
Quantum Field Theory II

Set 2: solutions

Exercise 1 (Optional): The Casimirs of the Poincaré group

We start with

Jµν =


0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

 (1)

meaning E⃗ = (Ex, Ey, Ez), B⃗ = (Bx, By.Bz). Now, we can perform a series of rotation and boosts to get

E⃗ = (E, 0, 0) and B⃗ = (B, 0, 0):

• First, we can make E⃗ and B⃗ parallel by performing a boost in the E⃗ × B⃗ direction. (Note that if E and B

are perpendicular, we can boost to make B⃗ vanish).

• Then, we can perform a rotation to bring E and B to E⃗ = (E, 0, 0), B⃗ = (B, 0, 0).

Now we already have Jµν in the desired form.

In the case of Pµ, starting with,

Pµ =


P 0

P 1

P 2

P 3

 , (2)

we can perform a rotation in the y, z plane to make P3 = 0. Then, we can boost in the x direction (note that this
won’t affect E and B) to make P1 = 0.

Pµ =


P 0

0
P 2

0

 (3)

Now we exhausted Lorentz transformation to get a minimal set of components. This constructions shows that
there are 4 quantities that are invariant under Lorentz transformations. Writing them in a covariant way:

C1 = JµνJµν C2 = ϵµνρσJ
µνJρσ C3 = PµPµ C4 = WµWµ (4)

In an analogy with electrodynamics,

C1 = E2 −B2, C2 = E ·B, C3 = (P 0)2 − (P 2)2, C4 = gµα

(
1

2
ϵµνρσJνρPσ

)(
1

2
ϵαβϵδJβϵPδ

)
, (5)

we see that that C1, C2, C3 and C4 contain as much information as E,B, P 0, P 2 but have the advantage of being
manifestly Lorentz invariant.

Lastly since [JµνJµν , Pρ] ̸= 0 and ϵµνρσ[J
µνJρσ, Pα] ̸= 0, C1 and C2 cannot be Casimirs. And, as we showed in

the previous exercise sheet, C3 and C4 commute with all the Poincaré generators. With this, we conclude that
C3 = PµPµ and C4 = WµWµ are the two Casimirs of the Poincaré group.



Exercise 2: Maxwell’s equations and transverse components

We will now show that Maxwell’s equations describe indeed only two dynamical degrees of freedom. We recall
that the Bianchi identity ϵµνρσ∂

µF ρσ = 0 translates into the two homogenous Maxwell equations once the field
strength is written in terms of the electric and magnetic field:

∇⃗ ∧ E⃗ +
˙⃗
B = 0 , ∇⃗ · B⃗ = 0.

The above equations are trivially solved once we express E⃗ and B⃗ in terms of the four potential Aµ. On the other

hand, we can let E⃗ = E⃗L + E⃗⊥, and similarly for B⃗, with:

Ei
⊥ ≡

(
δij − ∂i∂j

∇2

)
Ej , Ei

L ≡ Ei − Ei
⊥ , ∂iEi

⊥ = 0.

Then the above equations become:

∇⃗ ∧ E⃗⊥ = − ˙⃗
B⊥ , ∇⃗ · B⃗⊥ = 0,

0 = ∇⃗ ∧ E⃗L = − ˙⃗
BL , ∇⃗ · B⃗L = 0.

The longitudinal component of the magnetic field is constant in time, and has divergence, curl and thus laplacian
equal to 0. Hence it is a constant. Since the field has to vanish at infinity, it can only be identically 0, thus:

B⃗L = 0 , ∇⃗ ∧ E⃗⊥ = − ˙⃗
B⊥.

The evolution of the magnetic field is completely determined by the one of the electric field and so only 3 degrees
of freedom are present in Fµν .
The other two Maxwell equations are ∂µF

µν = Jν , where we have allowed for a current coupled to the electro-

magnetic field. In terms of E⃗, B⃗ they read:

∇⃗ · E⃗ = ρ , ∇⃗ ∧ B⃗ − ˙⃗
E = J⃗ .

Again decomposing in longitudinal and transverse components we get:

∇⃗ · E⃗L = ρ,

which fixes the longitudinal part of the electric field completely. Hence the only dynamical component is E⃗⊥,
which contains only 2 degrees of freedom.

Let us now see how this can be obtained using the four potential Aµ. The inhomogeneous Maxwell equations split

in the following way (recall ∂µ = (∂0, ∇⃗), Aµ = (A0,−A⃗)):

ν = 0 : −∇2A0 − ∇⃗ · ˙⃗
A = ∇⃗ · E⃗ = J0,

ν = i :
¨⃗
A+ ∇⃗Ȧ0 −∇2A⃗+ ∇⃗(∇⃗ · A⃗) = ∇⃗ ∧ B⃗ − ˙⃗

E = J⃗ .

The solution of the first equation is formally:

A0 = −∇−2(J0 + ∇⃗ · ˙⃗
A).

Plugging this into the second equation, we get:

Äi − ∂i∇−2(J̇0 + ∇⃗ · ¨⃗
A)−∇2Ai + ∂i(∂jA

j) = J i

=⇒
(
δij − ∂i∂j

∇2

)
Äj −∇2

(
δij − ∂i∂j

∇2

)
Aj = J i + ∂i∇−2J̇0.

We can recognize a wave equation for the projected component Ai
⊥ = (δij − ∂i∂j

∇2 )Aj . The combination in
parenthesis is indeed a projector since, if squared, it is equal to itself. In momentum space we can see that it
projects Ai on the direction orthogonal to the momentum p:

Ai
⊥ =

(
δij − pipj

p2

)
Aj =⇒ piAi

⊥ = 0.

This is equivalent to imposing the Coulomb condition (in that gauge ∇⃗ · A⃗L = ∇⃗ ∧ A⃗L = 0 thus AL = 0). Indeed
the Coulomb gauge identifies the physical degrees of freedom, even if it is not a Lorentz invariant constraint.
Moreover the longitudinal part Ai

L = Ai −Ai
⊥ does not appear anywhere: it is completely decoupled.
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Exercise 3: Coulomb gauge quantization

Let us consider the Lagrangian for a massless vector field interacting with a source Jµ

L = −1

4
FµνFµν − JµAµ .

This can be rewritten explictly in terms of the spatial and time components of Aµ = (A0,−A⃗):

L = −1

4
FµνFµν − JµAµ = −2× 1

4
F0iF

0i − 1

4
FijF

ij − J iAi − J0A0

=
1

2

(
˙⃗
A+ ∇⃗A0

)2

− 1

2

(
∇⃗ ∧ A⃗

)2

− J0A0 + J⃗ · A⃗,

where we have used:(
∇⃗ ∧ A⃗

)k

=
(
∂iA

j − ∂jA
i
)
ϵijk =⇒

(
∇⃗ ∧ A⃗

)2

=
1

2

(
∂iA

j − ∂jA
i
) (

∂iA
j − ∂jA

i
)
.

Supposing that the matter current Jµ is conserved, this Lagrangian is known to be invariant under gauge trans-
formations:

Aµ −→ Aµ − ∂µΛ,

where Λ is an arbitrary function. In order to deal with the gauge freedom, it is useful to impose a condition on
Aµ. There are various gauges which have been found useful in many applications, for instance:

• Lorentz gauge: ∂µA
µ = 0;

• Coulomb gauge: ∇⃗ · A⃗ = 0;

• Temporal gauge: A0 = 0;

• Axial gauge: A3 = 0.

We are interested in studying quantization in Coulomb gauge.

In general ∇⃗ · A⃗ ̸= 0. However it is possible to consider the (equivalent) gauge transformed field A′
µ = Aµ − ∂µΛ;

with a suitable choice of Λ we can impose :

0 = ∇⃗ · A⃗′ = ∇⃗ · A⃗+∇2Λ = 0 ⇐⇒ ∇2Λ = −∇⃗ · A⃗.

This is just Poisson equation with a source −∇⃗ · A⃗, which can always be solved with the use of the Green function:

Λ(x⃗, t) = −
[
∇−2(∇⃗ · A⃗)

]
(x⃗, t) =

∫
d3y

4π

∇⃗ · A⃗(y⃗, t)

|x⃗− y⃗|
.

Therefore we can always choose a configuration where, dropping the prime, ∇⃗ · A⃗ = 0.

Let us compute the conjugate momenta of the fields Aµ. In principle we expect four momenta Πµ:

Πµ =
∂L

∂(∂tAµ)
= −Fαβ ∂(∂αAβ)

∂(∂tAµ)
= −F 0µ,

Π0 = 0, Πi = −F 0i = ∂iA0 − ∂0Ai = ∂tAi − ∂iA0.

The conjugate momentum of the field A0 is identically vanishing. This of course cannot be compatible with the
canonical commutation relation [Aµ(x⃗, t),Πν(y⃗, t)] = iδµν δ

3(x⃗ − y⃗). This suggests that the zero component of the
vector potential is not a dynamical variable, even if it appears explicitly in the Lagrangian. This can be seen also
looking at the zero component of the equations of motion:

J0 = ∂iF
i0 = ∂iΠ

i = −∇⃗ · ˙⃗
A−∇2A0 =⇒ −∇2A0(x⃗, t) = J0(x⃗, t).
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We used the Coulomb gauge condition to write the last expression. The above equation is just Poisson equation
for the field A0 with source given J0(x⃗, t). This can be solved to give the usual Coulomb potential:

A0(x⃗, t) =

∫
d3y

4π

J0(y⃗, t)

|x⃗− y⃗|
.

The time component of Aµ is then automatically determined at any time by the value of the charge density J0 at
that time. This shows that neither A0 nor Π0 are dynamical variables1.

We are left with six canonical variables: (Ai, Πi) ≡ (A⃗, Π⃗). However these are still subject to constraints. The

first constraint is just Coulomb gauge condition ∇⃗ · A⃗ = 0. The second one arises from the equation of motion
∂iF

i0 = J0 written in terms of Πi = −F0i:

−∂iΠi = ∇⃗ · Π⃗ = J0.

Once we try to quantize this theory we face with the problem of defining consistently with this constraint the
canonical commutation relations. It is indeed immediate to realize that a commutation relation of the form
[A(y⃗, t)i,Π(x⃗, t)j ] = iδijδ

3(x⃗− y⃗) has non vanishing divergence, hence it is not consistent with the constraints. A

choice of the commutation relations which is consistent with the two constraints ∇⃗ · Π⃗ = J0 and ∇⃗ · A⃗ = 0 is the
following2:

[A(x⃗, t)i,Π(y⃗, t)j ] = iδijδ
3(x⃗− y⃗)− i∂

(x)
i ∂

(y)
j

1

4π|x⃗− y⃗|
= iδijδ

3(x⃗− y⃗)− i
∂
(x)
i ∂

(x)
j

∇⃗2
x

δ3(x⃗− y⃗).

We can easily check the consistency. Taking the derivative ∂
(x)
i of both sides of the relation, from the l.h.s. we

must get zero, from the r.h.s. we have

i∂
(x)
j δ3(x⃗− y⃗)− i∂

(y)
j ∇2 1

4π|x⃗− y⃗|︸ ︷︷ ︸
−δ3(x⃗−y⃗)

= i∂
(x)
j δ3(x⃗− y⃗)− i∂

(x)
j δ3(x⃗− y⃗) = 0.

Exacly the same computation shows that we get zero when we derive with respect to ∂
(y)
j on the r.h.s. On the

l.h.s. we get:

∂
(y)
j [A(x⃗, t)i,Π(y⃗, t)j ] = [A(x⃗, t)i, ∇⃗ · Π⃗(y⃗, t)j ] = [A(x⃗, t)i, J0(y⃗, t)j ] = 0,

since J0 depends only on the source degrees of freedom and hence commutes with the field Aµ. Hence it is
consistent to use this commutation relation to quantize the theory.

The final needed step is to write the Hamiltonian density. Recalling:

Π⃗ = ∇⃗A0 +
˙⃗
A.

we easily find

H =
˙⃗
A · Π⃗− L =

(
Π⃗− ∇⃗A0

)
· Π⃗− 1

2
Π⃗2 +

1

2

(
∇⃗ ∧ A⃗

)2

+ J0A0 − J⃗ · A⃗.

Since A0 is fixed by the charge density and it is not dynamical, it is natural to remove its contribution to the
momentum as

Π⃗⊥ = Π⃗− ∇⃗A0.

Then the Hamiltonian takes the form:

H = Π⃗⊥ ·
(
Π⃗⊥ + ∇⃗A0

)
− 1

2

(
Π⃗⊥ + ∇⃗A0

)2

+
1

2

(
∇⃗ ∧ A⃗

)2

+ J0A0 − J⃗ · A⃗

=
1

2
Π⃗2

⊥ +
1

2

(
∇⃗ ∧ A⃗

)2

+

[
J0A0 −

1

2
(∇⃗A0)

2

]
− J⃗ · A⃗.

1Notice that indeed in the Lagrangian no time derivative of A0 appears.
2A formal justification of the choice of the commutation relation can be achieved through Dirac theory of Hamiltonian constraint,

see sect.a 7.6, 8.2 and 8.3 of Weinberg book 1.
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The term in square parenthesis can be rewritten as a Coulomb interaction. Indeed using −∇⃗2A0 = J0, we get

J0(x⃗, t)A0(x⃗, t)−
1

2
(∇⃗A0(x⃗, t))

2 = J0(x⃗, t)A0(x⃗, t)−
1

2
∇⃗

(
A0(x⃗, t) ∇⃗A0(x⃗, t)

)
+

1

2
A0(x⃗, t) ∇⃗2A0(x⃗, t)

=
1

2
J0(x⃗, t)A0(x⃗, t)−

1

2
∇⃗
(
A0(x⃗, t) ∇⃗A0(x⃗, t)

)
=

1

2

∫
d3x

J0(x⃗, t)J0(y⃗, t)

4π|x⃗− y⃗|
+ ”total derivative”.

(6)

The reader can easily convince himself that the quantization procedure is consistent looking at the equation of
motion for the U(1) field. Considering for simplicity the case whith no source, Jµ = 0, so that A0 = 0, one finds:

iȦi(x⃗, t) =

∫
d3y [Ai(x⃗, t),H(y⃗, t)] =

∫
d3y [Ai(x⃗, t),Πj(y⃗, t)]Πj(y⃗, t)

=

∫
d3y i

(
δijδ

3(x⃗− y⃗)− i∂
(x)
i ∂

(y)
j

1

4π|x⃗− y⃗|

)
Πj(y⃗, t).

(7)

Replacing ∂
(x)
i by −∂

(y)
i , integrating by parts and using ∇⃗ · Π⃗ = J0 = 0, we get:

˙⃗
A = Π⃗. (8)

Similarly, one can show:

i
˙⃗
Π(x⃗, t) = i

¨⃗
A(x⃗, t) =

∫
d3y [Π⃗(x⃗, t),H(y⃗, t)] =⇒ □A⃗ = 0. (9)

These are the expected equations of motion for the canonical variables. One can thus proceed expanding A⃗ and
Π⃗ in terms of creation and annihilation operators in the standard way3.

Exercise 4: Energy momentum tensor

Consider the Lagrangian

L = −1

4
FµνFµν − λ

2
(∂ρA

ρ)2.

The equations of motion are:

∂µF
µν + λ∂ν(∂ρA

ρ) = □Aν − (1− λ)∂ν(∂ρA
ρ) = 0.

The energy momentum tensor can be derived using the usual procedure:

x′µ = xµ − aµ,

A′
ρ(x

′) = Aρ(x) ≃ Aρ(x
′) + aν ∂νAρ(x

′)︸ ︷︷ ︸
∆ρν

.

Thus we get:

Jµ
i =

∂L
∂(∂µϕa)

∆a i − ϵµi L =⇒ Tµ
ν =

∂L
∂(∂µAρ)

∆ρ ν − δµνL.

And hence:

Tµ
ν = −Fµρ∂νAρ +

1

4
δµνFαβF

αβ − λ(∂αA
α)∂νA

µ +
λ

2
δµν (∂ρA

ρ)2.

We can now check explicitly, that the divergence of the energy momentum tensor vanishes as predicted by Noether’s
theorem:

∂µT
µ
ν = −∂µF

µρ∂νAρ − Fµρ∂µ∂νAρ +
1

2
Fαβ∂νFαβ

− λ(∂αA
α)∂ν(∂µA

µ)− λ∂µ(∂αA
α)∂νA

µ + λ(∂αA
α)∂ν(∂µA

µ).

3Notice that the constraints ∇⃗ · A⃗ = ∇⃗ · Π⃗ = 0 reduce by one the number of polarizations, from three to two; for details see any
book, e.g. Maggiore sec. 4.3.1.
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Using the equation of motion for the first term, we can eliminate all the terms proportional to λ. What remains
is only:

−Fµρ∂µ∂νAρ +
1

2
Fαβ∂νFαβ = −1

2
Fµρ(∂µ∂νAρ − ∂ρ∂νAµ) +

1

2
Fαβ∂νFαβ ,

where we have used the antisymmetry of the field strength. Expanding this gives:

−1

2
Fαβ (∂α∂νAβ − ∂β∂νAα − ∂νFαβ) = −1

2
Fαβ (∂α∂νAβ − ∂β∂νAα − ∂ν∂αAβ + ∂ν∂βAα) = 0.

In the limit λ → 0, the Lagrangian is gauge invariant. Therefore, it could be expected that also the energy
momentum tensor is gauge invariant but this is in fact not true, since the Noether formula contains a derivative with
respect to the field Aµ which is not gauge invariant (only the tensor Fµν is). Instead under a gauge transformation:

Tµ
ν −→ Tµ

ν + Fµρ∂ν∂ρΛ.

On the contrary however, the charges, which are related to physical quantities, must be gauge invariant and indeed
they are:

Pν =

∫
d3x T 0

ν −→
∫

d3x T 0
ν +

∫
d3x F 0i∂ν∂iΛ =

∫
d3x T 0

ν −
∫

d3x ∂iF
0i∂νΛ =

∫
d3x T 0

ν ,

where we have integrated by parts and used the equation of motion ∂iF
i0 = 0. To summarize, although the

Noether procedure gives us a non gauge invariant energy momentum tensor, the charges are invariant.
One can always modify the definition of the energy momentum tensor by adding a piece Kµ

ν which is divergenceless
and such that K0

ν is a total space derivative. In the present case we can define:

T̃µ
ν = Tµ

ν + Fµρ∂ρAν = FµρFρν +
1

4
δνµFαβF

αβ .

Indeed
∂µ(F

µρ∂ρAν) = 0 , F 0ρ∂ρAν = F 0i∂iAν = ∂i(F
0iAν) + eq. of motion.

Since T̃µ
ν depends only on the field strength, it is gauge invariant. This could be argued also by noticing that the

gauge variation of Fµρ∂ρAν exactly compensates the one of Tµ
ν . Notice finally that T̃µ

ν is symmetric and traceless:

T̃µ
µ = FµρFρµ +

1

4
4FαβF

αβ = 0.

When λ ̸= 0, differentiating the equations of motion with respect to xν gives:

∂ν∂µF
µν + λ□(∂ρA

ρ) ≡ λ□(∂ρA
ρ) = 0,

where the first piece is equal to 0 due to the antisymmetry of the Fµν . Since □(∂ρA
ρ) = 0, if ∂ρA

ρ = 0 and
∂t(∂ρA

ρ) = 0 at a particular time, it is true that ∂ρA
ρ = 0 identically. So if both these conditions are satisfied

and ∂ρA
ρ = 0, then quantities computed with the equations of motion (like the Noether currents and charges) do

not depend on λ. But, in general, if ∂ρA
ρ ̸= 0, a λ-dependence remains.
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