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Introduction: what is a probability?

Frequenquist view: frequency of the outcomes for repeated trials
Bayesian view: degree of belief (or how one would bet)

Advantage of the Bayesian view: probability distributions can be as-
signed to the parameters we wish to fit
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Some definitions

Measurement X:
vector consisting of measured values

Model P(X16,1):

In general a probability distribution for the measured values X. It de-
pends on a number of parameters represented by the vector § = (61, 6-, . . .
The symbol I represents all other possible a priori knowledge or as-
sumptions about the system. For instance, different models M, Ms
can be compared, such that P(X |0, M) and P(X |0, M>) differ.
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Bayes’s theorem

From a measurement X and a model P(X |0, I) (called the global like-

lihood), we want P(0|X,I), the posterior probability distribution for the
model parameters 6.
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Bayes’s theorem

From a measurement X and a model P(X |0, I) (called the global like-

lihood), we want P(0|X,I), the posterior probability distribution for the
model parameters 6.

Bayes’s theorem is an application of conditional probabilities:

P(X,0|) = P(X|0,1)P(0]I) = P(0|X, I)P(X|I)
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Bayes’s theorem

From a measurement X and a model P(X |0, I) (called the global like-

lihood), we want P(0|X,I), the posterior probability distribution for the
model parameters 6.

Bayes’s theorem is an application of conditional probabilities:

P(X,0|) = P(X|0,1)P(0]I) = P(0|X, I)P(X|I)

= POIX,T) = P(Xllf(é)'gwlf)

normalization constant P(X|I) = [ P(X|0,1)P(6|I)do
prior distribution: P(6|I)
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Model comparison with Bayes'’s theorem

Suppose we have two models AM; and M that both explain the data
X and want to chose which is better. We can compute the ratio of
probabilities for the models

P(Ma|X, 1) P(X|Ma, )P(Ms|I)  P(X|Ma, 1)

P(Mi|X,I)  P(X[My, I)P(Mi|I)  P(X[|My, 1)

if we give equal priors to the models, such that P(M;|I) = P(M,|I)
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Model comparison: Occam’s razor

Suppose that model M, has a free parameter 6 while M, has none. We
have

POXMo ) = [ PDIOMT) POIMaT) 9

peaked at 6 with width 56 uniform in interval 1/ A6

00
P(DI3, Mz, 1) 55

We then have

P(My|X, 1)  P(X|My,I)  P(X|0, My, I) 60
P(M\|X,I) ~ P(X[My,I)  P(X|M,I) Af

The small factor 5 < 1 penalizes the model with the free parameter.
This is a natural emergence of Occam’s razor that privileges simple
models.
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Toy example: repeated measurement of X

Measure N times X ~ N (u, o), with known o but unknown p
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Toy example: repeated measurement of X

Measure N times X ~ N (u, o), with known o but unknown p

Obtain the average Xy = + >N | X; ~ N(u,on)
with oy = a/\/ﬁ
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Toy example: repeated measurement of X

Measure N times X ~ N (u, o), with known o but unknown p

Obtain the average Xy = + >N | X; ~ N(u,on)
with oy = a/\/ﬁ

Model: P(Xy|u,I) = \/%UN exp (_()‘(JQVU;W)
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Toy example: repeated measurement of X

Measure N times X ~ N (u, o), with known o but unknown p

Obtain the average Xy = + >N | X; ~ N(u,on)
with oy = a/\/ﬁ

Model: P(Xy|u,I) = \/%UN exp <_(X12VU;M)2>
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Toy example: repeated measurement of X

Measure N times X ~ N (u, o), with known o but unknown p

Obtain the average Xy = + >N | X; ~ N(u,on)
with oy = a/\/ﬁ

Model: P(Xy|u,I) = \/%UN exp <_(X12VU;M)2>

P(ul X, 1) = P<Xgl(ﬁ;_; ]IV)|JI’)(MII)
! ex —M
\/%O'N P ( 2012\7 )
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Toy example: repeated measurement of X

Measure N times X ~ N (u, o), now both o and p are unknown
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Toy example: repeated measurement of X

Measure N times X ~ N (u, o), now both o and p are unknown

Model: P(X|p,0,1) = (v2r02) " N/2 exp (—%ﬁ)
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Toy example: repeated measurement of X

Measure N times X ~ N (u, o), now both o and p are unknown
Model: P(X|p,0,1) = (v2r02) " N/2 exp (—%ﬁ)

P(X|p,0,1)P(p, o|1)

P(MaU|X,I): P(X:u)
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Toy example: repeated measurement of X

Measure N times X ~ N (u, o), now both o and p are unknown
Model: P(X|p,0,1) = (v2r02) " N/2 exp (—%ﬁ)

P(X|p,0,1)P(p, o|1)

P(M,U|X,I): P(X:u)

To obtain the normalization P(X|I), one needs to integrate over both 4
ando ...
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Bayesian fitting

Consider the simplest probabilistic model M for the measurement pro-
cess:

—

y=f(z,0)+e withe~N(0,0)
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Bayesian fitting

Consider the simplest probabilistic model M for the measurement pro-
cess:

—

y=f(z,0)+e withe~N(0,0)

Measure N data points Z, ¥

P(Z, Z7|M,§,a, I)= (\/ﬂ(;?)—N/? exp (_ iy — f(xi,g))Q)
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Bayesian fitting

Consider the simplest probabilistic model M for the measurement pro-
cess:

—

y=f(z,0)+e withe~N(0,0)

Measure N data points %, ¢:

P(Z, Z7|M,§,a, I)= (\/ﬂ(;?)—N/? exp (_ iy — f(xi,g))Q)

202

P(Z,§|M., 0, 7
P( _'\’M’I): (l‘7y| ) 7J7I)P(0,O'|I,M)

P(Z,4|M, 1)

7U|f7
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Monte Carlo Markov Chains: Metropolis algorithm

-

Goal: sample a non-normalized probability distribution P(}) in a high-
dimensional space A = (6, o) without any integrals
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Monte Carlo Markov Chains: Metropolis algorithm

Goal: sample a non-normalized probability distribution P(X) in a high-
dimensional space A = (6, o) without any integrals

Construct chains A\i, Ao, . .., An
with the following update rule for A; — \;11:

@ Randomly pick one component of \;

° sainpleﬂan easy symmetric distribution around the previous value
Q()‘newp‘ )
o accept the new value Anew with probablhty . ~
( new‘)‘) mln( ( ()‘ |)\new) (Anew)/(Q()‘new|>‘i)P()‘i>))
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Monte Carlo Markov Chains: Metropolis algorithm

Goal: sample a non-normalized probability distribution P(X) in a high-
dimensional space A = (6, o) without any integrals

Construct chains A\i, Ao, . .., An
with the following update rule for A; — \;11:

@ Randomly pick one component of \;

° sainpleﬂan easy symmetric distribution around the previous value
Q()‘newp‘ )
o accept the new value Anew with probablhty . ~
( new‘)‘) mln( ( ()‘ |)\new) (Anew)/(Q()‘new|>‘i)P()‘i>))

The sta}ionary state of the chain can be proven to sample the distribu-
tion P(\)
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Demonstration of the Metropolis algorithm

Let's show that P(X) is the stationary distribution of the chain. First we
show detailed balance by computing

Suppose we draw X; from the final distribution P(A ). we can then com-
pute the joint distribution to have X, then pick )\z+1

P(Xis Xit1) = POz | ) a(Xi1 | A)

= detailed balance.

Bayesian inference fitting 2023 11/14



Demonstration of the Metropolis algorithm

Now it’s easy to show that

/P(Xi)Q(Xi+1|Xi)O<(Xz’+1|Xi)dxi= P(Xi)a(Nil X)) (Nl X1 )dX;

-

In conclusion, if we sample the desired distribution P(\), then we al-
ways will sample it, i.e. it is the stationary distribution.
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Examples of priors: uniform

Uniform prior:

If we know that a parameter lies inside a interval 77 < T < Ty, then we
can set the prior to
1

PTI) = =

if 7 < T < T, and zero otherwise.

Note that if we “forget” the prior in Bayes'’s theorem, we are effectively
choosing a uniform prior.
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Examples of priors: Jeffreys

In many cases, we might not have a range of values for the parameter
T and not even a scale. Then an uninformed prior should be one that

gives equal probability for 7" to lie at different scales, such as the Jef-
freys prior:

1

P(T|I) B ln(TmaX/Tmin)T

where 0 < Thin < T < Thax

This has the property that each decade has the same probability:

1 10
/ P(T\)dT = | P(T|I)dT
0

1 1
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