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Introduction: what is a probability?

Frequenquist view: frequency of the outcomes for repeated trials

Bayesian view: degree of belief (or how one would bet)

Advantage of the Bayesian view: probability distributions can be as-
signed to the parameters we wish to fit
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Some definitions

Measurement X:
vector consisting of measured values

Model P (X|θ, I):
In general a probability distribution for the measured values X. It de-
pends on a number of parameters represented by the vector θ = (θ1, θ2, . . .).
The symbol I represents all other possible a priori knowledge or as-
sumptions about the system. For instance, different models M1, M2

can be compared, such that P (X|θ,M1) and P (X|θ,M2) differ.
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Bayes’s theorem

From a measurement X and a model P (X|θ, I) (called the global like-
lihood), we want P (θ|X, I), the posterior probability distribution for the
model parameters θ.

Bayes’s theorem is an application of conditional probabilities:

P (X, θ|I) = P (X|θ, I)P (θ|I) = P (θ|X, I)P (X|I)

⇒ P (θ|X, I) =
P (X|θ, I)P (θ|I)

P (X|I)

normalization constant P (X|I) =
∫
P (X|θ, I)P (θ|I) dθ

prior distribution: P (θ|I)
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Model comparison with Bayes’s theorem

Suppose we have two models M1 and M2 that both explain the data
X and want to chose which is better. We can compute the ratio of
probabilities for the models

P (M2|X, I)

P (M1|X, I)
=

P (X|M2, I)P (M2|I)
P (X|M1, I)P (M1|I)

=
P (X|M2, I)

P (X|M1, I)

if we give equal priors to the models, such that P (M1|I) = P (M2|I)
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Model comparison: Occam’s razor
Suppose that model M2 has a free parameter θ while M1 has none. We
have

P (X|M2, I) =

∫
P (D|θ,M2, I)︸ ︷︷ ︸
peaked at θ̃ with width δθ

P (θ|M2, I)︸ ︷︷ ︸
uniform in interval 1/∆θ

dθ

= P (D|θ̃,M2, I)
δθ

∆θ

We then have

P (M2|X, I)

P (M1|X, I)
=

P (X|M2, I)

P (X|M1, I)
=

P (X|θ̃,M2, I)

P (X|M1, I)

δθ

∆θ

The small factor δθ
∆θ ≪ 1 penalizes the model with the free parameter.

This is a natural emergence of Occam’s razor that privileges simple
models.
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Toy example: repeated measurement of X
Measure N times X ∼ N (µ, σ), with known σ but unknown µ

Obtain the average X̄N = 1
N

∑N
i=1Xi ∼ N (µ, σN )

with σN = σ/
√
N

Model: P (X̄N |µ, I) = 1√
2πσN

exp
(
− (X̄N−µ)2

2σ2
N

)

P (µ|X̄N , I) =
P (X̄N |µ, I)P (µ|I)

P (X̄N |I)

=
1√

2πσN
exp

(
−(µ− X̄N )2

2σ2
N

)
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Toy example: repeated measurement of X

Measure N times X ∼ N (µ, σ), now both σ and µ are unknown

Model: P (X⃗|µ, σ, I) = (
√
2πσ2)−N/2 exp

(
−

∑
i(Xi−µ)2

2σ2

)

P (µ, σ|X⃗, I) =
P (X⃗|µ, σ, I)P (µ, σ|I)

P (X⃗|I)

To obtain the normalization P (X⃗|I), one needs to integrate over both µ
and σ . . .
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Bayesian fitting

Consider the simplest probabilistic model M for the measurement pro-
cess:

y = f(x, θ⃗) + e with e ∼ N (0, σ)

Measure N data points x⃗, y⃗:

P (x⃗, y⃗|M, θ⃗, σ, I) = (
√
2πσ2)−N/2 exp

(
−
∑

i(yi − f(xi, θ⃗))
2

2σ2

)

P (θ⃗, σ|x⃗, y⃗,M, I) =
P (x⃗, y⃗|M, θ⃗, σ, I)P (θ⃗, σ|I,M)

P (x⃗, y⃗|M, I)
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Monte Carlo Markov Chains: Metropolis algorithm
Goal: sample a non-normalized probability distribution P (λ⃗) in a high-
dimensional space λ⃗ = (θ⃗, σ) without any integrals

Construct chains λ⃗1, λ⃗2, . . . , λ⃗N

with the following update rule for λ⃗i → λ⃗i+1:

Randomly pick one component of λ⃗i

sample an easy symmetric distribution around the previous value
q(λ⃗new|λ⃗i)

accept the new value λ⃗new with probability
α(λ⃗new|λ⃗i) = min(1, (q(λ⃗i|λ⃗new)P (λ⃗new)/(q(λ⃗new|λ⃗i)P (λi)))

The stationary state of the chain can be proven to sample the distribu-
tion P (λ⃗)
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Demonstration of the Metropolis algorithm

Let’s show that P (λ⃗) is the stationary distribution of the chain. First we
show detailed balance by computing

Suppose we draw λ⃗i from the final distribution P (λ⃗i). we can then com-
pute the joint distribution to have λ⃗, then pick λ⃗i+1

P (λ⃗i, λ⃗i+1) = P (λ⃗i)q(λ⃗i+1|λ⃗i)α(λ⃗i+1|λ⃗i)

= P (λ⃗i)q(λ⃗i+1|λ⃗i)min(1,
q(λ⃗i|λ⃗i+1P (λ⃗i+1)

q(λ⃗i+1|λ⃗i))P (λi)
)

= min(P (λ⃗i)q(λ⃗i+1|λ⃗i), P (λ⃗i+1)q(λ⃗i|λ⃗i+1))

= . . . = P (λ⃗i+1)q(λ⃗i|λ⃗i+1)α(λ⃗i|λ⃗i+1)

⇒ detailed balance.
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Demonstration of the Metropolis algorithm

Now it’s easy to show that∫
P (λ⃗i)q(λ⃗i+1|λ⃗i)α(λ⃗i+1|λ⃗i)dλ⃗i =

∫
P (λ⃗i+1)q(λ⃗i|λ⃗i+1)α(λ⃗i|λ⃗i+1)dλ⃗i

= P (λ⃗i+1)

∫
q(λ⃗i|λ⃗i+1)α(λ⃗i|λ⃗i+1)dλ⃗i︸ ︷︷ ︸

=1

= P (λ⃗i+1)

In conclusion, if we sample the desired distribution P (λ⃗), then we al-
ways will sample it, i.e. it is the stationary distribution.
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Examples of priors: uniform

Uniform prior:
If we know that a parameter lies inside a interval T1 ≤ T ≤ T2, then we
can set the prior to

P (T |I) = 1

T2 − T1

if T1 ≤ T ≤ T2 and zero otherwise.

Note that if we “forget” the prior in Bayes’s theorem, we are effectively
choosing a uniform prior.
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Examples of priors: Jeffreys
In many cases, we might not have a range of values for the parameter
T and not even a scale. Then an uninformed prior should be one that
gives equal probability for T to lie at different scales, such as the Jef-
freys prior:

P (T |I) = 1

ln(Tmax/Tmin)T

where 0 < Tmin ≤ T ≤ Tmax

This has the property that each decade has the same probability:∫ 1

0.1
P (T |I)dT =

∫ 10

1
P (T |I)dT
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