Quantum Field Theory
Solutions Set 6

Exercise 1

Consider a vector field A* at the origin # = 0. Under a Lorentz transformation this transforms as
U(A)A*(0)UT(A) = A, A(0)

where A is the usual 4 x 4 representation of the Lorentz group and U(A) is the representation of the same
transformation in the Hilbert space of the particle states. We can expand both sides to the first order in the
transformation parameters. Remember the exponential forms

U(A) = exp(—i0-J —in - K)
A=exp(—i0-TJ —in-K),

where J and K are operators in the Hilbert space while J and C are 4 x 4 matrices given by

(MF) = i(88) — 670))

and
) 1 ik ”
jz — 56” M]
Kt =M.

Expanding both sides of the Lorentz transformation equation we find that for rotations
7%, 4(0)] = 5% (A% (0) — " 47 (0))

and for boosts 4 4 '
(K, A*(0)] = i(n®* A*(0) — n* A°(0)) .

We can separate the time and spatial component of A*(0) to get easier formulas:

[J5,A°(0)] =0

[J?, A7(0)] = —i€e'* AF(0) O
(K", A%(0)] = iA"(0)

[K*, A7(0)] = 6" A°(0)

These results are what we would expect: a rotation doesn’t affect the time component of the vector and it mixes the
spacial components with an € tensor, while a boost mixes the time component with one of the spacial components.

Now let’s do a parity transformation. On the Hilbert space this is implemented through an unitary operator Up.
Since parity acts linearly, this will be implemented by a 4 x 4 matrix in the index space as follows

Up A (0)Up = 2", A% (0).

So far & is an arbitrary 4 x 4 matrix, but this equality and the commutators previously computed will fix its
components up to an overall factor. For example take the first commutator and multiply by Up left and right

0=UplJ", A%(0)]Up = [UpJ'Up, UpA°(0)Up]
= [J, UpA(0)Up] = 2°,[J", A*(0)]
= P0[J1, AM(0)] + 2°;[JF, A7 (0)] = —ie Tk 20, AF(0)



from which we deduce that #°; = 0. Similarly from the second commutator
[JH,Up AT (0)Up| = —ie"*Up A*(0)Up .
The left hand side is
PITEAR0)] = P A%(0)] + 27, [TF, AR(0)] = —ie'* 27), AL0)
while the right hand side
—ieF PFA(0) = —ieF 25 A°(0) — ie7* 2p AN0) .
Since the left hand side is independent of A° we must have 22} = 0. Finally we use the third commutator
PIK, A" =iPQA" = —z}@;Aj
From which we see that 2} o 6% and 2} = — 2. So we find that
Z = diag(a, —a, —a, —a).

Another way of deriving part of this result would be to exploit the fact that parity commutes with rotations. In
fact we have that applying a rotation on the definition of the & matrix
PH,RY ,AP(0) = M, U(R)AY (0)U(R)" = U(R)Up A*(0)UpU(R)!
= UpU(R)A*(0)U(R)'Up = UpR*,A"Up
=R, PV AP,
So we see that the commutation between parity and rotations is also valid for the 4 x 4 matrices. This immediately

implies that the most general form for & is
diag(a, b, b,b). (2)

To see this remember that a 4 x 4 matrix (or if you want a two index Lorentz tensor) can be decomposed as two
scalars (the (0,0) component and the trace), three vectors (the (0,4) and (i,0) components and the antisymmetric
part of the 3 x 3 lower-right block) and a rank—2 symmetric tensor (the traceless symmetric part of the 3 x 3
lower-right block). Since this matrix is invariant under rotation the only components that can be non-zero are
the first component and the diagonal of the 3 x 3. Now it’s only a matter to fix the relation between these two
numbers through some other commutators as we did in the other case.

Requiring that the action of parity twice is the identity requires that a is +1.
To generalize this to the case where the field is evaluated at a point z* we use the translation operator
T AR (0)e™ T = AP(x)
where P* are the translation generators (not to be confused with the P for parity). Using this we can write
UpAt(2)Up = Upe " A*(0)e P *Up
= e!Pep UpA“(O)Upe_iP'””P

— eiP-mp @HUAV(O)efiP~ZEP
= P, A" (zp)

where we have used the property

Upe'P?Up = iUpPUP) _ G UpP°Upzo+Up P Upw;) _ i(POmo—P'a;) iPap

=e€

Now we do the same with time reversal. Again it will act linearly on the fields
Ur A*(0)Ur = #,A%(0)

where .7 is a 4 X 4 matrix. By the same argument as exposed above, we know that time reversal commutes with
rotations, so the 4 x 4 matrices representing rotations and .7 must commute as well. As a consequence, we know
that in this case too 7 will have the form (2).



Similarly as before, we apply Ur left and right of the commutators (1), remembering that Ur is antiunitary. The
first one yields

0 = Ug[J', A°(0)|Ur = [UpJ'Ur, Ur A°(0)Ur]
= [, Ur A% (0)Ur] = —=7°,[J", A*(0)]
= =TT, AM(0)] — T[T, A7 (0)] = ie"* 70, A% (0)
from which we conclude .7°; = 0. Similarly, from the third

Ur[K*, A°(0)|Ur = [K*, 7°,A1(0)] = T°,[K*, A*(0)] = T [K", A°(0)] = i7°% A%(0)
= Ur(iAY0))Ur = —iUp AY(0)Ur = —iT", A" (0) = —i T, A%(0) — i7", AT(0)

where we have used .7°; = 0 in the third equality, (1) in the fifth, and antiunitarity in the sixth. Comparing the
end of the two lines yields 7% = 0 and 7%; = —§% .79 as before. We get

7 = diag(a, —a, —a, —a)
and the fact that time reversal square is zero yields a = +1.

As above, we deduce what happens at point x* in a similar way

UTAM(Z‘)UT = UTeiP‘xAM(O)e_iP'l-UT
= eI U A (0)Upe' 0T
_ e—iP~zp guVAV(O)eiPwp

=JH, A" (—xp)
where we used the following (remember Uy is antiunitary)

UTGiP.mUT — efi(UTPUT)‘x — efi(UTPOUTIOJFUTPiUTIi) — e*i(POm()*Pizi) — efiP-Zp .

Exercise 2

The time reversal transformation property for the scalar field is
To(Z, )T = nrd(Z, —t),

which leads to

for the annihilation and creation operators.
The action of time reversal on the derivative of the field is a bit more tricky. Since

[0.¢](Z, 1) = /dQE(—iku) [a(®e s — bl Eyeit]
[0.9)(Z, —t) = / dQ(—ik,,) [a(E)ein““kuw“ _ bf(,;)e—inwmu] ’
recalling that 7' is an anti-linear operator, one has
T[0u0)(Z, )T = / dQy(ik,,) [Ta(E)Te“W fTbT(E)Tefikr}
= UT/dQE(’iku) [a(—];)eikl’ fbf(,,;)efum}
= ﬁT/dQ;;(in““k#) [a(l}’)ein”“’fﬂx“ B bT(E)e—iW““kW”}
= —nrn""[0.9)(Z, —1),
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where in the third step we have exchanged as usual k — —k. Thus one can compute the action of time reversal
on the current:

TI(E 0T = T{id'(Z,1)[0,0(Z, 1) — i[0.0'1(Z, )$(F, 1)} T
= —z'quT(f TT[0,¢)(Z, )T +iT[0,0')(Z t)TTqS(:r, T
= —inr! (& —t)(=nrn"*)[0u8)(Z, —t) + i(—nrn"*)[0,0")(Z, —t)nrd (&, —t),
= " Ju(T 1),

Where in the last step it has been used the property n2 = 1.

This result, combined with the transformation properties of the field A* (Exercise 1), causes the term A*J,,
appearing in the scalar QED Lagrangian, to transform as TA*J, T = —npA*J, so that, by choosing nr = —1, it
is possible to make this coupling time reversal-invariant.

Exercise 3

We prove the invariance of the free Dirac theory under parity.
The action is written in terms of Weyl spinors as

S = /d4$ ixL ()59, xL(z) +ixr(@)0"duxr(x) — m(xk(x)xL(@) + X} (@) xr(2))
where under parity
Ubxr(z)Up = nrxr(zp)
Ubxr(z)Up = nrxr(zp)

with /5 = ZHa”. We show that in order for the action to be parity invariant it must hold: nr = 1. At first, let
us note

UL8,x2(2)Up = ng Pu "8, xr(zp)
Ubduxr(x)Up = npPp 0, x1(xp)
PHGY = ot
From these relations, it follows

Ul SUp = / dz U}, (imwuaﬂm(x) +ixn(2)o"Ouxr(@) — m(xk(@)xL(@) + X} <x)xR<m>>> Up

N / d*z nyixr(rp)a” Pv FOuxr(ep) + niixs(zp)e” Pv *OuxL(vp)
—nrmem(xt(@p)xr(@p) + xXk@p)xL(zp))
= / Az nkixr(x)o"d.xr(x) + niixs(€)5"d.xr(x) — nrnrm(xt (x)xr(x) + xXk(x)xL (@)

Therefore, the theory is invariant if ng = n, = np.
We can now recast the Weyl spinors into a Dirac spinor and study how it transforms under parity. Indeed

v = (X))

And from transformations law of Weyl spinors we get

e = () = (o) (o) = veen

We are now ready to study how bilinears of Dirac fields transform under parity.

We want to compute the transformation properties of all the bilinears of the form I, where I' is some 4 x 4
matrix. In order to do this, it is sufficient to compute the transformation properties for

T = {14,7°, 9", 9%, "},
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since we have proved that any 4 x 4 matrix can be decomposed into a linear combination of these quantities.
Before proceeding further, it is useful to work out some properties of the gamma matrices: in particular we want
to find a close form for (v#)" and (7#)T. Let’s start from the latter. Recalling the expression for the gamma

matrices
v 0 ot
7= 6’“ O ’

we can immediately see that the only hermitian matrix is v° while the other ones are anti-hermitian. This suggests
the following formula:

()T =090,
Indeed, making use of the Clifford algebra of the gamma matrices, {7, v*} = 29", we get
0)3 0
0 na0 ] (7 ) = ) ) n=0,
T { Py = ' (°)? = p=i=1,23,

which is = (y*)T.
Similarly one can guess a formula for (v*)7: 40, 42 are symmetric while 7!, v3 are antisymmetric. Hence

S Y09%799%90 = —(v*)*7% = ° p=0,
Voyiytyiyt = V(PP = 020 =42 p=2
YOy2yin2q0 = A042q2y 0y = —yt p=i=13,

which is = (y#)7.

Now we are able to compute the transformation properties of the bilinears:

From now on we won’t write the argument of the field and it will be understood that the parity transformation
changes the sign of the spatial coordinates.

Everything is now reduced to understanding what v°Tv° is. Let’s see it case by case:

e Let’s start from the simplest case: I' = 14. Then:
70 =1.
This means that:
PyipP = yp.
Due to its transformation under parity, this object is called a scalar.

e Let us consider now I' = v°. Hence

4050 = A5

This means that:
Py P = =7y
Due to its transformation under parity, this object is called a pseudo-scalar.
e The next one is I' = v*:
POy = (v)F = prtiat
This means that
PyytpP = aptapytap.
Due to its transformation under parity, this object is called a wvector.
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e The following term is I' = y#~°:
AOyhnSyl = by,
This means that
Pty P = —iptiapyty®y.
Due to its transformation under parity, this object is called a pseudo-vector.
e The last term is I' = 4" = Z[y#,4"]:
AOAIVAD — v
This means that
Pyt P = i py .

Due to its transformation under parity, this object is called a tensor.



