
Quantum Field Theory

Solutions Set 6

Exercise 1

Consider a vector field Aµ at the origin xµ = 0. Under a Lorentz transformation this transforms as

U(Λ)Aµ(0)U†(Λ) = Λµ
νA

ν(0) ,

where Λ is the usual 4 × 4 representation of the Lorentz group and U(Λ) is the representation of the same
transformation in the Hilbert space of the particle states. We can expand both sides to the first order in the
transformation parameters. Remember the exponential forms

U(Λ) = exp(−iθ · J− iη ·K)

Λ = exp(−iθ · J − iη · K) ,

where J and K are operators in the Hilbert space while J and K are 4× 4 matrices given by

(Mαβ)µν = i(δαµδ
β
ν − δαν δ

β
µ)

and

J i =
1

2
ϵijkMjk

Ki = M0i.

Expanding both sides of the Lorentz transformation equation we find that for rotations

[J i, Aµ(0)] =
i

2
ϵijk(ηjµAk(0)− ηkµAj(0))

and for boosts
[Ki, Aµ(0)] = i(η0µAi(0)− ηiµA0(0)) .

We can separate the time and spatial component of Aµ(0) to get easier formulas:

[J i, A0(0)] = 0

[J i, Aj(0)] = −iϵijkAk(0)

[Ki, A0(0)] = iAi(0)

[Ki, Aj(0)] = iδijA0(0)

(1)

These results are what we would expect: a rotation doesn’t affect the time component of the vector and it mixes the
spacial components with an ϵ tensor, while a boost mixes the time component with one of the spacial components.

Now let’s do a parity transformation. On the Hilbert space this is implemented through an unitary operator UP .
Since parity acts linearly, this will be implemented by a 4× 4 matrix in the index space as follows

UPA
µ(0)UP = Pµ

νA
ν(0) .

So far P is an arbitrary 4 × 4 matrix, but this equality and the commutators previously computed will fix its
components up to an overall factor. For example take the first commutator and multiply by UP left and right

0 = UP [J
i, A0(0)]UP = [UPJ

iUP , UPA
0(0)UP ]

= [J i, UPA
0(0)UP ] = P0

µ[J
i, Aµ(0)]

= P0
0[J

i, Aµ(0)] + P0
j [J

i, Aj(0)] = −iϵijkP0
jA

k(0)



from which we deduce that P0
j = 0. Similarly from the second commutator

[J i, UPA
j(0)UP ] = −iϵijkUPA

k(0)UP .

The left hand side is

Pj
µ[J

i, Aµ(0)] = Pj
0[J

i, A0(0)] + Pj
k[J

i, Ak(0)] = −iϵiklPj
kA

l(0)

while the right hand side
−iϵijkPk

µA
µ(0) = −iϵijkPk

0A
0(0)− iϵijkPk

l A
l(0) .

Since the left hand side is independent of A0 we must have Pk
0 = 0. Finally we use the third commutator

P0
0 [K

i, A0] = iP0
0A

i = −iPi
jA

j

From which we see that Pi
j ∝ δij and Pi

i = −P0
0 . So we find that

P = diag(a,−a,−a,−a).

Another way of deriving part of this result would be to exploit the fact that parity commutes with rotations. In
fact we have that applying a rotation on the definition of the P matrix

Pµ
νR

ν
ρA

ρ(0) = Pµ
νU(R)Aν(0)U(R)† = U(R)UPA

µ(0)UPU(R)†

= UPU(R)Aµ(0)U(R)†UP = UPR
µ
νA

νUP

= Rµ
νP

ν
ρA

ρ .

So we see that the commutation between parity and rotations is also valid for the 4×4 matrices. This immediately
implies that the most general form for P is

diag(a, b, b, b) . (2)

To see this remember that a 4× 4 matrix (or if you want a two index Lorentz tensor) can be decomposed as two
scalars (the (0, 0) component and the trace), three vectors (the (0, i) and (i, 0) components and the antisymmetric
part of the 3 × 3 lower-right block) and a rank−2 symmetric tensor (the traceless symmetric part of the 3 × 3
lower-right block). Since this matrix is invariant under rotation the only components that can be non-zero are
the first component and the diagonal of the 3 × 3. Now it’s only a matter to fix the relation between these two
numbers through some other commutators as we did in the other case.

Requiring that the action of parity twice is the identity requires that a is ±1.

To generalize this to the case where the field is evaluated at a point xµ we use the translation operator

eiP ·xAµ(0)e−iP ·x = Aµ(x)

where Pµ are the translation generators (not to be confused with the P for parity). Using this we can write

UPA
µ(x)UP = UP e

iP ·xAµ(0)e−iP ·xUP

= eiP ·xPUPA
µ(0)UP e

−iP ·xP

= eiP ·xP Pµ
νA

ν(0)e−iP ·xP

= Pµ
νA

ν(xP )

where we have used the property

UP e
iP ·xUP = ei(UPPUP )·x = ei(UPP 0UP x0+UPP iUP xi) = ei(P

0x0−P ixi) = eiP ·xP .

Now we do the same with time reversal. Again it will act linearly on the fields

UTA
µ(0)UT = T µ

νA
ν(0)

where T is a 4× 4 matrix. By the same argument as exposed above, we know that time reversal commutes with
rotations, so the 4× 4 matrices representing rotations and T must commute as well. As a consequence, we know
that in this case too T will have the form (2).
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Similarly as before, we apply UT left and right of the commutators (1), remembering that UT is antiunitary. The
first one yields

0 = UT [J
i, A0(0)]UT = [UTJ

iUT , UTA
0(0)UT ]

= [−J i, UTA
0(0)UT ] = −T 0

µ[J
i, Aµ(0)]

= −T 0
0[J

i, Aµ(0)]− T 0
j [J

i, Aj(0)] = iϵijkT 0
jA

k(0)

from which we conclude T 0
j = 0. Similarly, from the third

UT [K
i, A0(0)]UT = [Ki,T 0

µA
µ(0)] = T 0

µ[K
i, Aµ(0)] = T 0

0[K
i, A0(0)] = iT 0

0A
i(0)

= UT (iA
i(0))UT = −iUTA

i(0)UT = −iT i
µA

µ(0) = −iT i
0A

0(0)− iT i
jA

j(0)

where we have used T 0
i = 0 in the third equality, (1) in the fifth, and antiunitarity in the sixth. Comparing the

end of the two lines yields T i
0 = 0 and T i

j = −δijT 0
0 as before. We get

T = diag(a,−a,−a,−a)

and the fact that time reversal square is zero yields a = ±1.

As above, we deduce what happens at point xµ in a similar way

UTA
µ(x)UT = UT e

iP ·xAµ(0)e−iP ·xUT

= e−iP ·xPUTA
µ(0)UT e

iP ·xP

= e−iP ·xP T µ
νA

ν(0)eiP ·xP

= T µ
νA

ν(−xP )

where we used the following (remember UT is antiunitary)

UT e
iP ·xUT = e−i(UTPUT )·x = e−i(UTP 0UT x0+UTP iUT xi) = e−i(P 0x0−P ixi) = e−iP ·xP .

Exercise 2

The time reversal transformation property for the scalar field is

Tϕ(x⃗, t)T = ηTϕ(x⃗,−t),

which leads to

Ta(k⃗)T = ηTa(−k⃗),
T b†(k⃗)T = ηT b

†(−k⃗),

for the annihilation and creation operators.
The action of time reversal on the derivative of the field is a bit more tricky. Since

[∂µϕ](x⃗, t) =

∫
dΩk⃗(−ikµ)

[
a(k⃗)e−ikx − b†(k⃗)eikx

]
,

[∂µϕ](x⃗,−t) =
∫
dΩk⃗(−ikµ)

[
a(k⃗)eiη

µµkµx
µ

− b†(k⃗)e−iηµµkµx
µ
]
,

recalling that T is an anti-linear operator, one has

T [∂µϕ](x⃗, t)T =

∫
dΩk⃗(ikµ)

[
Ta(k⃗)Teikx − Tb†(k⃗)Te−ikx

]
= ηT

∫
dΩk⃗(ikµ)

[
a(−k⃗)eikx − b†(−k⃗)e−ikx

]
= ηT

∫
dΩk⃗(iη

µµkµ)
[
a(k⃗)eiη

µµkµx
µ

− b†(k⃗)e−iηµµkµx
µ
]

= −ηT ηµµ[∂µϕ](x⃗,−t),
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where in the third step we have exchanged as usual k⃗ → −k⃗. Thus one can compute the action of time reversal
on the current:

TJµ(x⃗, t)T = T{iϕ†(x⃗, t)[∂µϕ](x⃗, t)− i[∂µϕ
†](x⃗, t)ϕ(x⃗, t)}T

= −iTϕ†(x⃗, t)TT [∂µϕ](x⃗, t)T + iT [∂µϕ
†](x⃗, t)TTϕ(x⃗, t)T

= −iηTϕ†(x⃗,−t)(−ηT ηµµ)[∂µϕ](x⃗,−t) + i(−ηT ηµµ)[∂µϕ†](x⃗,−t)ηTϕ(x⃗,−t),
= ηµµJµ(x⃗,−t),

Where in the last step it has been used the property η2T = 1.
This result, combined with the transformation properties of the field Aµ (Exercise 1), causes the term AµJµ,
appearing in the scalar QED Lagrangian, to transform as TAµJµT = −ηTAµJµ so that, by choosing ηT = −1, it
is possible to make this coupling time reversal-invariant.

Exercise 3

We prove the invariance of the free Dirac theory under parity.
The action is written in terms of Weyl spinors as

S =

∫
d4x iχL(x)σ̄

µ∂µχL(x) + iχR(x)σ
µ∂µχR(x)−m(χ†

R(x)χL(x) + χ†
L(x)χR(x))

where under parity

U†
PχL(x)UP = ηRχR(xP )

U†
PχR(x)UP = ηLχL(xP )

with xµP = Pµ
νx

ν . We show that in order for the action to be parity invariant it must hold: ηR = ηL. At first, let
us note

U†
P∂µχL(x)UP = ηRPµ ν∂νχR(xP )

U†
P∂µχR(x)UP = ηLPµ ν∂νχL(xP )

Pµ
ν σ̄

ν = σµ

From these relations, it follows

U†
P S UP =

∫
d4xU†

P

(
iχL(x)σ̄

µ∂µχL(x) + iχR(x)σ
µ∂µχR(x)−m(χ†

R(x)χL(x) + χ†
L(x)χR(x))

)
UP

=

∫
d4x η2RiχR(xP )σ̄

νPν µ∂µχR(xP ) + η2LiχL(xP )σ
νPν µ∂µχL(xP )

− ηRηLm(χ†
L(xP )χR(xP ) + χ†

R(xP )χL(xP ))

=

∫
d4x η2RiχR(x)σ

µ∂µχR(x) + η2LiχL(x)σ̄
µ∂µχL(x)− ηRηLm(χ†

L(x)χR(x) + χ†
R(x)χL(x))

Therefore, the theory is invariant if ηR = ηL = ηP .
We can now recast the Weyl spinors into a Dirac spinor and study how it transforms under parity. Indeed

Ψ(x) =

(
χL(x)
χR(x)

)
And from transformations law of Weyl spinors we get

U†
PΨ(x)UP = ηP

(
χR(xP )
χL(xP )

)
= ηP

(
0 1
1 0

)(
χL(xP )
χR(xP )

)
= ηP γ

0Ψ(xP )

We are now ready to study how bilinears of Dirac fields transform under parity.

We want to compute the transformation properties of all the bilinears of the form ψ̄Γψ, where Γ is some 4 × 4
matrix. In order to do this, it is sufficient to compute the transformation properties for

Γ = {14, γ5, γµ, γµγ5, γµν},
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since we have proved that any 4× 4 matrix can be decomposed into a linear combination of these quantities.
Before proceeding further, it is useful to work out some properties of the gamma matrices: in particular we want
to find a close form for (γµ)† and (γµ)T . Let’s start from the latter. Recalling the expression for the gamma
matrices

γµ =

(
0 σµ

σ̄µ 0

)
,

we can immediately see that the only hermitian matrix is γ0 while the other ones are anti-hermitian. This suggests
the following formula:

(γµ)† = γ0γµγ0.

Indeed, making use of the Clifford algebra of the gamma matrices, {γµ, γν} = 2ηµν , we get

γ0γµγ0 =

{
(γ0)3 = γ0, µ = 0,

γ0γiγ0 = −γi(γ0)2 = −γi, µ = i = 1, 2, 3,

which is = (γµ)†.
Similarly one can guess a formula for (γµ)T : γ0, γ2 are symmetric while γ1, γ3 are antisymmetric. Hence

γ0γ2γµγ2γ0 =

 γ0γ2γ0γ2γ0 = −(γ2)2γ0 = γ0 µ = 0,
γ0(γ2)3γ0 = −γ0γ2γ0 = γ2 µ = 2,

γ0γ2γiγ2γ0 = γ0γ2γ2γ0γi = −γi µ = i = 1, 3,

which is = (γµ)T .

Now we are able to compute the transformation properties of the bilinears:

Pψ̄(t, x⃗)Γψ(t, x⃗)P = η2P ψ̄(t,−x⃗)γ0Γγ0ψ(t,−x⃗) ≡ ψ̄γ0Γγ0ψ.

From now on we won’t write the argument of the field and it will be understood that the parity transformation
changes the sign of the spatial coordinates.

Everything is now reduced to understanding what γ0Γγ0 is. Let’s see it case by case:

• Let’s start from the simplest case: Γ = 14. Then:

γ0γ0 = 1 .

This means that:

Pψ̄ψP = ψ̄ψ.

Due to its transformation under parity, this object is called a scalar.

• Let us consider now Γ = γ5. Hence

γ0γ5γ0 = −γ5 .

This means that:

Pψ̄γ5ψP = −ψ̄γ5ψ.

Due to its transformation under parity, this object is called a pseudo-scalar.

• The next one is Γ = γµ:

γ0γµγ0 = (γµ)† = ηµµγµ.

This means that

Pψ̄γµψP = ηµµψ̄γµψ.

Due to its transformation under parity, this object is called a vector.
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• The following term is Γ = γµγ5:

γ0γµγ5γ0 = −ηµµγµγ5.

This means that

Pψ̄γµγ5ψP = −ηµµψ̄γµγ5ψ.

Due to its transformation under parity, this object is called a pseudo-vector.

• The last term is Γ = γµν ≡ 1
2 [γ

µ, γν ]:

γ0γµνγ0 = ηµµηννγµν .

This means that

Pψ̄γµνψP = ηµµηννψ̄γµνψ.

Due to its transformation under parity, this object is called a tensor.
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