Quantum Field Theory

Homework 2: solutions

Exercise 1: two real scalar fields

In order to find the physical spectrum, one has to diagonalize the kinetic term. In order to do so, define:

¢1 ‘{5(% #2) or equivalently a1 ‘{§(¢1 ¢2) (1)
P2 = 5(p1 — ¢2) P2 = 5(d1 — ¢2)
The different terms in the Lagrangian become
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In order to have a physically acceptable theory, we need both kinetic terms to be positive (see homework 1),
SO :
gl <1 (3)

In order to find the physical masses, we canonically normalize the fields:
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So we have two physical particles of masses m? = and m3 =

1—g°

Note : The case g = £1 is more subtle because the theory becomes strogly coupled and will not be treated
here. However, when A = 0, then we are left with (in the g = 1 case) :

2
L = 0,610" 61 + "= (8% + 63) (©)

¢2 has no kinetic term and is called an auxiliary field. We can solve explicitly the equations of motion and
m

get 1 ¢o = 0. We are left with one physical particle of mass U5



Exercise 2: Fermi Lagrangian

Given the Lagrangian:
L= —3Fu P + SMPA,A 4 37 - A,
the equations of motion for the vector field are:
—0, (0" AP — 0P AF) = M2 AP — J°,
where J? = qy*1). In Fourier space they read:
(62 — M2)g"* — kk#) A, (k) = —J* (k).
Expanding for k < M, we get:

Aulh) 2 5 duB) = Au(e) = 5 (@) = 5P ().

Note that the same result can be obtained by solving the equation of motion for the field A, without any
approximation, and then taking the low energy limit of the solution. In this case we consider the Green’s
function Gy (z), satisfying the defining equation:

[—(8,0" + M?)g"" 4+ 0°0%|Gpa(z) = 056W ().

To find the explicit form of the Green’s function it is convenient to work in Fourier space, where the equation
becomes [(k? — M?)gP? — kPk°]G (k) = 6. Looking for a solution of the form Gy (k) = Akoka + Byoa
(the only two tensor structures available), we get in the end:

~ 1 koka
Gaa(k) - 7k2 — M2 (ga.a - M2 ) .

The solution for the field A, is then given by the convolution of G, (x) with J*:
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In the low energy limit k£ < M we obtain:
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Plugging this result in the equation of motion for the field ¢, namely (ig — gA)y = 0, we find:

(ia“ - quW‘t/}) Y =0
M2 " ’

which can be interpreted as derived from a Fermi effective Lagrangian:
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Exercise 3: Parity and Spinor Representation

With the definition of the spinor field in the usual way,

woa) = ()Y ™



where ¥, = (j_,j+) and g = (j4+,j—). Choosing, for example, the left-handed representation of the Lorentz
group: .

Since a representation of parity changes the sign of the boost generators, we have:
PAL(@,i)P = Ap(8, i) (9)
But the last quantity is nothing but the right-handed representation, so that:
PAL/r(0,)P = Mgy (0, ) (10)

Under a boost,

1/JL($) - AL(ev n)¢L(A_1$)»

-1 —1 (11)
Yr(z) = Ar(0,n)Yr(A"x) = AL(0, —n)Yr(A™ ).
With this and using Eq. (10) we can conclude that under parity our spinor transforms,
Yo (x) _ . (¥r(zp)

ur (me) vr=n (wmxp)) ’ -

Now particularizing for (1/2,0), as parity exchanges (1/2,0) and (0,1/2), it is realized on ¥p(z) as

: _ (Yr(x) _ (Yr(P2)\ _ (0 1\ (¢r(Pr)) _

Pwoe) = (10)) s wh@ = (100) = (1 o) (atin)) =m0 19

The matrix 4° swaps 11, and ¥ and represents parity on the spinorial indices. Indeed, one has 73 = 14x4
(remember P? = 1). Moreover, as Lorentz transformations are represented on Wp by the block diagonal
matrices

Ap = 14
b < 0 AR(Hv 77) ’ ( )
we have . B

Y Ap(8,7) = Ap(0, =) (15)



