
Quantum Field Theory

Set 8: solutions

Exercise 1: Application of Lippman-Schwinger equation

Let’s first rewrite the Lippman-Schwinger equation,

|ψ+
α ⟩ = |ϕα⟩+

1

Eα −H0 + iϵ
HI |ψ+

α ⟩,

in such a way as to have all the |ψ+
α ⟩ on the right hand side, namely

|ϕα⟩ = |ψ+
α ⟩ −

1

Eα −H0 + iϵ
HI |ψ+

α ⟩.

Now, let’s apply on both sides the operator (Eα − H + iϵ)−1HI , where H is the complete Hamiltonian and HI

is the interaction potential. We recall that the asymptotic states |ψ+
α ⟩ are eigenstates of H with eigenvalue Eα,

while |ϕα⟩ are eigenstates of the free Hamiltonian H0 ≡ H −HI with the same eigenvalue. Then

1

Eα −H + iϵ
HI |ϕα⟩ =

1

Eα −H + iϵ

[
1−HI

1

Eα −H0 + iϵ

]
HI |ψ+

α ⟩

=
1

Eα −H + iϵ
[Eα −H0 + iϵ−HI ]

[
1

Eα −H0 + iϵ

]
HI |ψ+

α ⟩

=
1

Eα −H0 + iϵ
HI |ψ+

α ⟩,

where in the last step we have used the definition H ≡ H0 + HI . The term we have found in the third step is
nothing but the one that appears on the right hand side of the Lippman-Schwinger equation, so that at the end
we can write

|ψ+
α ⟩ = |ϕα⟩+

1

Eα −H + iϵ
HI |ϕα⟩,

and, consequently, the T -matrix element is

T+
βα ≡ ⟨ϕβ |HI |ψ+

α ⟩ = ⟨ϕβ |HI |ϕα⟩+ ⟨ϕβ |HI
1

Eα −H + iϵ
HI |ϕα⟩. (1)

As an application of this formula, let’s consider the case in which HI = VI = V1(x⃗) + V2(x⃗), and in particular

V2(x⃗) = V1(x⃗ + A⃗) ≡ eiP⃗ ·A⃗V1(x⃗)e
−iP⃗ ·A⃗. Suppose V1(x⃗) to be significantly different from 0 only in a small region

around a given point x⃗0, so that the points x⃗ belonging to that region satisfy |A⃗| ≫ |x⃗ − x⃗0|, i.e. we can neglect
multiple scattering.
In particular the product of the two operators V1, V2 can be seen to vanish, indeed:

V1V2 =

∫
dxV1V2|x⟩⟨x| =

∫
dxV1(x)V2(x)|x⟩⟨x| ≃ 0

Another useful property is the following: consider the operator products coming from Eq.(1), which can be formally
expanded in a geometric series, such as:

1

Eα −H + iϵ
V1 =

1

Eα −H0 − V1 − V2 + iϵ
V1 =

1

Eα −H0

1

1− 1
E−H0

(V1 + V2)
V1 =

1

Eα −H0

∞∑
n=0

[
1

E −H0
(V1 + V2)

]n
V1 ≃ 1

Eα −H0

∞∑
n=0

[
1

E −H0
V1

]n
V1 =

1

Eα −H0 − V1 + iϵ
V1.



In the above calculation we assumed that:

V2
1

Eα −H0
V1 ≃ 0 (2)

even though 1
Eα−H0

and V1, V2 don’t commute and 1
Eα−H0

is a non-local operator. However in position-space
representation the above term can be written as:

∫
dxdyV2(x)

1
∇2

2m + E
(x− y)V1(y) ∝

∫
dxdyV2(x)

e−i
√
2mE|x−y|

|x− y|
V1(y) (3)

As both potential are localized in domains separated by a distance |A⃗|, the term above is suppressed by a factor of

1/|A⃗|. Terms containing such factor give multiple interactions, such that neglecting it leads to the approximation
where the incoming state only interacts with V1 or V2.

At the end, what one gets is

T+
βα = ⟨ϕβ |HI |ϕα⟩+ ⟨ϕβ |HI

1

Eα −H + iϵ
HI |ϕα⟩

= ⟨ϕβ |(V1 + V2)|ϕα⟩+ ⟨ϕβ |V1
1

Eα −H0 − V1 + iϵ
V1|ϕα⟩+ ⟨ϕβ |V2

1

Eα −H0 − V2 + iϵ
V2|ϕα⟩

= (T+
1 )βα + (T+

2 )βα.

Now we can express (T+
2 )βα in terms of (T+

1 )βα:

(T+
2 )βα = ⟨ϕβ |eiP⃗ ·A⃗V1e

−iP⃗ ·A⃗|ϕα⟩+ ⟨ϕβ |eiP⃗ ·A⃗V1e
−iP⃗ ·A⃗

∞∑
n=0

[
1

E −H0

]n+1

eiP⃗ ·A⃗V n
1 e

−iP⃗ ·A⃗eiP⃗ ·A⃗V1e
−iP⃗ ·A⃗|ϕα⟩

=
(
eiP⃗ ·A⃗T+

1 e
−iP⃗ ·A⃗

)
βα
,

where we have used the invariance of the free Hamiltonian under translations.

This reasoning can be generalized to an arbitrary number of hamiltonians, so that, in the approximation of large
mutual distances, one simply gets

HI =

N∑
j=1

eiP⃗ ·A⃗jV1e
−iP⃗ ·A⃗j =⇒ T =

N∑
j=1

eiP⃗ ·A⃗jV1e
−iP⃗ ·A⃗j ,

where A⃗1 ≡ 0⃗.
This way, sending a wave with momentum k⃗i on a bunch of scattering potentials, and calling q⃗ the difference
between the outgoing momentum k⃗f and k⃗i, one gets

⟨k⃗f |T |⃗ki⟩ ≡ F (q⃗) =

N∑
j=1

⟨k⃗f |eiP⃗ ·A⃗jT1e
−iP⃗ ·A⃗j |⃗ki⟩ = f(q⃗)

N∑
j=1

eiq⃗·A⃗j ,

where f(q⃗) ≡ ⟨k⃗f |T1 |⃗ki⟩. In the continuum limit (looking from distance |L⃗| ≫ |A⃗j |, ∀ j) one has

F (q⃗) = f(q⃗)

∫
d3A eiq⃗·A⃗ρ(A⃗),

which explains why the scattering amplitude F (q⃗) in a diffraction experiment is the Fourier transform of the

matter distribution ρ(A⃗) (up to an overall form factor f(q⃗)).

Exercise 2: Scattering from a general potential

Suppose we have some state |ϕk⟩ which is an eigenstate of a free Hamiltonian H0. For simplicity let us consider

H0 = p2

2m . Let us assume that at certain finite time t and a finite distance L the states start interacting with
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a potential V . The system is now described by the full Hamiltonian H = H0 + V . We also assume that the
interaction with the potential is localized in space, so that the system, far away from the interaction point and
after enough time, can still be described in terms of eigenstates of H0.
We want to extract an expression for the asymptotic states for this framework. Recalling the Lippmann-Schwinger
equation we have:

|Ψ±
k ⟩ = |ϕk⟩+

1

Ek −H0 ± iϵ
HI |Ψ±

k ⟩,

where in this case HI = V and we are labeling the states with the index k: Ek = k2

2m . We can describe the
theory in coordinate space taking the bracket with an eigenstate of position operator ⟨x| or in momentum space
considering the bracket with an eigenstate of momentum ⟨p|. We choose the former description. Then:

Ψ±
k (x) = ⟨x|Ψ±

k ⟩ = ⟨x|ϕk⟩+ ⟨x| 1

Ek −H0 ± iϵ
V |Ψ±

k ⟩.

Let us insert a complete set of states
∫
d3x′|x′⟩⟨x′| = 1 before the operator V :

Ψ±
k (x) = ⟨x|ϕk⟩+

∫
d3x′ ⟨x| 1

Ek −H0 ± iϵ
|x′⟩︸ ︷︷ ︸

Gk±(x−x′)

⟨x′|V |Ψ±
k ⟩.

Let us first compute the Green function G±(x− x′):

Gk±(x− x′) =

∫
d3pd3p′⟨x|p⟩⟨p| 1

Ek −H0 ± iϵ
|p′⟩⟨p′|x′⟩,

where again we inserted two set of complete eigenstates of momentum. Recalling standard results of QM we have:

⟨x|p⟩ = eix⃗·p⃗√
(2π)3

,

and therefore:

Gk±(x− x′) =

∫
d3p

(2π)3
d3p′

1

Ek − p′2

2m ± iϵ
⟨p|p′⟩ei(p⃗·x⃗−p⃗′·x⃗′) =

∫
d3p

(2π)3
d3p′

1

Ek − p′2

2m ± iϵ
δ3(p⃗− p⃗′)ei(p⃗·x⃗−p⃗′·x⃗′)

=

∫
d3p

(2π)3
1

Ek − p2

2m ± iϵ
eip⃗·(x⃗−x⃗′),

where we have used the fact that the free Hamiltonian applied to an eigenstate of momentum simply gives

H0|p⟩ = p2

2m |p⟩. Hence:

Gk±(x− x′) =

∫
d3p

(2π)3
2m

k2 − p2 ± iϵ
eip⃗·(x⃗−x⃗′) =

∫ ∞

0

p2 dp

(2π)2
2m

k2 − p2 ± iϵ

∫ 1

−1

d(cos θ)eip|x⃗−x⃗′| cos θ

=

∫ ∞

0

p dp

(2π)2
2m

i|x⃗− x⃗′|
eip|x⃗−x⃗′| − e−ip|x⃗−x⃗′|

k2 − p2 ± iϵ

=
im

4π2|x⃗− x⃗′|

∫ ∞

−∞
p dp

eip|x⃗−x⃗′| − e−ip|x⃗−x⃗′|

p2 − k2 ∓ iϵ
,

where in the last step we have used the symmetry of the integrand under p→ −p to extend the integral from −∞
to +∞ and we have therefore divided by 2. The above integral is composed by two pieces and contains two poles
at p2 = k2 ± iϵ or p ≃ ±(k ± iϵ) (note that the two ±’s are unrelated and that the ϵ appearing here is not the
same as before). According to how we close the contour and the ± prescription we can enclose or not a pole.

Let us separate the discussions and start with Gk+(x− x′) where the poles are at p = ±(k+ iϵ): for the first term
in the integral we close in the upper plane and therefore we encircle only the pole at p = k + iϵ; for the second
piece we close the contour in the lower half-plane and we enclose only the pole at p = −k − iϵ. Hence:

Gk+(x− x′) =
im

4π2|x⃗− x⃗′|
(2πi)

(p eip|x⃗−x⃗′|

p+ k

)∣∣∣∣∣
p=k

+

(
p e−ip|x⃗−x⃗′|

p− k

)∣∣∣∣∣
p=−k


= − 2m

4π|x⃗− x⃗′|
eik|x⃗−x⃗′|.
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Let us consider now Gk−(x − x′) where the poles are at p = ±(k − iϵ): for the first term in the integral we close
again in the upper half-plane and therefore we encircle only the pole at p = −k+ iϵ; for the second piece we close
the contour in the lower half-plane and we enclose only the pole at p = k − iϵ. Hence:

Gk−(x− x′) =
im

4π2|x⃗− x⃗′|
(2πi)

(p eip|x⃗−x⃗′|

p− k

)∣∣∣∣∣
p=−k

+

(
p e−ip|x⃗−x⃗′|

p+ k

)∣∣∣∣∣
p=k


= − 2m

4π|x⃗− x⃗′|
e−ik|x⃗−x⃗′|.

At this point we can come back to our Lippmann-Schwinger equation and plug in the expression for the Green
function:

Ψ±
k (x) = ⟨x|ϕk⟩ −

2m

4π

∫
d3x′

e±ik|x⃗−x⃗′|

|x⃗− x⃗′|
⟨x′|V |Ψ±

k ⟩.

Let us now perform the first approximation: we consider the form of Ψ±
k (x) for x≫ L, where L is the characteristic

scale of the potential V (and x′ ≤ L, otherwise the matrix element ⟨x′|V |Ψ±
k ⟩ is 0). Then we can write:

|x⃗− x⃗′| =
√
r2 + r′2 − 2rr′ cos θ = r

(
1− 2

r′

r
cos θ +

r′2

r2

)1/2

≃ r

(
1− r′

r
cos θ

)
= r − r′ cos θ,

where r ≡ |x⃗| and r′ ≡ |x⃗′| and x⃗ · x⃗′ = rr′ cos θ. Finally

e±ik|x⃗−x⃗′|

|x⃗− x⃗′|
≃ e±ikr

r
e∓ikx̂·x⃗′

Plugging this in the expression for Ψ±
k (x) and inserting again a complete set of states we have:

Ψ±
k (x) = ⟨x|ϕk⟩ −

2m

4π

e±ikr

r

∫
d3x′d3x′′⟨x′|V |x′′⟩⟨x′′|Ψ±

k ⟩e
∓ikx̂·x⃗′

.

If the potential is such that ⟨x′|V |x′′⟩ = V (x′)⟨x′|x′′⟩ = V (x′)δ3(x⃗′ − x⃗′′), we have

Ψ±
k (x) = eik⃗·x⃗ − 2m

4π

e±ikr

r

∫
d3x′V (x′)⟨x′|Ψ±

k ⟩e
∓ikx̂·x⃗′

︸ ︷︷ ︸
f(k,x̂)

.

The above function completely describes the effect of the potential at large distances from it.

Exercise 3: Differential cross section 2→2 in the centre of mass frame

The cross section for a scattering process AB → CD is given by

dσ =
1

4EAEB |v⃗A − v⃗B |
|MAB→CD|2dΦ2,

where MAB→CD is the matrix element associated to the process and dΦ2 is the 2-body phase space. In general

dΦn =

n∏
i=1

d3pi
(2π)32Ei

(2π)4δ4

(
PA + PB −

∑
i

Pi

)
.

In our case i = C,D only. In this exercise Pi represents a 4 momentum while pi is the spatial momentum. Thanks
to the presence of the δ4 we can easily perform 4 integrals in a straightforward way, without caring about the
particular form of the matrix element, that here we leave unexpressed. We recall that this definition of the cross
section holds for a reference frame in which the velocities of the incoming particles are collinear (the matrix element
and the phase space are Lorentz invariant, while the flux factor depends on the reference frame). Let us take the
velocities in the ẑ direction. Before performing the integrations we can write the flux factor in a different way:

1

4
√
(PA · PB)2 −m2

Am
2
B

=
1

4
√

(EAEB − pzAp
z
B)

2 − (E2
A − pz2A )(E2

B − pz2B )

=
1

4
√

(EBpzA − EApzB)
2
=

1

4EAEB |vzA − vzB |
,
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where we have used the definition of velocity v ≡ p/E.
Let’s now move to the expression of dσ. We want to compute it in the center of mass frame, which is defined by
requiring the sum of the spatial momenta of the colliding particles to be zero: p⃗A + p⃗B = 0.
Let us integrate over d3pD. This can be done easily using δ3(p⃗A + p⃗B − p⃗C − p⃗D). This Dirac delta enforces the
momentum conservation p⃗D = p⃗A + p⃗B − p⃗C = −p⃗C and in addition express the energy ED as a function of the
momentum p⃗C we still have to integrate over:

ED =
√
m2

D + p⃗2D =
√
m2

D + p⃗2C .

Hence we get:

dσ =
1

4
√
(PA · PB)2 −m2

Am
2
B

|MAB→CD|2 d3pC
(2π)32EC2ED

(2π)δ (EA + EB − EC − ED) .

There is still a delta function left that we can use to integrate over another variable. Let us pass in polar coordinates
and call pC ≡ |p⃗C | :

dσ =
1

4
√
(PA · PB)2 −m2

Am
2
B

|MAB→CD|2 dφ d cos θ p2CdpC
(2π)32EC2ED

(2π)δ (EA + EB − EC − ED) .

In the expression just deduced, the remaining delta function will eliminate one of the three integrations (which
we can choose to be the one over dpC), so that two degrees of freedom remain. If one makes the further as-
sumption of scalar particles or of unpolarized scattering, the process is invariant under azimuthal rotations, so
that |MAB→CD|2 won’t depend on φ, and at the end we will be left with only one effective variable, which can
be chosen to coincide with θ: cos θ = p⃗A·p⃗C

pApC
. But in general, without assumptions, two integration variables are left.

Therefore we keep this variable and we integrate over dpC . This integral is not trivial since the dependence of the
delta function on pC is complicated (pC enters in EC and ED). Let us use the following change of variables:

d(EC + ED)

dpC
=
d(
√
m2

C + p2C +
√
m2

D + p2C)

dpC
=

pC√
m2

C + p2C
+

pC√
m2

D + p2C
=
pC
EC

+
pC
ED

=⇒ dpC =
ECED

pC(EC + ED)
d(EC + ED).

Note that this change of variables gives the same result that we would deduce by using the property of the Dirac
delta

δ(f(x)−A) =
δ(x− x̄)∣∣∣ dfdx ∣∣∣

x=x̄

,

where x̄ ≡ f−1(A).
Substituting we get:

dσ =
1

4
√

(PA · PB)2 −m2
Am

2
B

|MAB→CD|2 dφ d cos θ pC
16π2

d(EC + ED)

EC + ED
δ (EA + EB − EC − ED) .

Note that at this stage the variable pC is no longer independent (we won’t integrate over it), so it must be expressed
in terms of the integration variables. In particular one can invert the relation between EC + ED and pC to get

pC ≡ pC(EC + ED) =

√
(EC + ED)4 + (m2

C −m2
D)2 − 2(EC + ED)2(m2

C +m2
D)

4(EC + ED)2
.

Now we can perform the integral in d(EC + ED), which is trivial: calling X ≡ (EC + ED) one has

dX

X
pC(X)δ (EA + EB −X) =

pC(EA + EB)

EA + EB
.

Finally, let’s introduce the Mandelstam variable s = (PA+PB)
2 = (PC +PD)2. This quantity represents the total

center of mass energy squared: EA + EB = EC + ED =
√
s.

In the end:

dσ =
1

4

√(
s−m2

A−m2
B

2

)2
−m2

Am
2
B

|MAB→CD|2 dφ d cos θ

16π2

pC(
√
s)√
s

5



Using the expression for pC in the center of mass (the same as above with the substitution EC + ED →
√
s),

pC(
√
s) =

√
s2 + (m2

C −m2
D)2 − 2s(m2

C +m2
D)

4s
,

we can obtain simple expressions for the particular cases:

mC = mD = m dσ =
1

2

√
(s−m2

A −m2
B)

2 − 4m2
Am

2
B

|MAB→CD|2 dΩ

32π2

√
1− 4m2

s
,

mC = m, mD = 0 dσ =
1

2

√
(s−m2

A −m2
B)

2 − 4m2
Am

2
B

|MAB→CD|2 dΩ

32π2

(
1− m2

s

)
,

where dΩ is the solid angle dφd cos θ.

Exercise 4: Asymptotic States in Quantum Mechanics

Let us consider a one dimensional quantum system. We want to study the scattering from a potential of the
general form illustrated in Figure 1: V is significantly different from zero in a region x ∈ [−L ,L], while it rapidly
approaches 0 for |x| > L. Therefore in the regions far away from the potential we can take V ≡ 0 and consider

-L L
x

VHxL

Figure 1: Generic barrier

the theory as free: the solutions with positive energy Ek are complex exponentials:

eikx , e−ikx , Ek =
k2

2m
,

wherem is the mass of the particle scattered by the potential. This system represents a simple setup to understand
the meaning of in and out states. Let us first recall their definition in general and then apply it to the this specific
case. Given the Hamiltonian H0, which usually represents the free theory, we call |ϕα⟩ its eigenvectors:

H0|ϕα⟩ = Eα|ϕα⟩.

A general state of the theory will be a wave packet made of a superposition of the states |ϕα⟩:

|ϕ⟩ =
∫
dα g(α)|ϕα⟩. (4)

Let us assume that at a certain time an interaction HI is switched on. The eigenstates of the complete Hamiltonian
H = H0 +HI are now modified. Let us assume that they can be labeled with the same index α:

(H0 +HI)|ψα⟩ = Eα|ψα⟩.

We can now recall the definition of in- and out- states:

• the in-states |ψ+⟩ tend to |ϕ⟩ for t→ −∞;

• the out-states |ψ−⟩ tend to |ϕ⟩ for t→ ∞.
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A more formal definition is given using the Moeller operators. However, as far as this exercise is concerned, the

above definition is enough. In the present case the role of H0 is given by the free Hamiltonian H0 = p2

2m while the
interaction is HI = V (x). In a scattering process the states of interest are those representing a particle incoming
at time −∞ from the left (or the right) and a particle outgoing at time +∞ to the left (or the right). These states
are described by wave packets of the form (4).
We claim that the in-state associated to a incoming particle from the left is given by the following solution:

|ψ+⟩ ≡
∫
dk g(k)|ψ+

k ⟩ , ⟨x|ψ+
k ⟩ =

 eikx +Re−ikx, for x≪ −L,
Teikx, for x≫ L,

not specified otherwise,

where R and T are two coefficients. The above state is defined at time t = 0. In order to see if the definition of
in-state applies we need to evolve it back in time up to t→ −∞. Since the dynamics of |ψ+⟩ is determined by the
full theory we must evolve it using the complete Hamiltonian H. Hence:

|ψ+(t)⟩ = e−iHt|ψ+⟩ =
∫
dk g(k)e−iHt|ψ+

k ⟩ =
∫
dk g(k)e−i k2

2m t|ψ+
k ⟩.

Up to now we haven’t specified the form of the wave packet g(k). Let us take for simplicity a gaussian distribution
centered around a momentum p:

g(k) = e−
(p−k)2

2σ2

If the gaussian is very narrow the main contribution in the integral on dk will come from the neighborhood of the
momentum p and all the rest will be suppressed exponentially. So we can write k = p+ ϵ:

|ψ+(t)⟩ =
∫
dk e−

(p−k)2

2σ2 e−i k2

2m t|ψ+
k ⟩ ≃

∫
dk e−

(p−k)2

2σ2 e−i p2

2m t−i pϵ
m t|ψ+

k ⟩ .

≃ e−i p2

2m t

∫
dϵ e−

ϵ2

2σ2 e−ivϵt|ψ+
p+ϵ⟩.

where v ≡ p/m, and we neglected the term i ϵ2

2m t in the exponential.

Let us now consider the above state in the regions |x| ≫ L, where we make use of the explicit form for ⟨x|ψ+
k ⟩.

Hence:

⟨x|ψ+(t)⟩ = e−i p2

2m t ×


∫
dϵ e−

ϵ2

2σ2 e−ivϵt
(
ei(p+ϵ)x +Re−i(p+ϵ)x

)
=

√
2πσ

(
eipxe−σ2 (x−vt)2

2 +Re−ipxe−σ2 (x+vt)2

2

)
, for x≪ −L,

T
∫
dϵ e−

ϵ2

2σ2 e−ivϵtei(p+ϵ)x = T
√
2πσ eipxe−σ2 (x−vt)2

2 , for x≫ L.

Finally let us consider the limit t→ −∞: in this limit some terms vanish because they are exponentially suppressed:

⟨x|ψ+(t)⟩ −→ e−i p2

2m t ×


√
2πσ eipxe−σ2 (x−vt)2

2 for x≪ −L, t→ −∞,

0 for x≫ L , t→ −∞.

The above solution describes as announced an incoming wave packet moving from left to right. Similarly one could
find the out-states:

|ψ−⟩ ≡
∫
dk g(k)|ψ−

k ⟩ , ⟨x|ψ−
k ⟩ =

 T ′e+ikx for x≪ −L
e+ikx +R′e−ikx for x≫ L
not specified otherwise

Evolving in time as before we get:

⟨x|ψ−(t)⟩ = e−i p2

2m t ×


T ′ ∫ dϵ e− ϵ2

2σ2 e−ivϵtei(p+ϵ)x, for x≪ −L,

∫
dϵ e−

ϵ2

2σ2 e−ivϵt
(
ei(p+ϵ)x +R′e−i(p+ϵ)x

)
, for x≫ L.

Again in the limit t→ ∞ some integrals vanish and we are left with:

⟨x|ψ−(t)⟩ −→


0 for x≪ −L,

√
2πσ eipxe−σ2 (x−vt)2

2 for x≫ L.
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The above solution represents an outgoing wave packet moving from left to right. One could also find a in-state
incoming at time −∞ from the right and out-state escaping towards the left at time +∞. Finally we could
compute the matrix element between the in- and out-state, which corresponds to the S-matrix element between
the incoming wave packet and the outgoing one:

⟨ψ−|ψ+⟩.

Added note: in equation (5) we neglected a piece −i ϵ2

2m t in the exponential. One might be worried that this
approximation is not justified in the t→ −∞ limit. We can easily restore this factor in the results of the integrals
avaluated below simply substituting 1/σ2 → 1/σ2 + it/m. Using then

Re

{
(x± vt)2

1
σ2 + i t

m

}
=

(x± vt)2

1
σ2 + σ2 t2

m2

(5)

and keeping track only of the real contributions in the exponent, we get

⟨x|ψ+(t)⟩ ∼


exp

{
− (x−vt)2/2

1
σ2 +σ2 t2

m2

}
+R exp

{
− (x+vt)2/2

1
σ2 +σ2 t2

m2

}
, for x≪ −L,

T exp

{
− (x−vt)2/2

1
σ2 +σ2 t2

m2

}
, for x≫ L.

As it is well known, in the limit t → −∞ the wave-packet becomes completely spread. The result (5) still holds
in the regime m ≫ |t|σ2. In practice this is often enough since initial states are prepared at long but finite time
before the interaction.
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