusion. According to the result (3.21), we conclude that the
spectral broadening is of order %.
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3.7 Path integral

3.7.1 Brownian motion without absorption

We would like to address the problem of calculating the average of a functional F(x(-)) of
the Brownian paths. The notation x(-) means that F' depends on the path z(t) for any ¢.
Consider the paths starting in x¢ at time ¢y and ending in x at time ¢. If F(x(-)) depends

on z(t) only through a finite number of times ¢i, ..., t,, then it is equivalent to a function
F(x1,...,2,) of n variables, and we know that its average is given by
dey ...dz, P(xzo,to|lz1, t1;. . 52n, tny 2, t) F(z1,. .., 2y). (3.122)
Rn

The general case is treated by taking the continuous limit, in a manner equivalent to the
construction of ordinary integrals. Let us divide the interval [tg,¢] in n+ 1 intervals of equal

lengths
t—to
7— p—

— (3.123)

)

and write
ty = to + kT, k=0,...,n, th+1 = 1. (3.124)

It follows from Markov property that the probability of finding the path in [z1, 21 + dx1]
at T, [z, xo + dxe] at 27, ..., [xn, z, + da, | at nT can be factorized as

P(xzg, tolx1,t1; .- 3 Xn, tp;x,t) dey ... dzy, = P(xo,to|z1,t1) ... P(Xn, thlz, t)day ... dxy, .
(3.125)

{zo:to} k{ 3 ¢ >< >

Figure 3.4: Discretization of the Brownian trajectory. The points z1,...,z, are likely to vary. Only the
starting point xp and ending point x are fixed.

As the transition probability of the Brownian motion is given by

1 _ (wp—wp)?
P(xo,t0|x1,t1) = me 4D(t27t1>, (3126)

equation (3.125) becomes

n+1
1 2 n
P(xg, tolx1,t1; - 50, tp;x,t)dey . ..oy, = <47TDT> ’ e~ 157 2k—o(@ht1—2k)? dzy...dz, .
(3.127)
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Note that in the limit 7 — 0 the sum in the exponential tends formally to and integral

1 & " Cate + (k + 1)7) — 2(to + k)2
hm*Z(mk-ﬁ-l—l’k)? — hm’T <$( 0+( + )T) ZU( O+ T)>
70 T far = P

d 2
Wx(t,))t’:k-r

/t:: ar <;t’$(t/)>2 : (3.128)

We define the weight of a path as the limit of (3.127) as 7 — 0 (or equivalently as n — 00)

7'20(

) f:o di’ (ﬁx(t/)f = dw.

nh_)ngo P(xo,to|lx1, 615 - 5 @n, tp; @, t)dzy ... dzy, =D [z(:)] e
(3.129)
In relation (3.129),
n+1
1 2
li .z, =Dz()] . 1
Jim (47TDT> dry...dz [z()] (3.130)

represents the "multiple integral" over all the variables of the path. Although it is formal, the
notation (3.129) is very suggestive and is commonly used by physicists. The mathematician
N. Wiener (1894-1964) demonstrated that a precise mathematical definition can be given
in the sense of integration theory. It is called conditional Wiener measure and noted dW .

If F(z(-)) is a functional of the paths starting at {zo, %o} and ending at {z,t}, then we

can write
x,t

(F(a(-))) = / AW Fla(). (3.131)
Zo,to
The intuitive interpretation of (3.131) is that we sum over all possible paths with a weight”

1t g (. d "2
— 45 dt’ (L z(t . . . . . . .
e P (o) . In practice, the path integral is defined by performing a discretization

and taking the limit n — oo

(F(z(+)) = nh_)rr(}o /]R" dzy...dx, P(zo, tolT,t1, .-y Ty tps o, t) Fxy, ..o xy),  (3.132)
where F(x1,...,2,) is the functional evaluated on the polygonal path such that z; =
x(to + k7).

3.7.2 Brownian motion with absorption and Feynman-Kac formula

Let us apply these concepts to the case of a Brownian motion with absorption. Assume
that for a given point x, the particle has a non-zero probability Q(z) (per unit of time)
to disappear, due to a chemical reaction for instance. We are interested in computing
the average survival probability Pq(zg,to|x,t) of the particle between times ¢y and ¢ and
the points zg and z. Consider first the probability that the particle will not be absorbed
along a realization of the motion, with x = x(to+ k7). For sufficiently small 7, the survival
probability between t;_1 and tj is given by (1 —78(xy)), hence the statistical independence
yields

In fact, one can show that Brownian paths are non differentiable with probability 1 for the measure dW.
Therefore the notation (3.129) is purely formal and mnemonic. We refer to [S] for a thorough mathematical
analysis.
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n n ot ’ ’
lim T (1 = 7Q(xx)) = lim o7 Sormo 2wr) — o Jip 4 (3.133)
7—0 7—0
k=0

where we have used e~ "¥#x) = 1 — 7Q(z;,) + O(72). This functional corresponds to the
probability that the particle is not absorbed for a given realization. The survival probability
Pq(z,to|z,t) is given by the average of (3.133) over all Brownian realizations. Thus, we
have to perform the average of (3.133) according to (3.132), remembering that 7 — 0 is

equivalent to n — oo.

Po(zo, to|, 1) :nli_{go/Rndxl oy P20, 1|1, 81, - -y Tny t; T, £ 2kmo )

(3.125)
=" lim

n—oo R™

dzy ... dz, P(zo, tol1,t1) . .. Plan, talz, t)e ™ k=0 @) (3.134)

Now, we know that (see section 2.2.3)
P(xg,to|lx,t) = (xo|Ti—t,| ) (3.135)

is given by the matrix elements of the diffusion semigroup

Ty, = e~ (tt0)Go, (3.136)
with generator (2.58)
d2
Go=-D—. 3.137
0 de ( )

Introduce the operator € that simply multiplies the states |z) as
Qlz) = Qz) |z). (3.138)

The insertion of (3.138) and (3.135) in (3.134) with ¢;41 —¢t; =7 Vi =0,...,n yields

Po(wo, to|x, t) = nh_>n;o - dzy ...dz, <x0|e_TQe_7G°\x1><x1| . \xn><mn\e_me_7G"]$>.
(3.139)
The completeness relation [ da |z) (x| = 1 that is valid for each integration over z1, ..., z,
leads to
(t—tg) & (t—tp) n+l
Po(zo,to|x, t) = <afo‘ nh_{lgo (e7 TEsy Qe TEsy GO) |x> (3.140)

The limit inside (3.140) is calculated using the Lie-Trotter formula.

Theorem 3.1 (Lie-Trotter formula) Let A and B be two linear operators ( that do not
necessary commute, [A, B] #0), then®

lim (e%eg)n = AtB, (3.141)

n—oo

8We refer to [Si] for the detailed validity conditions of the formula.
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This theorem will be demonstrated below. By using (3.141) in (3.140) we finally obtain

Po(wo, tolz,) = (wole™ 1), (3.142)
G =G+, (3.143)

hence the differential equation for Pq(xo, to|z,t) reads

2

0
an(wwtom,t) = D@Pg(xo,tou,t) — Q(x) Po(zo, to|z, 1), (3.144)

PQ(.%’o,t0|$,t = to) = 6(.%’ — 330).

The particular case of Brownian motion is obtained by setting () = 0. In the case of non-
zero absorption (x) # 0, the survival probability of the particle during ¢ — to is given
by [g dz Po(zo,to|z,t) < 1 for any ending point. Therefore, Po(zo,to|z,t) is no longer a
normalized conditional probability.

The importance of this result is that it reduces the problem to solving a partial dif-
ferential equation instead of calculating a functional integral. Reciprocally, the solution of
any differential equation of the form (3.144) is given by the functional integral

/x’t aw o i ¥ 2, (3.145)
zo,to

The formula (3.145) that solves (3.144) is called Feynman-Kac formula. In the case where
the functional is not of the form (3.133), its average should be solved by the means of the
general theory of Gaussian functional integrals and their perturbations.

We now show the demonstration of the Lie-Trotter formula for bounded operators. It
remains valid for unbounded operators such as (2.58).

Proof (Lie-Trotter formula) Let A and B be two bounded operators, and ¢ the ele-
ments of the vector space in which acts A. The norm ||-|| is defined by || A[| = sup),=1 [|A«||
and satisfies the following inequalities

1A B[ < [[All]|BI], (3.146)
1A+ Bl < [[All + [|B]|- (3.147)
Defining
C=e5"  D=echen, (3.148)
we have to show that lim,, ;s [|C™ — D"|| = 0, i.e. that the distance between C" = eA*+5

and D" tends towards 0 as n — oo. Since A and B are bounded operators, there exist
a € R and b € R such that
Al <a,  [IB][ <D (3.149)

We have

A+ B 1
c-1+27% 10 <7> 7 (3.150)
n n

p-(1+2+0(5)) (1+2+0(;

| =
~——
~
I
=
+
o
+
&
+
G
~
| =
~
w
=
ot
=
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hence

Moreover,

IC]

and in the same way,

1Dl

Thus for n > 1

1" = D™

CHAPTER 3. DIFFUSIVE MARKOV PROCESSES

1
IC = Dl =0<;)- (3.152)
- SR
P k! n
(8147 = 1 [[(A+ B)¥|
= o ok
prr k! n
(3.146) = 1 |\A+B||k
< Zfi
- k
= k! n
[|A+Bl]
= e n
(3.147)
< eHAII:HBH7 (3.153)
1 AF &1 BF
- llzk.nkzk,nk
(3.146) Oo 1 Ak 1 Bk
= k' nk HZMW
(3.147) k k
< lelAllzlllBll
k:O '
(3.146) LA|F & 1Bl
< Z* Zi
- k k
o k! n = kl n
1Al 1Bl
= e n e n
IIAH:HBH (3'154)
= |D_ ¢ (c-D)p"*
k=1
(3.147)
< Y ¢k c - D)D" H|
k=1
(3.146) n B o
|C = DI l[C D]
k=1
(3.146) n - .
< Jlc=D|>Y lcF D) nF
k=1
(3.153)
G2V 0 Z DljnetR0AlIHIED
(3.149) .
< ||C - D||ne"w (@td), (3.155)



3.7. PATH INTEGRAL 67
Given that ||C — D|| = O (n%) and that ”T_l = O (1), equation (3.155) becomes

[|C™ — D"|| :(’)(%>, (3.156)
therefore lim,,_, ||C™ — D"|| = 0, and this completes the proof. [

Remark (Feynman integral) We note again the analogy with the quantum formalism
if we identify the generator G of (3.143) to the Hamiltonian H = s V(z) of a

" 2m da?
quantum particle in a potential V(x). This analogy can be extended in terms of path
integrals in quantum mechanics. In that case, one can show that the quantum propagator

- i(t—to) (Lo 42 1
Ut to) = e 7°H — G- (i hv ) (3.157)
is given by the kernel of the evolution operator (3.157)
x,t i
(|U (¢, to)|wo) = D [z(-)] enS@=0), (3.158)

zo,to

2
(;m (%x(s)) — V(x(s))) (3.159)

is the classical action.” This formulation is appropriate for studying the semiclassical limit
of quantum mechanics.

where

S (2() = /tds

to

The quantum propagator (3.157) can be obtained by analytical continuation of the
Brownian propagator (3.136)

(t-10) (D ~(w))

Tiyy = e WG — ¢ (3.160)

to the complex plane of time, by evaluating (3.160) on the purely imaginary time axis.

Despite theses analogies, the interpretation and the mathematics involved in Wiener
and Feynman integrals are very different. One the one hand, the Wiener integral performs
a Gaussian-weighted average and has a well defined mathematical meaning. The Brownian
propagator describes the irreversible evolution of a classical probability density. On the
other hand, the Feynman integral involves only phases and has no probabilistic interpreta-
tion. The quantum propagator describes the reversible evolution of a quantum probability
amplitude.

We can say from formula (3.158) that the probability amplitude of finding a quantum
particle in x at time ¢ is given by a linear superposition of states, each contributing by a
phase factor er3() corresponding to a possible classical trajectory. While the realizations
of Brownian paths are in principle physically observable, this is not the case for trajectories
involved in Feynman integral because of the uncertainty principle, which states that speed
and position of a quantum particle cannot be simultaneously known with an arbitrary

9The kernel of the evolution operator given by (3.158) can be used to calculate the wave function 1 (z, t)
thanks to ¥(z,t) = (z|) = fR dzo (z|U(t,t0)|zo) (zo|t)).
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precision. Calculating the quantum evolution with the functional integral (3.158) requires
difficult integration of oscillating functions.

3.7.3 Polymers as Brownian paths

Let us come back to the example of random molecular chain of section 1.1.6. In the contin-
uous limit, this chain can be considered as a Brownian path r(s), 0 < s < N, where N > 1
is the number of its monomers.

By using the functional integral, we can also write equation (1.78) in the form P(r) =
Or ’ON dW , with dIWW given by (3.129). This expression allows us to deal with an external
p(;tential or to take into account the fact that two neighbour monomers cannot occupy the
same position because of their mutual repulsion. In the first case, each monomer is subjected
to an external potential V (r), and in the continuous limit an infinitesimal segment r(s) of
a polymer is subjected to the potential V (r(s))ds. Thus, at thermal equilibrium, the dis-
tribution of the chain spreading r is given by the functional integral (up to a normalization
constant)

r,N N
Py(0r,N) =Cy / AW e FJo ds V() (3.161)
0

)

which can be studied by using Feynman-Kac formula and the associated differential equa-
tion.
Absorption of polymers on a membrane

A flat membrane creates a potentiel V(z) (see Fig. 3.5), where €, is the normal direction
to the membrane plane (r = (z,y, 2)):

V(z) = 00, © = —o0o (the membrane is impenetrable),
V(z) forms a potential well (the membrane is attractive),

V(z) =0, x > zo (the membrane has no effect on a large distance).

As that the associated diffusion constant is equal to D = a?/6 (see section 1.1.6), it
follows from (3.143) that
Py(0lr, N) = cn(0le N ), (3.162)

where the generator G of the process is given by

2 2 2 2 2
G=-2A+pr=-" <a+8+i> + BV (). (3.163)

Py (0|r, N) can be written in terms of the eigenfunctions ¥, and eigen energies F,, of G as

Py(Olr,N) =cy Y e Vel (0)Tq(r). (3.164)
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Figure 3.5: Potential of the membrane and fundamental energy Eo of the polymer.

In order to solve the eigenvalue equation GV, = E,V¥, we impose periodic boundary
conditions of period L in the directions y and z. Therefore,

eikyy eikzz

\Ila(xayvz) = ¢n($)ﬁ \/z )

where k, = 2mn,/L,k, = 27mn,/L.n,, n, € Z, are wavenumbers and ¢, €,, n € N, are the

6 2 2
o= ent 5k +12), (3.165)

eigenstates and eigenvalues of the one-dimensional problem 0
a? 0?
_Eﬁwn(m) + BV (2)¢n(z) = enthn(z), € <€ <€ <. (3.166)

Consider the distribution Py (0|z,0,0, N) of the ending point of the polymer in direction
x perpendicular to the membrane for NV > 1. In this limit, it is clear that the leading term
of the sum (3.164) corresponds to the fundamental state n = n, = n, = 0 with energy
Eo = €0:

Py(0]z,0,0,N) “=° cne 0N W,(0)¥(z,0,0)
x  dyto(0)to(x), (3.167)

since equation (3.165) states that ¥o(x,0,0) is proportional to the fundamental state 1y(x)
of equation (3.166) and dy is a constant. Thus, the ending point distribution in direction
x is determined by o(x). As the potential vanishes for x > zg it follows from (3.166) that

6
Po(x) =~ exp (— l;ox) , x > X0, (3.168)

up to a normalization constant. Therefore, a/+/6|eg| represents the typical length beyond
which the probability to find the second end of a poylmer attached to the membrane
becomes negligible, and provides the width of the absorbing layer.

10We can also impose a boundary condition for large x (z > x0) to have an entirely discrete spectrum.
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Auto-repulsive polymers

If we take the repulsion between monomers into account, the functional integral reads

/ "N e B S st Y dse Vr(s)—x(s2)) (3.169)
0,0
where V (r(s1) —r(s2))dsidss is the repulsive potential between two infinitesimal segments
of the chain. With this repulsion we expect the fluctuation law for the spreading of the
chain to have the form

(r?) o N, (3.170)

where v € [1/2,1]. The case v = 1/2 reflects a diffusive behaviour in which the interactions
between monomers are negligible; v = 1 characterizes a polymer wherein the repulsion is
so strong that it forms a rigid chain. If v = 1 the average square deviation is of the order of
the number N of monomers, which means that the polymer spreads in only one dimension
to form a linear chain of length Na. Let d be the space dimension, then the effects of the
repulsion between monomers lead to the universal relations (excluding the volume effects)

17 - 17
%7 = 27
— 3.171)
v 0.588..., d=3, (3.
1
L d> 4.

The universality stems from the fact that (3.171) does not depend on the explicit form
of the potential. For dimensions greater than 4, we know that the intersection points of a
Brownian path with itself form a null measurable set. Therefore a short distance repulsion
does not have any effects and the exponent v is equal to 1/2 (we refer to [Ma] for more
details).

3.8 Heavy-tailed distribution and anomalous diffusion

This section relies upon reference [Ba]. A complete review of Lévy processes and their
applications in physics can be found in [Bo].

3.8.1 Brownian motion and law of large numbers

Brownian motion is characterized in that the distribution of the particle displacement
y = w9 — 21 (the increment of the process) in a time step 7 is given by equation (1.21)

1 y?
P(y) = \/ﬁexp <—m_> . (3.172)

The Markov property amounts to saying that the increments are independent and dis-
tributed with the same law P(y). The distribution (3.172) assigns a very small probability
for large increments: they are all statistically of the order of the variance ¢ = v/2D7. Such
a law with finite variance is said to have a narrow distribution. If we consider the Brownian
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process x(n) with dicrete time intervals n = 0,1, ..., the probability of finding the particle
(starting form the origin) in x after n = t/7 time intervals is given by

P(z,n) = (3.173)

1 22
—exp ||,
VarDnrt P\ "4Dnr
which leads to the diffusive behaviour

\/{(x(n)?) = v2Drn. (3.174)

In fact,

n
() =Tn = Yn,  Yi=Tip1 — T, To=0, Tip1 =1, (3.175)
i=1

is the sum of n independent and identically distributed random variables (the n successive
increments). By introducing u, = x,/y/n, it follows from equation (3.173) that the nor-
malized distribution of w,, is a Gaussian independent on n and a fortiori for n — oo. This
is a particular case of the law of large numbers which states that the fluctuations (after
rescaling /n)

Ty — {T)

Vn

of a sum z, = > y; of n independent and identically distributed variables tend to a
Gaussian distribution as n — oo. The theorem is valid provided that the first moment
(y) = [dyyP(y) and second moment (y?) = [dyy?P(y) of P(y) are finite. More precisely,
it is formulated as

(3.176)

Up =

) 1 b u?
Jim Prob{uq < u, <ug} = 5 /ua du exp ~5,7 | (3.177)
where o = 1/ (y2) — (y)? is the variance of P(y): it is remarkable that the limit distribution
(3.177) depends only on ¢ and not on the explicit form of P(y). The result (3.177) means
that the typical realizations of the difference between the sum x,, and its average behave
as

Tn — (z2) "=V, (3.178)

which is in line with the diffusion law.

3.8.2 Lévy process

A process whose increments are independent and have a broad distribution describes the
situations where the second moment of P(y) is infinite. An example is given by Cauchy

distribution
2b

P(y):W7

The particle has then an appreciable probability to make a considerable displacement (on
the right) in a single time step. The law of large numbers is not valid anymore in its usual
form and the fluctuations of the sum z,, present new properties. In particular we are out of
the framework of Fokker-Planck equation as its assumptions (existence of a finite second
moment, see section 3.1) are no longer valid.

y > 0. (3.179)
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Consider a positive-valued homogeneous Markov process z(n) with discrete time steps
n =0,1,2,.... The increments y,, = x(n + 1) — z(n) are positive as well'l. The transition
probability of the process is given by the increment distribution P(y)

Yy, y=xz2—x1 20,
P(zi,n|ze,n+1) = (3.180)
0, y<0.

The probability P(z,n) that the process z(n) takes value x after n steps is obtained by
successively using the Chapman-Kolmogorov equation

€T €T
P(z,n) = / dzp_1 / 2d:z:1 P(z1)P(x2 —x1)...P(x — zp_1), x>0, (3.181)
0 0

where we have taken into account the positivity of the increments in the bounds of the
integral. In order to calculate the multiple convolution in (3.181), we introduce the Laplace
transform to convert it to an algebraic product,

P(s) = /Ooodye*syp(y), (3.182)

G180 Bg)n, (3.183)

oo
P(s,n) = / dze ™ **P(x,n)
0

The distribution P(y) will by characterized by its assymptotic behaviour

w b
v 2 o (3.184)

P(y) e

If0 < p < 2 the second moment <y2> diverges and the distribution is said to be heavy-tailed
(if 0 < p < 1 the first moment diverges as well). If ;4 > 2 the second moment is finite, the
distribution is said to be narrow and the law of large numbers (3.177) is valid. The case
p = 1 corresponds to the Cauchy distribution(3.179).

Even if the second moment is infinite, we can still ask a question analogous to equation
(3.177): can we find a recentring a, and a rescaling A, such that

Tp — Gn

An

(3.185)

Unp =

has a limit distribution for n — oo 7 The answer is yes, and the result for 0 < p < 1 is
given by

. uﬂ
T}l_}rgo Prob(uq < up <ug) = /ua du Ly, p(u), (3.186)
with "
un:gﬁp 0<p<l. (3.187)

It is remarkable that the limit distribution L, (u), called Lévy law, depends only on the
parameters p and b that characterize the assymptotic behaviour (3.184) of P(y). We will
show below that the Laplace transform of L, ;(u) reads

L,y(s) = exp (—b/fll"(l - ,u)s“) (3.188)

We consider positive increments in order to do applications, but all these considerations can be gener-
alized for an arbitrary increment sign.
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where I'(x) is the Euler gamma function. It follows from (3.186) and (3.187) that the
realizations of the process behave as

z(n) "= nl/H, (3.189)

As 0 < p < 1, its growth is much stronger than the usual diffusive process (3.174) and is
also bigger than the balistic motion z(n) ~ n. For instance for p = 1/2, z(n) ~ n?. As
will be explained below, this comes from the fact that the individual increments can have
a great amplitude.

We now give an argument that explains the behaviour (3.187) but doesn’t consitute a
complete proof of the theorem'? (3.186). Consider the variable u = x/),, whose normalized
distribution is given by

Q(u,m) = A\ P(Aqu,n). (3.190)

We have to show that Q(u,n) has a limit for an appropriate choice of scale \,. Using
Laplace transorms, one gets

Q(s,n) = /Ooodue_suQ(u,n)

A / due™""P(Anu, n)
0

P (s/An,n)
[P s/ (3.191)

where we have used the change of variables A\,u = x and equation (3.183) in the third and
last equalities. We know that the behaviour of P(y) as y — oo is given by that of P(s) as
s — 0. If the leading behaviour of P(y) is of the form (3.184), then

P(s) "2 1 — b~ T(1 — p)st + o(sH). (3.192)

The first term comes from the normalization P(s = 0) = 1 and the second one from the
Laplace transform of y~(1+#) (using the change of variable sy = y'). Thus,

Q(s,m) = [1= b~ T(1 = ) (s/2)" + o(s/An)")| (3.193)

has a limit if we choose \, = n!/#:

_ -1p(1 — i pN "
lim Q(s,n) = lim {1 LI Gl Dl +o <8)}
n—00 n—00 n n
= exp (—bu_ll"(l - ,u)s“) , (3.194)

and we have recovered (3.188). Note that Eﬂyb(s) ~ 1 —bu (1 — p)s*, s — 0, implies
that the Lévy distribution L, j ~ ul%w u — 0, has the same decreasing (3.184) as P(y). If
= 1/2 the Lévy distribution has the explicit form

b — T u
Lijap(u) = —5e Pl u>0, Lyjg,(u) =0, u<0. (3.195)

12For more details, see [Ba, Bo] and other cited references.
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A similar analysis can be done for 1 < pu < 2: they lead to the following anomalous

diffusions:
x(n) ~ nlnn, pw=1,

z(n) —nly) ~ nl/H l<p<2, (3.196)
z(n)—n{y) ~ Vnlaon, p=2.

We will not discuss here the corresponding Lévy distributions.

3.8.3 Lévy flights

The increments of Brownian motion (or a narrow distribution process in a general manner)
have the same order of magnitude: the variance of the law. The situation is very different
for heavy-tailed distributions. The probability P(7,n) to observe an increment y > 3 with
all other increments being smaller than % is given by

Q. n) =nQy)(1 - Q)" ", (3.197)
where -
Q(y) = /y dy P(y) (3.198)

is the probability to have an increment bigger than 7. Indeed, Q(7)(1 — Q(7))" ! is the
probability to have exactly one increment bigger than 7 in a sequence of n increments and
the factor n takes into account that it can happen at any step of the process.

The most likely value 7,, of the maximal increment is obtained by maximizing Q(g,n):

£emn) = n[1- 0@ - (- DeE - W) ?] - 0W)
= —n[l-9@]" 1 - nQ®@) P n). (3.199)
This quantity vanishes for 1 — nQ(y) = 0, hence
/yoo dy P(y) = % (3.200)

For Brownian motion, equation (3.172) yields
1 1 o0 y2 n—00 20 y2
—=—— [ 4 B e Y _n 3.201
n 2o /yn yexp < 202> T Yn eXPp < 202 |’ ( )

7, ~ oV2nn. (3.202)

We see that the size of the maximal increment grows very slowly over time. Things are very
different for a heavy-tailed distribution. We can estimate the order of magnitude of y,, for
n — oo by replacing P(y) in equation (3.200) with its assymptotic behaviour (3.184):

1 ©© b b 1
noJy, Tyt w (@)t

hence

which leads to N
U = e, (3.204)
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Comparing this result with (3.189), we see that the maximal increment has the same order
of magnitude as the total displacement x(n) after n steps, and the chance to observe such
increment during this displacement is significant. Indeed, it follows from (3.197) and (3.200)
that Q(7,n) = (1 —1/n)" 1 ~e 1 >0, n— oo.

Therefore, the typical motion of the particle consists essentially of a small number of
displacements of amplitude proportional to n'/#, called Lévy flights. It is also said that the
statistics of the process is dominated by rare events. The situation is depicted in figures
3.6 and 3.7 where we have simulated a random walk in the plane, with step-lengths y > 0
distributed as
“w

P(y) =0(y — wo) ;ﬁoﬂ- (3.205)

The angle of an increment is equidistributed in the interval [0, 2x]. Figure 3.6 corresponds
to a narrow distribution g = 3 and figure 3.7 to a heavy-tailed distribution p = 3/2.

Figure 3.6: Random walk for = 3 and yo = 5.
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Figure 3.7: Random walk for p = 3/2 and yo = 5.

3.8.4 Applications

It was realized recently that many physical situations related to the properties of relaxation
and transport should be described by heavy-tailed processes, see [Bo|. This type of process
appears especially while studying the random walk of a particle in disordered media. We
present here a simplified and generic model that is called Arrhenius cascade.

Arrhenius cascade

Consider a particle moving (in one dimension) in a potential V(x) consisting of n wells
of the same kind as 3.2 (see figure 3.8). The wells are separated by potential barriers of

e

i=n - .
détection

Ny,

> T

Figure 3.8: Arrhenius cascade.

amplitude V; > 0. The particle undergoes an ordinary diffusion in the potential V' (x), ruled
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by Kramers equation (see section 3.5). Thermal fluctuations carry the particle from ith to
(7 + 1)th well after a mean dwell time given by (Arrhenius formula (3.92))

73 = ToeP Vi (3.206)

Tp is a time constant that we assume to be the same for all wells 3. If the barriers are
high and the temperature is low, we can neglect the transitions where the particle crosses
several wells at the same time or returns to the previous well. Thus, the overall time taken
to cross n barriers is given by

7(n) = zn:n. (3.207)
i=1

Let us now introduce the effect of the disordered media by stating that the barriers V; are
independent (positive) random variables distributed with the exponential law

1 \%
FV)=—exp|—— ), 3.208
V)= g0 () (3208)
where Ejy is a characteristic energy. Therefore 7(n) in equation (3.207) becomes a process
with independent increments on the time axis whose steps correspond to the successive

barrier crossing. The distribution P(7) of one increment is induced by equations (3.206)
and (3.208) by using P(7)dr = F(V)dV:

P(r) = F(V(T))%(V(T)), V(r) =kgTIln(r/79), T =10, (3.209)
which leads to " T
_,_ T _ B
P(r) =~ =g T2™ (3.210)

Consequently, the assymptotic behaviour of the process is ruled by the temperature 7. If
kT > 2Ey we have a narrow distribution. If kT < 2FE the distribution becomes heavy-
tailed, in particular kgT < Ey corresponds to the Lévy flight that we discussed in the
previous sections. The overall time 7(n) ~ nf/8T is not proportional to the number of
crossed barriers but grows much faster. Moreover, it is realized by a small number of long
stays having the same order of magnitude nfo/ksT

Laser cooling

As another example, consider the optical cooling of a gaz by photons emission and ab-
sorption. A phenomenon that prevents the atom to be at rest is the spontaneous emission.
It occurs randomly and changes the atomic momentum p to p’ = p + hk where hk is
the momentum of the photon that is absorbed or emitted through an atomic transition of
energy hw = hiclk|. The resulting momentum fluctuations Ap ~ h|k| lead to an effective
temperature Tp ~ (Ap)?/2kpm ~ (h|k|)?/2kpm that appears as an absolute limit on the
laser cooling. However, it is possible to overcome this limitation by carefully exploiting the
properties of the interaction between atoms and photons. We refer to [Ba] for a complete
description. We will confine ourselves to a brief description of how the Lévy statistics take
place in this situation.

13In fact, because of the diffusive motion of the particle, 7; has fluctuations but we will not consider them.
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We liken the evolution of the atomic momentum to a Markovian stochastic process p(t)
that we assume to be one-dimensional for simplicity. The process is governed by the master
equation for the probability density p(p,t) (see equation (4.10))

/ dp W@ e, t) — Wplp)p(p, 1)] (3.211)

The transition rates W(p’ Ip) and W(p|p') have to be calculated from the quantum dynamics
of the atom in interaction with photons. Let us introduce the probability I'(p) per unit of
time to transit from state p to state p’ # p

= /dp’W(p|p’) = T(lp). (3.212)

['(p) is the inverse of the lifetime of the state p. The rates have the following properties.

1. For small p and p’, the transition rate from p to p’ does not depend on p’ and
Wiplp') =cl'(p), Il [p'| < po. (3.213)

2. T'(p) vanishes quadratically in p = 0:

p—0
L(p) ~ ~p?, v > 0. (3.214)

This particularity plays a crucial role in the control of the quantum noise due to spontaneous
emission. It can be realized physically using the properties of atom-photons interaction to
create a «dark state» in which the atom cannot emmit or absorb photons.

Therefore, the vicinity of p = 0 can be thought of as a «trap» for the momentum. A
typical realization of the process p(t) is depicted in figure 3.9. p(t) undergoes a random
walk but if it reaches the neighbourhood Iy = [—pg, po] of zero the dwell time between two
steps 71,72, 73, ... in this interval will be much larger than the one observed when p(t) is
out of this interval. This phenomenon is due to the strong suppression of the transition
rate in the vicinity of p = 0 (equation (3.214)).

As T'(p)dt is the probability to leave p in the infinitesimal time d¢, the probability that
p(t) remains equal to p during the time 7 separating two jumps is given by

H(p,7) = T(p)e T, (3.215)

This quantity has still to be averaged over all possible realizations of the process. It is
reasonable to assume that the values of p are equidistributed in Iy. The distribution of the
time spent between two jumps in Iy is then equal to

1 Po 1 Po _r
P(r) = T =5 [ dpT(p)e ®)r, (3.216)

% Po —Po

By using quation (3.214) and performing the change of variables u = yp?7, one obtains the
assymptotic expression
T—oo Y Po —yp2r T2 1 T 1

P <~ L dp p? =~ - T 3.217
™ 2p0 Jpy TP 2po \ v T3/2 ( )

4Here the process is continuous and the sums are replaced by integrals.
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Figure 3.9: Laser cooling and statistics of the dwell time.

We see that the overall time 7(n) = >_1* ; 7; spent in Ij is a Lévy process whose increments
are distributed with the heavy-tailed expression (3.217) corresponding to p = 1/2. We
know from equation (3.189) that the total dwell time of an atom in Iy grows as 7(n) ~ n?.
This time must still be compared to the one that p(¢) spends outside Iy. If the latter grows
slower than n?, we can conclude that the majority of the atoms reach the quasi-ground
state p € Iy (we refer to [1] for a further discussion of these points).



