
Quantum Field Theory II

Set 1: solutions

Exercise 1: The Pauli–Lubanski (pseudo)vector

• We have

Wµ =
1

2
ϵµνρσJνρPσ =

1

2
ϵµνρσ[Jνρ, Pσ] +

1

2
ϵµνρσPσJνρ =

1

2
ϵµνρσ[Jνρ, Pσ] +

1

2
ϵµνρσPνJρσ, (1)

where in the last equality we relabeled σ ↔ ν and used anti-symmetry of ϵµνρσ and Jρσ.

Now all we have to show is that the term involving the commutator is zero. It follows from the algebra (eq.
(3.191) in the lecture notes),

[Jνρ, Pσ] = i(ησρPν − ησνPρ), (2)

that
1

2
ϵµνρσ[Jνρ, Pσ] =

i

2
ϵµνρσ(ησρPν − ησνPρ) = 0. (3)

The first term is zero because ησρ is symmetric and its indices are contracted with ϵµνρσ which is anti-
symmetric. The second term is zero for the same reason.

• 1. It follows from the algebra (eq. (3.192) from the lectures notes) and anti-symmetry of the Levi-Civita
tensor that

WµPµ =
1

2
ϵµνρσJνρPσPµ =

1

4
ϵµνρσJνρ[Pσ, Pµ] = 0. (4)

2. We have

[Pµ,W ν ] =
1

2
ϵναρσ[Pµ, JαβPσ] =

1

2
ϵναρσ([Pµ, Jαβ ]Pσ + Jαβ [P

µ, Pσ]). (5)

Now we make use of the algebra, in particular [Pµ, Pσ] = 0 and eq. (2) to find

[Pµ,W ν ] =
1

2
ϵναρσ([Pµ, Jαρ]Pσ =

i

2
ϵναρσ(δµαPρ − δµρPα)Pσ = 0, (6)

due to antisymmetry of the Levi-Civita tensor.

3. We have

[Jµν ,W ρ] =
1

2
ϵραβσ[Jµν , JαβPσ] =

1

2
ϵραβσ([Jµν , Jαβ ]Pσ + Jαβ [J

µν , Pσ]). (7)

We again make use of the algebra,

[Jµν , Jαβ ] = i(δναJ
µ
β − δµαJ

ν
β + δµβJ

ν
α − δνβJ

µ
α), [Jµν , Pσ] = i(δνσP

µ − δµσP
ν), (8)

to get

[Jµν ,W ρ] =
i

2
(ϵρνβσJµ

βPσ + ϵρανσJ µ
α Pσ + ϵραβνJαβPµ)− (µ↔ ν). (9)

We now factor out JαβPσ to have

[Jµν ,W ρ] =
i

2
JαβPσ(η

µαϵρνβσ + ηµβϵρανσ + ηµσϵραβν)− (µ↔ ν). (10)

We now make use of the identity1

ηµνϵραβσ = ηµρϵναβσ + ηµαϵρνβσ + ηµβϵρανσ + ηµσϵραβν (12)

1This identity follows from expanding the determinant relation

det(A)ϵραβσ = Aρ
ρ′A

α
α′A

β
β′A

σ
σ′ϵ

ρ′α′β′σ′
(11)

to linear order in ωρ
ρ′ , where Aρ

ρ′ = δρ
ρ′ +ωρ

ρ′ +O(ω2). The left-hand-side becomes proportional to the trace trω = ηµνωµν , matching

to the left-hand-side of (12). Correpondingly, the right-hand-sides will match and given that ωµν is arbitrary, the identity (12) will
hold.



to have

[Jµν ,W ρ] =
i

2
JαβPσ(η

µνϵραβσ − ηµρϵναβσ)− (µ↔ ν) = (13)

= − i

2
JαβPση

µρϵναβσ +
i

2
JαβPση

νρϵµαβσ = i(ηνρWµ − ηµρW ν). (14)

Note that replacing W ρ with the momentum P ρ in the above yields the correct commutation relation
between Jαβ and P ρ.This result is a consequence of the fact that W ρ transforms as a 4-vector under
Lorentz transformations (just like P ρ).

4. We have

[Wµ,W ν ] =
1

2
ϵναρσ[Wµ, JαβPσ] =

1

2
ϵναρσ([Wµ, Jαβ ]Pσ + Jαβ [W

µ, Pσ]). (15)

We now make use of the results found in points 2 and 3. We find

[Wµ,W ν ] =
i

2
ϵναρσ(δµαWρ − δµρWα)Pσ = iϵναρσWρPσ. (16)

• To show that W 2 is a Casimir we have to show that it commutes with the Poincare generators Pµ and Jµν .
We have

[W 2, Pµ] =Wα[W
α, Pµ] + [Wα, Pµ]Wα = 0 (17)

due to the result derived in point 2.

We also have

[W 2, Jµν ] =Wα[W
α, Jµν ] + [Wα, Jµν ]Wα = i[Wµ,W ν ] + i[W ν ,Wµ] = 0, (18)

where we made use of the result derived in point 3.

Exercise 2: Spin of Dirac Fermion states

We want to compute the action of the angular momentum operator computed in exercise 14.2:

Jk =

∫
d3xψ†

α(t, x⃗)

(
[x⃗ ∧ (−i∇⃗x)]kδαβ +

(Σk)αβ
2

)
ψβ(t, x⃗) .

Here the spinor indices have been made explicit but are dropped in the following in favor of matrix notation.
Looking at this operator, one might be tempted to identify the two terms as giving angular momentum and spin:

L⃗
?
=

∫
d3xψ†(t, x⃗)[x⃗ ∧ (−i∇⃗x)]ψ(t, x⃗) , S⃗

?
=

∫
d3xψ†(t, x⃗)

(Σk)

2
ψ(t, x⃗) . (19)

But, as we will see below, this is not true. Indeed the physical states with a definite spin or angular momentum are
not eigenstates of these operators. Instead, the contributions of these two terms will mix. One should remember
that physically, the orbital angular momentum and the spin are not separately conserved, only their sum is
conserved.

To exemplify this, we consider a generic single-particle (one electron) state defined as

|Ψ⟩ =
∫
d3x fα(x)ψ

†
α(x)|0⟩ .

Using the mode decomposition of the field, we can express the state in the basis of momentum-polarization states

|Ψ⟩ =
∫
d3x

∑
r

∫
dΩp u

†
α(r, p)e

ip·xfα(x)|p, r⟩

=
∑
r

∫
dΩp F (r, p)|p, r⟩ ,

where we defined
F (r, p) = u†α(r, p)f̃α(p) ,

2



with

f̃α(p) =

∫
d3xfα(x)e

ip·x .

Our goal is to derive the action of J⃗ on the wavefunction F (p, r), and split it into two contributions, one of which
acts on the momentum only while the other affets the polarization index r only. The fact that the naive splitting
(19) does not work is a consequence of (20) below.

The computation goes as follows. First let’s compute

[J⃗ , ψ†
α(x)] =

∫
d3y

[
ψ†(t, y⃗)

(
y⃗ ∧ (−i∇⃗y) + Σ⃗/2

)
ψ(t, y⃗), ψ†

α(t, x⃗)
]

=

∫
d3y ψ†(t, y⃗)

(
y⃗ ∧ (−i∇⃗y) + Σ⃗/2

){
ψ(t, y⃗), ψ†

α(t, x⃗)
}

=
[
ψ†(t, x⃗)

(
x⃗ ∧ (i ⃗∇x) + Σ⃗/2

)]
α
,

where the left-arrow notation means

ψ†(t, x⃗)
(
x⃗ ∧ (i ⃗∇x)

)
= ix⃗ ∧ ∇⃗x ψ

†(t, x⃗) .

In the second line we have used [AB,C] = A{B,C} − {A,C}B and {ψ†
α(t, y⃗), ψ

†
β(t, x⃗)} = 0. In the third line we

used {ψα(t, y⃗), ψ
†
β(t, x⃗)} = δαβδ

3(x⃗− y⃗) and performed the integral over y⃗.

Now we can apply J⃗ on the state. A sequence of elementary manipulations yields.

J⃗ |Ψ⟩ =
∫
d3xfα(x)[J⃗ , ψ

†
α(x)]|0⟩

=

∫
d3xfα(x)

[
ψ†(t, x⃗)

(
x⃗ ∧ (i ⃗∇x) + Σ⃗/2

)]
α
|0⟩

=

∫
d3xfα(x)

∑
r

∫
dΩp

[
eip·xu†(r, p)

(
x⃗ ∧ (i ⃗∇x) + Σ⃗/2

)]
α
|p, r⟩

=

∫
d3xfα(x)

∑
r

∫
dΩp

[
u†(r, p)

(
− x⃗ ∧ p⃗+ Σ⃗/2

)
eip·x

]
α
|p, r⟩

=

∫
d3xfα(x)

∑
r

∫
dΩp

[
u†(r, p)

(
− ip⃗ ∧ ∂⃗p + Σ⃗/2

)
eip·x

]
α
|p, r⟩

=
∑
r

∫
dΩp

[
u†(r, p)

(
− ip⃗ ∧ ∂⃗p + Σ⃗/2

)]
α
f̃α(p)|p, r⟩ .

It can be checked that

Σ⃗

2
u(r, p) = i(p⃗ ∧ ∂⃗p)u(r, p) +

∑
r′

(σ⃗)r′r
2

u(r′, p) , (20)

u†(r, p)
Σ⃗

2
= (−ip⃗ ∧ ∂⃗p)u†(r, p) +

∑
r′

(σ⃗)rr′

2
u†(r′, p) .

so that we can rewrite the result as

J⃗ |Ψ⟩ =
∑
r,r′

∫
dΩp

(
(−ip⃗ ∧ ∂⃗p)δrr′ + (σ⃗)rr′/2

)(
u†α(r

′, p)f̃α(p)
)
|p, r⟩

=
∑
r,r′

∫
dΩp

(
(−ip⃗ ∧ ∂⃗p)δrr′ + (σ⃗)rr′/2

)
F (r′, p) |p, r⟩ .

To summarize, we have found that angular momentum acts as

F (r, p)
J⃗−→

∑
r′

(
(−ip⃗ ∧ ∂⃗p)δrr′ + (σ⃗)rr′/2

)
F (r′, p) .

3



In this equation describing the transformation of the wavefunction, we can now identify the first term as orbital
angular momentum, since it acts only on the momentum dependence. The second term is spin, since it acts only
on polarization indices.

For example, to get states of zero angular momentum, we consider states such that (−ip⃗ ∧ ∂⃗p)F (r, p) = 0. An
s-wave state, which has F (r, p) = F (r, |p⃗|) has this property. In this case, the action of J3 is simply

J3|Ψ⟩ = S3|Ψ⟩ =
∫
dΩp

(
1

2
F (1, p)|p, 1⟩ − 1

2
F (2, p)|p, 2⟩

)
.

Moreover {
F (2, p) = 0 ⇒ S3|Ψ⟩ = 1

2 |Ψ⟩,
F (1, p) = 0 ⇒ S3|Ψ⟩ = − 1

2 |Ψ⟩.

In the first case, we have a state of spin + 1
2 and in the second case, spin − 1

2 .

Exercise 3: Transformation of the boost generators under translations

As it has been shown in the lecture,

g(Λ1, a1)g(Λ2, a2) = g(Λ1Λ2,Λ1a2 + a1), (21)

with g(Λ, a) ∈ ISO(3, 1) implies,
g(Λ, a) = g(1, a)g(Λ, 0),

g−1(Λ, a) = g(Λ−1,−Λ−1a).
(22)

With this,
g(1,−a)g(Λ, 0)g(1, a) = g(Λ,−a)g(1, a) = g(Λ,Λa− a). (23)

Now, if we expand Λ = 1 + ω with ω = − i
2ωµνJ

µν , we have,

g(1,−a)g(Λ, 0)g(1, a) = e−ia·P
(

1 − i

2
ωµνJ

µν

)
eia·P = 1 − i

2
ωµνe

−ia·PJµνeia·P , (24)

also,

g(Λ,Λa− a) = g(1 + ω, ωa) = 1 − i

2
ωµνJ

µν + iωµνa
νPµ = 1 − i

2
ωµνJ

µν +
i

2
ωµν (a

νPµ − aµP ν) (25)

where in the last step we have used ωµν = −ωνµ. This antisymmetrization is important because Jµν is antisym-
metric. Comparing both expressions above we get the desired result:

e−iaPJµνeiaP = Jµν + P νaµ − Pµaν . (26)
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