
Quantum Field Theory

Homework 2: solutions

Exercise 1: two real scalar fields

In order to find the physical spectrum, one has to diagonalize the kinetic term. In order to do so, define:{
ϕ1 = 1√

2
(φ1 + φ2)

ϕ2 = 1√
2
(φ1 − φ2)

or equivalently

{
φ1 = 1√

2
(ϕ1 + ϕ2)

φ2 = 1√
2
(ϕ1 − ϕ2)

(1)

The different terms in the Lagrangian become

1

2
∂µφ1∂

µφ1 +
1

2
∂µφ2∂

µφ2 →1

2
∂µϕ1∂

µϕ1 +
1

2
∂µϕ2∂

µϕ2

g∂µφ1∂
µφ2 →g

2
(∂µϕ1∂

µϕ1 − ∂µϕ2∂
µϕ2)

(φ2
1 + φ2

2) →(ϕ21 + ϕ22)

So :

L =
1

2
(1 + g)∂µϕ1∂

µϕ1 +
1

2
(1− g)∂µϕ2∂

µϕ2 +
m2

2
(ϕ21 + ϕ22) +

λ

4!
(ϕ21 + ϕ22)

2 (2)

In order to have a physically acceptable theory, we need both kinetic terms to be positive (see homework 1),
so :

|g| < 1 (3)

In order to find the physical masses, we canonically normalize the fields:

Φ1 =
ϕ1√
1 + g

and Φ2 =
ϕ2√
1− g

(4)

and we find :

L =
1

2
∂µΦ1∂

µΦ1 +
1

2
∂µΦ2∂

µΦ2 +
m2Φ2

1

2(1 + g)
+

m2Φ2
2

2(1− g)
+

λΦ4
1

4!(1− g)2
+

λΦ4
2

4!(1− g)2
+

2λΦ2
1Φ

2
2

4!(1− g2)
(5)

So we have two physical particles of masses m2
1 = m2

1+g and m2
2 = m2

1−g .

Note : The case g = ±1 is more subtle because the theory becomes strogly coupled and will not be treated
here. However, when λ = 0, then we are left with (in the g = 1 case) :

L = ∂µϕ1∂
µϕ1 +

m2

2
(ϕ21 + ϕ22) (6)

ϕ2 has no kinetic term and is called an auxiliary field. We can solve explicitly the equations of motion and
get : ϕ2 = 0. We are left with one physical particle of mass m√

2
.



Exercise 2: Fermi Lagrangian

Given the Lagrangian:

L = −1

4
FµνF

µν +
1

2
M2AµA

µ + ψ̄(i̸∂ − q ̸A)ψ,

the equations of motion for the vector field are:

−∂µ(∂µAρ − ∂ρAµ) =M2Aρ − Jρ,

where Jρ ≡ qψ̄γρψ. In Fourier space they read:

[(k2 −M2)gµρ − kµkρ]Ãµ(k) = −J̃ρ(k).

Expanding for k ≪M , we get:

Ãµ(k) ≃
1

M2
J̃µ(k) =⇒ Aµ(x) ≃

1

M2
Jµ(x) =

q

M2
ψ̄(x)γµψ(x).

Note that the same result can be obtained by solving the equation of motion for the field Aµ without any
approximation, and then taking the low energy limit of the solution. In this case we consider the Green’s
function Gσα(x), satisfying the defining equation:

[−(∂µ∂
µ +M2)gρσ + ∂ρ∂σ]Gσα(x) = δραδ

(4)(x).

To find the explicit form of the Green’s function it is convenient to work in Fourier space, where the equation
becomes [(k2 −M2)gρσ − kρkσ]G̃σα(k) = δρα. Looking for a solution of the form G̃σα(k) = Akσkα + Bgσα
(the only two tensor structures available), we get in the end:

G̃σα(k) =
1

k2 −M2

(
gσα − kσkα

M2

)
.

The solution for the field Aµ is then given by the convolution of Gσα(x) with J
α:

Aµ(x) = −
∫
d4y

∫
d4k

(2π)4
1

k2 −M2

(
gµα − kµkα

M2

)
e−ik(x−y)Jα(y).

In the low energy limit k ≪M we obtain:

Aµ(x) ≃
∫
d4y

∫
d4k

(2π)4
gµα
M2

e−ik(x−y)Jα(y) =
Jµ(x)

M2
.

Plugging this result in the equation of motion for the field ψ, namely (i̸∂ − q ̸A)ψ = 0, we find:(
i∂µ − q2

M2
ψ̄γµψ

)
γµψ = 0,

which can be interpreted as derived from a Fermi effective Lagrangian:

LF = ψ̄i̸∂ψ − q2

2M2
ψ̄γµψ ψ̄γµψ.

Exercise 3: Parity and Spinor Representation

With the definition of the spinor field in the usual way,

ΨD(x) ≡
(
ψL(x)
ψR(x)

)
, (7)
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where ψL = (j−, j+) and ψR = (j+, j−). Choosing, for example, the left-handed representation of the Lorentz
group:

ΛL(θ⃗, η⃗) (8)

Since a representation of parity changes the sign of the boost generators, we have:

PΛL(θ⃗, η⃗)P = ΛL(θ⃗,−η⃗) (9)

But the last quantity is nothing but the right-handed representation, so that:

PΛL/R(θ⃗, η⃗)P = ΛR/L(θ⃗, η⃗) (10)

Under a boost,
ψL(x) → ΛL(θ, η)ψL(Λ

−1x),

ψR(x) → ΛR(θ, η)ψR(Λ
−1x) = ΛL(θ,−η)ψR(Λ

−1x).
(11)

With this and using Eq. (10) we can conclude that under parity our spinor transforms,

UP

(
ψL(x)
ψR(x)

)
UP = η

(
ψR(xP )
ψL(xP )

)
, (12)

Now particularizing for (1/2, 0), as parity exchanges (1/2, 0) and (0, 1/2), it is realized on ΨD(x) as

P : ΨD(x) =

(
ψL(x)
ψR(x)

)
→ ΨP

D(x) ≡
(
ψR(Px)
ψL(Px)

)
=

(
0 1
1 0

)(
ψL(Px)
ψR(Px)

)
≡ γ0ΨD(Px) (13)

The matrix γ0 swaps ψL and ψR and represents parity on the spinorial indices. Indeed, one has γ20 = 14×4

(remember P 2 = 1). Moreover, as Lorentz transformations are represented on ΨD by the block diagonal
matrices

ΛD ≡
(
ΛL(θ, η) 0

0 ΛR(θ, η)

)
, (14)

we have
γ0ΛD(θ⃗, η⃗) = ΛD(θ⃗,−η⃗)γ0. (15)
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