Quantum Field Theory

Set 26: solutions

Exercise 1

This correction is just a complement to what you can find attached, which is the detailed description of the
ete™ — ptpu~ scattering both in the polarized and in the unpolarized cases, and whose careful reading is
highly recommended.

Let’s start by recalling the QED Lagrangian as it is usually presented:

1 - .
EQE‘D = _ZFHVF;W + 1/16(2'7pr - me)1/}e-

This Lagrangian correctly describes the interaction between photons and electrons, but it is not complete, in
the sense that if an experiment can access sufficiently high energies, other leptons, like the muon or the tau,
can be produced. So the Lagrangian has to be modified (slightly) to include all these possible interactions

1 .
Lopp = =7 F" Fu + Y i(iv" Dy — mi)i,
l

and in this exercise we consider | = e, u. As a matter of notation, we have used D? = 9” 4 ie AP, where A
is the photon field and e is the coupling constant of QED, namely the positron charge.

From the QED Lagrangian, one can extract the Feynman rules necessary to perform the computation in a
diagrammatic way. In this case in the interaction term there is no dependence on the momentum of the
particles involved, so it is not even necessary to go to Fourier space in order to extract the factor associated
to the vertex: it is just the ’coefficient’ of the product of fields that appear in the interaction Lagrangian,
times i. Here the interaction Lagrangian is L;,; = —eA,ﬂZm”@/Jl, so the vertex is simply —ie~y?.

To be complete, we recall all the Feynman rules for QED, including the theory-independent ones (only the
vertices are specific of a particular theory: propagators and external legs just depend on the nature (i.e.
Poincaré representation) of the particle considered):
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The next step is that of drawing all possible Feynman diagrams allowed by the theory and consistent with
the ’topology’ that we need, namely an incoming electron-positron pair, and an outgoing muon-antimuon
pair. The only diagram for this process (at tree level, i.e. without closed loops) is the one shown at page
131 in Peskin-Shroeder.

At this stage, given the diagrams and the Feynman rules, before performing ANY computation we are already
able to guess the high-energy behavior of the cross-section by dimensional analysis. First, we know that the
amplitude will be proportional to e? since there are two vertices; moreover the cross section has dimensions
of E~2; finally, only the s—channel is there, and it is always finite, so there are no subtleties linked to the
regula}ion of infrared divergences as we saw in the \¢> case. Thus, introducing the fine structure constant

a = -, our cross section will be

o
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where s is the center of mass energy squared and the numerical coefficient is expected O(1). After the detailed
computation we will see that this is indeed the case: this shows how far one can go just by dimensional
analysis, which in most situations is enough to assess the order of magnitude of the result.

As last a last supplement to the solution provided by Peskin and Schroeder, we want to show the results in
a simple parametrization of momenta. In the center of mass frame one can write

N

S

pt = 7(1,0,0,1),

't = ?(1,0,0,—1),

Et = ?(1,0,ﬂsin9,ﬂcos9),

E* = g(l,o,—ﬁsinﬁ, —fBcosb),
¢ = p+p,

where we have approximated the electron as massless and = /1 — 4mﬁ /s is the muon velocity in that

frame, as can be deduced by imposing k? = k2 = m?

0
In terms of these variables one has
ro_ 8
p-p = 9’
p-k = p-k = Z(l—ﬁcos@),
p-kl = p-k = Z(l—i—ﬁcos@),
¢ = s

In terms of these quantities, the amplitude squared becomes
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Given the expression for the phase space for equal mass final particles, and of the flux factor for massless
initial particles,

Bdcosb 1
dby = —— = —
2= o 0 T Ty
at the end the result reads
etp [t 2ma?
= dy (2-p5%+pB%2) = 3 B2).
768) = gy | W Q=FHBY) =BG 8)
We can see that the high energy limit of this formula is o(s, 1) = 4’;—2‘2, which corresponds to our dimensional

analysis guess. Dimensional analysis could determine in few seconds the correct result up to a coefficient
m (1)
3 .

Exercise 2

Let us consider the following term describing the interaction between a massive vector field Z,, and a fermion-
antifermion pair: -

Ling = Zuly"(gv + 947°)1,
where [ represents the field associated to a lepton (say the electron). Let us consider parity transformation
P. We recall how P acts on fermionic bilinears:

P: gty — gty (vector),
PyEyPy — = PRy Sy (pseudo-vector).

Notice that in the above transformation properties the intrinsic parity n, of the fermion ¢ doesn’t matter
since only |, | = 1 enters the bilinear. The most general transformation property for the vector field Z,, is:

P:ZzZ, — nmm*Z,,

where we have denoted 7z the intrinsic parity (nz = +1).
One can easily see that if both g4 and gy are different from zero there is no choice of 7z that makes the
Lagrangian term Liy invariant under parity transformations

P: L — nzZ,00"(gv — ga’)l.

On the contrary, if ga (gy) were zero, then the invariance under P would be realized with the choice n; =1
(nz = —1). In the case in which both coefficients are non vanishing the theory is not parity preserving.
This reasoning has an important consequence: all the observables that measure in some way a parity violation
(and are zero in a parity invariant theory) must be proportional to the product gyga. They cannot be
proportional to just one of the two since setting the other coefficient to zero would make the theory parity
invariant while leaving a non vanishing value for the observable, contradicting the fact that the observable
must vanish in the parity conserving case.

Let us consider the decay into two leptons, say et and e™, of a Z particle polarized along the 2 axis. In
the center of mass we observe the lepton pair produced back to back. Let us call 6 the angle between the
momentum of the electron and the Z axis. One can compute the decay amplitude d(fs 7 as function of 6. If
we perform a parity transformation, this configuration is transformed into the following: the polarization of
the Z remains in the same direction, since the spin is a pseudo-vector and doesn’t change sign under parity,
instead the momenta of the leptons do change sign. This means that the initial process is sent into a similar

one in which 6’ = 7 — 6 and therefore:

dr 0 — dr
dcosf dcosf
If the theory describing this decay were parity preserving then the two processes (with and without the

parity transformation) would be the same, and the decay amplitude would be invariant under the above
transformation. 3

(m—6).



When both the coeflicients gy and g4 are non zero the theory is not invariant and it makes sense to compute
the difference between the decay width evaluated in the two configuration. In particular one can define the
forward-backward asymmetry as:
_ Ny =N-_ Tiomsz = Timj2m

Ny +N_ T2+ Tz’

A

where I'lq 3 = f: %d@. The above quantity measures the asymmetry between the number of electrons

emitted in the upper half-plane and the number emitted in the lower half-plane. In a parity invariant theory
this quantity must be zero, hence we expect it to be proportional to gy ga.

Let us compute the decay width dI'; in the center of mass we have
1
dl' = —— ~|?d®s.
2MZ |MZ—)6+6 | 2

As far as the two body phase space is concerned, we can neglect the electron mass, since the two leptons
will have an energy Fy = E_ = % > Mme:

We now need the expression of the matrix element. The Feynman rule associated to the interaction described
by Ling is:

I = iy"(gv +¥°94)li;

In order to write the expression for the matrix element we start from an external fermionic line and we proceed
against the fermion flow direction, associating a factor to the external legs and to the vertex according to
the Feynman rules.

Let us come back to our specific example: let us call p1, p_, pz the momenta of e™, e~ and Z. Now let us
write the matrix element: there is only one fermionic line hence we start from the outgoing electron. We
have

e @(p_): is the factor associated to an outgoing particle;
o iv*(gy + gay®): is the vertex;
e v(p4) is the factor associated to an outgoing anti-particle;

e ¢,: is the polarization of the external Z.

Thus:
iMg sere = ieu i7" (gv + gay’ v+,
where we have used the short-hand notation u_ (v4) for u(p—) (v(p4)). We now perform the square of the
matrix element:
Mz sere|? = euey [a-7"(gv + 947" o ][a-7" (gv + gar®)v+]".
Note that the amplitude is a C—number, so its complex conjugate corresponds to its hermitian conjugate,

that’s why we have used T instead of * in the previous expression. The second term in parenthesis can be
rewritten as:

[@-v"(gv + gay")vi]t = [ul 29" (gv F 947704 = ol (gv + gav® )Ty u_.



Recalling that y*T = v99#~% and {v",~7°} = 0 one gets

[a_~"(gv + 9A75)U+]T =047 (9v + gay®)u_,

and finally the matrix element square reads:
(Mzete|? = eues ™ (gv + 947" o107 (9v + gay®)u—.

We now perform a trick which allows us to write the matrix element squared as a trace over a set of gamma
matrices. This technique is general and holds wherever we deal with fermions in the final or initial state and
does not depend on the kind of vertex that we have.

Recalling that u_ and vy are four component spinors let us write explicitly their indices:

Mz ere-|? = euel t_a¥"(gv + 947" abv460+c[7" (9v + 9a7°)]cati—a.

Once we have the indices, we can freely reshuffle terms since we know how to contract them (note also that
in this expression there are no annihilation/creation operators since the amplitude is made up of spinors,
not fields, so there are no signs appearing from anticommutations of fermions):

Mz sere-|? = €€l u—atiza[v"*(gv + 947" ab V4604 [v (9v + 947°)]cas
—— ——
Uda Vbc
U and V are 4 x 4 matrices. One can also rewrite:
Mz sere-|? = eues [UV(gv + 9a7°) VA" (9v + 9a7°)]ee = €ues, Tr[UA(gv + 9a7°)VA (gv + 947°)]
= eyl Trlu_u_v"(gv + ga7°) v 049 (gv + ga°)).

Since we are not interested in the polarization of the final electrons (in the measurement of the asymmetry
A we only count the number of electrons in a given direction), we can sum over the final polarizations. In
doing this we make use of the identities:

> ut(p)ut(p) = g+ m,
> ot (p)e*(p) =§—m,

where s = 1,2 are the two polarizations. In our case we take the electron as massless, therefore we get:

|MZ—>e+e’ |2 = Z |MZ—>e+e* |2 = Eﬂelt Tl’[ﬂ_’}/”(gv + gA’YS)ﬂ-l-’yy(gV + gA’75)]

pol

Using the relation {y#,7°} = 0 we get:

IMzsere- | = eues, T 94" (9v + 947°)?]
= (9v + g2)encs, Tr-v" Y] + 2gv gaeue;, Tr[f_v"poer"~"].

Finally we can make use of the expression for the traces we deduced in Set 25:

Te[y A"yl =4@tp + ot —0n"p_ - py),
Tr[f_ " Py y°] = 4P p_opyp = 4ie"Pp_opyp.

In order to conclude the computation of the matrix element we need to specify the form of the polarization
vector €,. We recall that we want to describe a state polarized along the Z direction. Such a state is of the

form:

o = 1) 5 eua™ 0,



and has to satisfy:
JZUZ = 1> = |Jz =1),

where J, is the generator of the rotation around the Z direction. We recall that we found its expression in
Solution 18: in the rest frame of Z we have:

g, =~ [ dnelal (B nalF). = ~i [ dlal (Faa(B) - abFaa (B

One can immediately notice that a state of the form (al + ial)|0) is eigenstate of J, with eigenvalue +1,
therefore it is a candidate to be the state describing the polarized Z. Hence the polarization vector that

gives rise to such a state is :
1

€, = —
V2

Using the above expression one can compute the matrix element squared:

(0,1,i,0).

My sere- > =4(g% + g2 (€ p=)(€ - pi) + (€ p)(€ - p_) +p— - pi] + 8igvgae™ P p_apisene;

Let us now express the electron and positron momenta as:

MZ MZ
pl:f: = (Tvipluip27ip3) ) |]51 = T

Therefore:

1
* 1 2
€ + = :l:_ —1 9
P \/i(p p°)

1 M2
p—pp = =(p% — 1> —p7) ~ —Z,

2 2

i

e“mﬂp—amﬁﬁuﬁz _ _i€12a,6’p_ap+,@ = iMZPS ~ 5 %COS 0.

2
Finally, writing p? + p3 = % sin? 6, we have
Mippee P = M3(g% + g3)[2 — sin® 6] — AMZgy g4 cos

= M3(gv + 93) {1 +cos?h— 4% cos 9] )
v T 94

In the end
A,QQE 2 2
dl' = 3271_(gv+gA) [1—|—cos 6—4

gvga

cos 0] dcos@.
gv gA

Now we are ready to compute the asymmetry:

w] oo

r +7T —F—%(2+2) 1(14— )d—M(2+2)><
[0,7/2] [r/2,7] = —'32ﬂ,gV’ ga Yy )ay 397 g ga

3

My ! My
Cio,n/2) = Uirj2m) = (ZQVQA)( 4)j£ ydy**~—4§§—gng

In the end the up-down asymmetry is given by simply:

3 2g9vga
C4gi + 43

and as expected it is proportional to both couplings gy and g4.
6
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localized potential is
1 1 d¥py 1
do = —— Y
v; 2E; (2m) 2Ef
where v; is the particle’s initial velocity. This formula is a natural modification
of (4.79). Integrate over |py| to find a simple expression for do/dS.

(c) Specialize to the case of electron scattering from a Coulomb potential (A® =
Ze/4nr). Working in the nonrelativistic limit. derive the Rutherford formula,

IM(p; — py)? (2m)8(Ef — Ey),

do o272

dQ  4am2vsin?(6/2)
(With a few calculational tricks from Section 5.1, you will have no difficulty
evaluating the general cross section in the relativistic case; see Problem 5.1.)

Chapter 5

Elementary Processes of
Quantum Electrodynamics

Finally, after three long chapters of formalism, we are ready to perform some
real relativistic calculations, to begin working out the predictions of Quantum
Electrodynamics. First we will return to the process considered in Chapter 1,
the annihilation of an electron-positron pair into a pair of heavier fermions.
We will study this paradigm process in extreme detail in the next three sec-
tions, then do a few more simple QED calculations in Sections 5.4 and 5.5.
The problems at the end of the chapter treat several additional QED pro-
cesses. More complete surveys of QED can be found in the books of Jauch
and Rohrlich (1976) and of Berestetskii, Lifshitz, and Pitaevskii (1982).

5.1 ete~ — ptp~: Introduction

The reaction ete™ — ptpu~ is the simplest of all QED processes, but also
one of the most important in high-energy physics. It is fundamental to the
understanding of all reactions in e*e™ colliders, and is in fact used to calibrate
such machines. The related process ete™ — gg (a quark-antiquark pair) is
extraordinarily useful in determining the properties of elementary particles.

In this section we will compute the unpolarized cross section for ete~ —
ptp~, to lowest order. In Chapter 1 we used elementary arguments to guess
the answer (Eq. (1.8)) in the limit where all the fermions are massless. We
now relax that restriction and retain the muon mass in the calculation. Re-
taining the electron mass as well would be easy but pointless, since the ratio
me/my, = 1/200 is much smaller than the fractional error introduced by ne-
glecting higher-order terms in the perturbation series.

Using the Feynman rules from Section 4.8, we can at once draw the dia~
gram and write down the amplitude for our process:
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Rearranging this slightly and leaving the spin superscripts implicit, we have

iM(e”(p)et (b)) — ™ (K)pt (k) = iqi; (ﬁ(p')v“U(p)) (ﬂ(k)'yuv(k')). (5.1)

This answer for the amplitude M is simple, but not yet very illuminating.

To compute the differential cross section, we need an expression for | M|?2,
so we must find the complex conjugate of M. A bi-spinor product such as
vv*u can be complex-conjugated as follows:

('D’y“u)* =l (,yu)f(,yo)fv — u’f(fy“)*ﬂy% _ uT'yO'y"v = M.

(This is another advantage of the ‘bar’ notation.) Thus the squared matrix
clement is

4
M = 5 (00 )y u)up)y @) (k) vk DK vuk)).  (5.2)

At this point we are still free to specify any particular spinors u*(p),
o ('), and so on, corresponding to any desired spin states of the fermions.
In actual experiments, however, it is difficult (though not impossible) to re-
tain control over spin states; one would have to prepare the initial state from
polarized materials and/or analyze the final state using spin-dependent mul-
tiple scattering. In most experiments the electron and positron beams are
unpolarized. so the measured cross section is an average over the electron and
positron spins s and s’. Muon detectors are normally blind to polarization, so
the measured cross section is a sum over the muon spins r and 7’.

The expression for |M|? simplifies considerably when we throw away the
spin information. We want to compute

3D YIEINGTE

The spin sums can be performed using the completeness relations from Sec-
tion 3.3:

douw(p)at(p) =F+m; Y v*(p)v*(p) = F—m. (5.3)

Working with the first half of (5.2), and writing in spinor indices so we can
freely move the v next to the v, we have

> 08 ) (P)E ()Vegvs (B) = (F — m) o0 (B + M)y

8.8’

= trace[(¢ — m)v*(#+ m)v*].

Evaluating the second half of (5.2) in the same way, we arrive at the desired
simplification:

E‘d
LS IMPE = £ e[ —mon (Frme)y’] e[ (Bm v (K =)y |-
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The spinors u and v have disappeared, leaving us with a much cleaner expres-
sion in terms of v matrices. This trick is very general: Any QED amplitude
involving external fermions, when squared and summed or averaged over spins,
can be converted in this way to traces of products of Dirac matrices.

Trace Technology

This last step would hardly be an improvement if the traces had to be la-
boriously computed by brute force. But Feynman found that they could be
worked out easily by appealing to the algebraic properties of the v matrices.
Since the evaluation of such traces occurs so often in QED calculations, it is
worthwhile to pause and attack the problem systematically, once and for all.

We would like to evaluate traces of products of n gamma matrices, where
n=0,1,2,.... (For the present problem we need n = 2,3,4.) The n = 0
case is fairly easy: tr1 = 4. The trace of one v matrix is also easy. From the
explicit form of the matrices in the chiral representation, we have

0 o#
tr’Y“Ztr((_’u O)—O.

It is useful to prove this result in a more abstract way, which generalizes to
an arbitrary odd number of v matrices:

try* = trySy°y# since (v%)2 =1
= —try’y*4°®  since {v#,7°} =0
= —trySyPy# using cyclic property of trace
= —try*.

Since the trace of y* is equal to minus itself, it must vanish. For n y-matrices
we would get n minus signs in the second step (as we move the second ~° all
the way to the right), so the trace must vanish if n is odd.

To evaluate the trace of two v matrices, we again use the anticommutation
properties and the cyclic property of the trace:

tryty” = tr(2g‘“’ o 'y"'y“) (anticommutation)
= 8g"" — tryHy” (cyclicity)

Thus try*4” = 4¢**. The trace of any even number of v matrices can be
evaluated in the same way: Anticommute the first -y matrix all the way to the
right, then cycle it back to the left. Thus for the trace of four y matrices, we
have

tr(v#9YvPy%) = tr(2g" 777 — v v*7v*77)
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Using the cyclic property on the last term and bringing it to the left-hand
side, we find

tr(Y#y"yPy7) = g* tryPrT — g try" Y + g*7 tr gty
— 4(g#ugpo _ gﬂﬂgwf + ginVP).

In this manner one can always reduce a trace of n y-matrices to a sum of
traces of (n — 2) ~y-matrices. The case n = 6 is easy to work out, but has
fifteen terms (the number of ways of grouping the six indices in pairs to make
terms of the form g#¥g#?g*?). Fortunately, we will not need it in this book.
(If you ever do need to evaluate such complicated traces, it may be easier to
learn to use one of the several computer programs that can perform symbolic
manipulations on Dirac matrices.)

Starting in Section 5.2, we will often need to evaluate traces involving ~°.
Since 7% = iy%y19y%43, the trace of 7% times any odd number of other -y
matrices is zero. It is also easy to show that the trace of 4° itself is zero:

tr7° = tr(1°7%7°) = — tr(1°7°9°) = — tr(7%7%®) = — tr7°.

The same trick works for tr(y#y"v%), if we insert two factors of ¥* for some a
different from both x and v. The first nonvanishing trace involving v° contains
four other vy matrices. In this case the trick still works unless every v matrix
appears, so tr(y*y”y?y°y5) = 0 unless (uvpo) is some permutation of (0123).
From the anticommutation rules it also follows that interchanging any two of
the indices simply changes the sign of the trace, so tr(y*y”y?y°7°) must be
proportional to €#¥??. The overall constant turns out to be —44, as you can
easily check by plugging in (urpo) = (0123).
Here is a summary of the trace theorems, for convenient reference:
tr(l) =4
tr(any odd # of ¥’s) =0
tr(y*y") = 49"
tr(y*y"7P7%) = 4(¢"g*” — " g"° + g7 g**) (5.5)
tr(y%) =0
tr(v*4*4°) =0
tr(»yll,yu,yp,ya,YS) — —4jehvPo
Expressions resulting from use of the last formula can be simplified by means
of the identities

e“ﬁ"&eaﬁﬁ = -24
‘eaﬁ’yueaﬁ'yu = _66uu (56)
€1 €appe = —2(6%,6"5 — 6%56",)

Al A § - S SR, [ S R Laocr o -2l 2 a - 1 [
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Another useful identity allows one to reverse the order of all the v matrices
inside a trace:

tr(y#y" Py ) = tr( -7y R). (5.7)
To prove this relation, consider the matrix C = y%y? (essentially the charge-
conjugation operator). This matrix satisfies C2 = 1 and Cy#*C = —(y#)T.
Thus if there are n y-matrices inside the trace,
tr(y#vY - 2) = tr(Cy*C Cv*C -- )

= (="t [(¥*)T ()T -]

= tr(--- "),
since the trace vanishes unless n is even. It is easy to show that the reversal
identity (5.7) is also valid when the trace contains one or more factors of v°.

When two vy matrices inside a trace are dotted together, it is easiest to
eliminate them before evaluating the trace. For example,

'Y#'Yu = gw/y“'y" — %g‘w{'y“,’y”} = glwguu =4, (5.8)

The following contraction identities, all easy to prove using the anticommu-
tation relations, can be used when other v matrices lie in between:

v

VY Y = =2y
YV P = 49*° (5.9)
YA APV Y = =297y
Note the reversal of order in the last identity.

All of the v matrix identities proved in this section are collected for ref-
erence in the Appendix.

Unpolarized Cross Section

We now return to the evaluation of the squared matrix element, Eq. (5.4).
The electron trace is

tr[(f — me)y*(F+ me)y”] = 4[p™p* + V" — 9" (p-p' +m?2)].

The terms with only one factor of m vanish, since they contain an odd number
of v matrices. Similarly, the muon trace is

tr[(F+ mu v (K — mu)v) = 4kuk), + ko k), — guo (kK +m2)].

From now on we will set m, = 0, as discussed at the beginning of this section.
Dotting these expressions together and collecting terms, we get the simple
result

La= oo 8er, .o i . o
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To obtain a more explicit formula we must specialize to a particular frame
of reference and express the vectors p, p/, k, k’, and q in terms of the basic kine-
matic variables-—energies and angles—in that frame. In practice, the choice
of frame will be dictated by the experimental conditions. In this book, we will
usually make the simplest choice of evaluating cross sections in the center-of-
mass frame. For this choice, the initial and final 4-momenta for ete~ — u*tpu~
can be written as follows:

k= (E,K)
/ | = /B2 —m3
p=(BE:) 7\
- > 3‘,)‘,\( -~ k-2 =|k|cosd

p = (E’ —EZ)
)kJ/_'(E', _k)

To compute the squared matrix element we need
¢* = (p+7)? = 4B% p-p =2E%
p-k=p -k =FE*—-E|k|jcos; p-k' =9 -k=E?+ E|k|cosf.

We can now rewrite Eq. (5.10) in terms of £ and 8:

Z M2 = < 6E4 [ Y(E — |k| cos§)2 + E2(E + [k| cos 8)% + 2m3E2]
qpmq

[(1 + E—z) (1 - 7;—2) cos? 9]. (5.11)

All that remains is to plug this expression into the cross-section formula
derived in Section 4.5. Since there are only two particles in the final state and
we are working in the center-of-mass frame, we can use the simplified formula
(4.84). For our problem |v4 — vg| = 2 and E4 = Eg = F¢y/2, so we have

do 1 |k 9
— M
aQ E2 1672 Eem Sgs M|

(5.12)
2 2

2 2
a m m, m,
=1, l‘ﬁ[(” 55)+ (1 g) oo "]
Integrating over df), we find the total cross section:

[ m2/ 1m2\ .
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o B2,
dmo® |
3
QED
prediction

A ]

phase space ox —

2m,, > Ecm

Figure 5.1. Energy dependence of the total cross section for ete~ — utu—,
compared to “phase space” energy dependence.

In the high-energy limit where E > m,,, these formulae reduce to those given
in Chapter 1:

do o?
dQ E>>m" 4E2

4w’ 1 3 (M)
o g 3 (s (B) )

Note that these expressions have the correct dimensions of cross sections.
In the high-energy limit, E.y, is the only dimensionful quantity in the problem,
so dimensional analysis dictates that oyopa) o E;2. Since we knew from the
beginning that gyota) x a2, we only had to work to get the factor of 47/3.

The energy dependence of the total cross-section formula (5.13) near
threshold is shown in Fig. 5.1. Of course the cross section is zero for E., <
2m,,. It is interesting to compare the shape of the actual curve to the shape

(1+ cos?6);
(5.14)

. one would obtain if |M|? did not depend on energy, that is, if all the energy

dependence came from the phase-space factor |k|/E. To test Quantum Elec-
trodynamics, an experiment must be able to resolve deviations from the naive
phase-space prediction. Experimental results from pair production of both
# and 7 leptons confirm that these particles behave as QED predicts. Fig-
ure 5.2 compares formula (5.13) to experimental measurements of the 77~
threshold.

Before discussing our result further, let us pause to summarize how we
obtained it. The method extends i in a straightforward way to the calculatlon

~ Al . 1 ~ ~
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Figure 5.2. The ratio a(ete™ — 7177 )/o(ete™ — ptp™) of measured
cross sections near the threshold for 777~ pair-production, as measured
by the DELCO collaboration, W. Bacino, et. al., Phys. Rev. Lett. 41, 13
(1978). Only a fraction of 7 decays are included, hence the small overall
scale. The curve shows a fit to the theoretical formula (5.13), with a small
energy-independent background added. The fit yields m., = 1782'f.2, MeV.

1. Draw the diagram(s) for the desired process.

2. Use the Feynman rules to write down the amplitude M.

3. Square the amplitude and average or sum over spins, using the complete-
ness relations (5.3). (For processes involving photons in the final state
there is an analogous completeness relation, derived in Section 5.5.)

4. Evaluate traces using the trace theorems (5.5); collect terms and simplify
the answer as much as possible.

5. Specialize to a particular frame of reference, and draw a picture of t}.1e
kinematic variables in that frame. Express all 4-momentum vectors in
terms of a suitably chosen set of variables such as E and 6.

6. Plug the resulting expression for |M|? into the cross-section formula
(4.79), and integrate over phase-space variables that are not measured
to obtain a differential cross section in the desired form. (In our case
these integrations were over the constrained momenta k' and |k|, and
were performed in the derivation of Eq. (4.84).)

While other calculations (especially those involving loop diagra{ns) (_)ftep re-
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Production of Quark-Antiquark Pairs

The asymptotic energy dependence of the ete™ — putpu~ cross-section formula
sets the scale for all et e~ annihilation cross sections. A particularly important
example is the cross section for

+

e"e” — hadrons,

that is, the total cross section for production of any number of strongly inter-
acting particles.

In our current understanding of the strong interactions, given by the the-
ory called Quantum Chromodynamics (QCD), all hadrons are composed of
Dirac fermions called quarks. Quarks appear in a variety of types, called fla-
vors, each with its own mass and electric charge. A quark also carries an
additional quantum number, color, which takes one of three values. Color
serves as the “charge” of QCD, as we will discuss in Chapter 17.

According to QCD, the simplest ete~ process that ends in hadrons is

et

e —qq,

the annihilation of an electron and a positron, through a virtual photon, into a

quark-antiquark pair. After they are created, the quarks interact with one an-

other through their strong forces, producing more quark pairs. Eventually the

quarks and antiquarks combine to form some number of mesons and baryons.
To adapt our results for muon production to handle the case of quarks,

we must make three modifications:

1. Replace the muon charge e with the quark charge Qle|.
2. Count each quark three times, one for each color.

3. Include the effects of the strong interactions of the produced quark and
antiquark.

The first two changes are easy to make. For the first, it is simply necessary to
know the masses and charges of each flavor of quark. For u, ¢, and ¢ quarks
we have Q = 2/3, while for d, s, and b quarks we have Q = —1/3. The cross-
section formulae are proportional to the square of the charge of the final-state
particle, so we can simply insert a factor of Q? into any of these formulae
to obtain the cross section for production of any particular variety of quark.
Counting colors is necessary because experiments measure only the total cross
section for production of all three colors. (The hadrons that are actually de-
tected are colorless.) In any case, this counting is easy: Just multiply the
answer by 3.

If you know a little about the strong interaction, however, you might
think this is all a big joke. Surely the third modification is extremely difficult
to make, and will drastically alter the predictions of QED. The amazing truth
is that in the high-energy limit, the effect of the strong interaction on the
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up the final-state quarks into bunches of hadrons. This simplification is due
to a phenomenon called asymptotic freedom; it played a crucial role in the
identification of Quantum Chromodynamics as the correct theory of the strong
force.

Thus in the high-energy limit, we expect the cross section for the reaction
ete~ — gq to approach 3-Q? - 4ma?/3EZ . It is conventional to define

) 4ra? 86.8 nbarns
1 unit of R= 3FZ ~ (Bem in GeV)E' (5.15)

The value of a cross section in units of R is therefore its ratio to the asymptotic
value of the e*e~ — putpu~ cross section predicted by Eq. (5.14). Experimen-
tally, the easiest quantity to measure is the total rate for production of all
hadrons. Asymptotically, we expect

o(e¥e” — hadrons) — 3 (ZQ?) R, (5.16)

cm — 00

where the sum runs over all quarks whose masses are smaller than Ecn/2.
When E;,/2 is in the vicinity of one of the quark masses, the strong interac-
tions cause large deviations from this formula. The most dramatic such effect
is the appearance of bound states just below Ecy = 2my, manifested as very
sharp spikes in the cross section.

Experimental measurements of the cross section for ete™ annihilation to
hadrons between 2.5 and 40 GeV are shown in Fig. 5.3. The data shows three
distinct regions: a low-energy region in which u, d, and s quark pairs are
produced; a region above the threshold for production of ¢ quark pairs; and
a region also above the threshold for b quark pairs. The prediction (5.16) is
shown as a set of solid lines; it agrees quite well with the data in each region,
as long as the energy is well away from the thresholds where the high-energy
approximation breaks down. The dotted curves show an improved theoretical
prediction, including higher-order corrections from QCD, which we will discuss
in Section 17.2. This explanation of the e*e~ annihilation cross section is a
remarkable success of QCD. In particular, experimental verification of the
factor of 3 in (5.16) is one piece of evidence for the existence of color.

The angular dependence of the differential cross section is also observed
experimentally.* At high energy the hadrons appear in jets, clusters of several
hadrons all moving in approximately the same direction. In most cases there
are two jets, with back-to-back momenta, and these indeed have the angular
dependence (1 + cos? §).
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Figure 5.3. Experimental measurements of the total cross section for the
reaction ete~ — hadrons, from the data compilation of M. Swartz, Phys.
Rev. D53, 5268 (1996). Complete references to the various experiments are
given there. The measurements are compared to theoretical predictions from
Quantum Chromodynamics, as explained in the text. The solid line is the
simple prediction (5.16).

5.2 ete™ — ptp~: Helicity Structure

The unpolarized cross section for a reaction is generally easy to calculate
(and to measure) but hard to understand. Where does the (1 + cos? ) angu-
lar dependence come from? We can answer this question by computing the
ete” — ptu~ cross section for each set of spin orientations separately.
First we must choose a basis of polarization states. To get a simple answer
in the high-energy limit, the best choice is to quantize each spin along the
direction of the particle’s motion, that is, to use states of definite helicity.
Recall that in the massless limit, the left- and right-handed helicity states
of a Dirac particle live in different representations of the Lorentz group. We
might therefore expect them to behave independently, and in fact they do.
In this section we will compute the polarized e¥e~ — utp~ cross sections,
using the helicity basis, in two different ways: first, by using trace technology
but with the addition of helicity projection operators to project out the desired
left- or right-handed spinors; and second, by plugging explicit expressions for
these sninors directlv into our formmula for the amnlitude M. Thronshout. this
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massless. (The calculation can be done for lower energy, but it is much more
difficult and no more instructive.)!

Our starting point for both methods of calculating the polarized cross
section is the amplitude

;52
Mo (e (@) — w0 () = 5 (5 ue) (3R ma¥)- G

We would like to use the spin sum identities to write the squared amplitude
in terms of traces as before, even though we now want to consider only one
set of polarizations at a time. To do this, we note that for massless fermions,

the matrices
1+4° (0 © 1-94° (10
2 _(0 1)’ 2 \0 O (5.17)

are projection operators onto right- and left-handed spinors, respectively. Thus
if in (5.1) we make the replacement

_ . 1+9°

o(p' )y ulp) — (@M (— é_)"(p)’
the amplitude for a right-handed electron is unchanged while that for a left-
handed electron becomes zero. Note that since

s (P )utp) = ot (S P, (19

this same replacement imposes the requirement that v(p’) also be a right-
handed spinor. Recall from Section 3.5, however, that the right-handed spinor
v(p') corresponds to a left-handed positron. Thus we see that the annihilation
amplitude vanishes when both the electron and the positron are right-handed.
In general, the amplitude vanishes (in the massless limit) unless the electron
and positron have opposite helicity, or equivalently, unless their spinors have
the same helicity.

Having inserted this projection operator, we are now free to sum over the
electron and positron spins in the squared amplitude; of the four terms in the
sum, only one (the one we want) is nonzero. The electron half of |M|?, for a
right-handed electron and a left-handed positron, is then

Z \13(11’)7“ (1—4-27—5)11(17)\2 = Z o(p )™ (1;75)11(11) u(p)y” (14'275 )v(P’)
-l (P ()
el ()
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— / v v . v
=2(p"p” +p"p* — g"*p-p’ — 1P pgps). (5.19)

The indices in this ejxpression are to be dotted into those of the muon half
?f th.e squared amplitude. For a right-handed p~ and a left-handed pt, an
identical calculation yields ’

5~ [k (5 Yok

spins

2
= 2(kuk, + Kok, — guvk -k —i€pu0 kP K'?). (5.20)

Dgtting (5.19) into (5.20), we find t}.mt the squared matrix element for eze} —
pru7 in the center-of-mass frame is

2 det
M| = ra [Z(P'k)(iﬂ' kY +2(p-KY@ k) — e"“ﬁ"epuau;ﬂ;pﬁk"k'”}

8e?
= [0 HE K) + @ F)E B - 0BG F) + (0K B
4
- o) B)
= ¢*(1+ cosf)’. (5.21)

Plugging this result into (4.85) gives the differential cross scction,

do , 2
m(eRezL — pput) = 4——;2 (1+ cosO)z. (5.22)

There is.no need to repeat the entire calculation to obtain the other
th.ree_minvams}ﬁng helicity amplitudes. For example, the squared amplitude
for epe; - Bz 1} is identical to (5.20) but with 4° replaced by —y® on the
lefb-hand'mde, and thus €,,,, replaced by —e ., on the right-hand side
Propagating this sign though (5.21), we easily see that .

do 2

d—ﬁ(e}}ez — ppph) = —42,2 (1 - cos 0)2. (5.23)
cm
Similarly,
do , _ _ 2
m(eLe}"z — ppkE) = ——4;2 (1- 0050)2;
do 3 (5.24)
Ta (eneh = upuk) = gz (1 -+ cos6)”

(These two results a»c.tually follow from the previous two by parity invariance.)
The other twelve helicity cross sections (for instance, ey e}, — uy u}) are zero
as we saw from Eq. (5.18). Adding up all sixteen contributions, and dividing

B .
hrd tn averaoce nuer the alertran and nacitran enine wa ranavor +ho innalariced
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Wy
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Figure 5.4. Conservation of angular momentum requires that if the =z-
component of angular momentum is measured, it must have the same value

as initially.

Note that the cross section (5.22) for epel — ppii vanishes at 6 = 180°.
This is just what we would expect, since for 8 = 180°, the total angular mo-
mentum of the final state is opposite to that of the initial state (see Figure 5.4).

This completes our first calculation of the polarized ee™ — utp~ cross
sections. We will now redo the calculation in a manner that is more straight-
forward, more enlightening, and no more difficult. We will calculate the am-
plitude M (rather than the squared amplitude) directly, using explicit values
for the spinors and 7y matrices. This method does have its drawbacks: It forces
us to specialize to a particular frame of reference much sooner, so manifest
Lorentz invariance is lost. More pragmatically, it is very cumbersome except
in the nonrelativistic and ultra-relativistic limits.

Consider again the amplitude

2
€ = S
M= (s y7#u(e)) (W) m0(¥)). (5.25)
In the high-energy limit, our general expressions for Dirac spinors become

uin = (V2ze) iz V(305 me)

(e 11 -p- o) '
v(p) = (_\/p—.gg) E—oo ‘/ﬁ(—%(uﬁ-a)ﬁ)’

A right-handed spinor satisfies (p - o) = +§, while a left-handed spinor has
(p-o)¢ = —€. (Remember once again that for antiparticles, the handedness of
the spinor is the opposite of the handedness of the particle.) We must evaluate

expressions of the form vy*u, so we need
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1Te?tu}sl av:l((ai sge e)(cipii}(l:itly }’lchat the amplitude is zero when one of the spinors is
- ed and the other is right-handed. In the ]
Clebsch-Gordan coefficients th . e ot pier 1 the
at couple the vector photon to the pr

! . ‘ oduct of
s*\flcllllsplnors. areozero,‘ those coefficients are just the off—block—dia.goneﬁ elemenfc)s
of t Iia matrix y°y# (in the chiral representation).
ase e;:1 us cilloose p and_ p 'to be in the *z-directions, and first consider the

where the electron is right-handed and the positron is left-handed:

Th
djlPust'for the. electron we have £ = (J), corresponding to spin up in the z-
ection, while for the positron we have £ = (9), also corresponding to (phys-

ical) spin up in the 2-direct i p
o irecton. Both particles have (p-o)¢ = +¢, so the spinors

0
0
_ 0
up) = vaE |} |; v(@) = V2E 8 . (5.28)
0 -1
The electron half of the matrix element is therefore
o(p" )y = - 1) _ ;
(P )" u(p) = 2E (0, —1)o* (0) =—2E(0,1,4,0). (5.29)

We can 11'1ter'pret this expression by saying that the virtual photon has circul
polarization in the +2-direction; its polarization vector is €, = (1/ \/i)(i:r:—u ).
N(?xt we must calculate the muon half of the matrix eIement Let th Zy)_-
b.e emitted at an angle # to the z-axis, and consider first the cas;e wh e
right-handed (and the p* is therefore left-handed): et E

%
e L.

’£cc)) lﬁzlifzﬂ::cﬁ(k)'y“:(lg)dwi could go back to expressions (5.26), but then it
essary to find the correct spinors £ corres i izati
: ponding to pola
along the muon momentum. It is much easier to nse s trick- Q%nroin\!riii?fen
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(5.29). Rotating that vector by an angle 8 in the zz-plane, we find

a(kyy oK) = [a(k')ru(k)]’
= [—2E (0, cos 8,1, —sin 9)] * (5.30)
— —2E (0,cosf, —i, —sin#).

This vector can also be interpreted as the polarization of the virtual pho-
ton; when it has a nonzero overlap with (5.29), we get a nonzero amplitude.
Plugging (5.29) and (5.30) into (5.25), we see that the amplitude is

2
M(egef — prpt) = %(ZE)z(—cose —1) = —€*(1 + cos ), (5.31)

in agreement with (1.6), and also with (5.21). The differential cross section for
this set of helicities can now be obtained in the same way as above, yielding
(5.22).

We can calculate the other three nonvanishing helicity amplitudes in an
analogous manner. For a left-handed electron and a right-handed positron, we
easily find

a(p )y u(p) = —2E(0,1,-4,0) = —2E - V2e*.

Perform a rotation to get the vector corresponding to a left-handed p™ and a
right-handed p*:
a(k)y*v(k') = —2E (0, cos, i, —sin 6).
Putting the pieces together in various ways yields the remaining amplitudes,
M(epeh — prpg) = —€*(1+ cost);
i - . . ) (5.32)
M(eger = BLER) = M(ep e — prhr) = —€ (1 — cosf).

5.3 ete— — ptp~: Nonrelativistic Limit

Now let us go to the other end of the energy spectrum, and discuss the re-
action ete~ — ptu~ in the extreme nonrelativistic limit. When E is barely
larger than m,,, our previous result (5.12) for the unpolarized differential cross

section becomes
do o2 [ m o? |k
L, = 41—t = —. 5.33
dQ k-0 2EZ, E? 2E2 E (5.33)

We can recover this result, and also learn something about the spin de-
pendence of the reaction, by evaluating the amplitude with explicit spinors.
Once again we begin with the matrix element
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Figure 5.5. In the nonrelativistic limit the total spin of the system is con-
served, and thus the muons are produced with both spins up along the z-axis.

'I.‘he elect'ron and positron are still very relativistic, so this expression will be
simplest if we choose them to have definite helicity. Let the electron be right-
pa.nded, moving in the +2-direction, and the positron be left-handed, movin,

in the —z-direction. Then from Eq. (5.29) we have , :

?(p" )y u(p) = —2E(0,1,1,0). (5.34)

In the .other half of the matrix element we should use the nonrelativistic
expressions

3 3
u(k) = ")
W=va(f) o =va( ). (5.35)
K'eep in II'liIld, in the discussion of this section, that the spinor &' gives the
ﬂl?ped spin of the antiparticle. Leaving the muon spinors & and ¢’ undeter-
mined for now, we can easily compute

a(k)y*v(k') = m({”,{’) (aou 00“) (_i,)
- { 0 - forp=0,
—2metaie’ for p=i. (5.36)

lo evaluate M, we simply dot (5.34) into (5.36) and multi
m : : . Itipl 2/,2 —
¢*/4m?. The result is ( ) ultiply by e*/q* =

Mlegef — ptu~) = —2¢%¢t (0 1) . " (5.37)
00 )
Smce there is no angular dependence in this expression, the muons are equally
likely to come out in any direction. More precisely, they are emitted in an
5-Wave; their orbital angular momentum is zero. Angular momentum conser-
vation therefore requires that the total spin of the final state equal 1, and

indoad +ho matriv nradnnt aiviac moara yimlace hath +ha miran an A +ha ants
Ivavan
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To find the total rate for this process, we sum over muon spins to obtain
M? = 4¢%, which yields the cross section
o K|

do, _ _
EQ-(CRC_};—'/J'_*_p' ): E2 —E (5.38)

The same expression holds for a left-handed electron and a right-handed
positron. Thus the spin-averaged cross section is just 2 (1/4) times this ex-
pression, in agreement with (5.33).

Bound States

Until now we have considered the initial and final states of scattering processes
to be states of isolated single particles. Very close to threshold, however, the
Coulomb attraction of the muons should become an important effect. Just
below threshold, we can still form p* p~ pairs in electromagnetic bound states.

The treatment of bound states in quantum field theory is a rich and
complex subject, but one that lies mainly beyond the scope of this book.}
Fortunately, many of the familiar bound systems in Nature can be treated (at
least to a good first approximation) as nonrelativistic systems, in which the
internal motions are slow. The process of creating the constituent particles out
of the vacuum is still a relativistic effect, requiring quantum field theory for its
proper description. In this section we will develop a formalism for computing
the amplitudes for creation and annihilation of two-particle, nonrelativistic
bound states. We begin with a computation of the cross section for producing
a p*p~ bound state in eTe” annihilation.

Consider first the case where the spins of the electron and positron both
point up along the z-axis. From the preceding discussion we know that the
resulting muons both have spin up, so the only type of bound state we can
produce will have total spin 1, also pointing up. The amplitude for producing
free muons in this configuration is

M(1T= ki1, ko) = —2€%, (5.39)

independent of the momenta (which we now call k; and k) of the muons.
Next we need to know how to write a bound state in terms of free-particle
states. For a general two-body system with equal constituent masses, the
center-of-mass and relative coordinates are
R= %(1‘1 + 1'2), r=rj;—ro. (540)
These have conjugate momenta
K =k + ko, k= 1(k; — ko). (5.41)

The total momentum K is zero in the center-of-mass frame. If we know the
force between the particles (for p*p~, it is just the Coulomb force), we can
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solve.the nonrelativistic Schrédinger equation to find the Schrédinger wave-
functlor}, ¥(r). The Pound state is just a linear superposition of free states
of definite r or k, weighted by this wavefunction. For our purposes it is more

COIlvenlent bO b(ul)ld thlS SllpeI pOSlthIl m II)OIIleIltllIn SpaCe, llSlIlg tlle IOUIleI'

~ i Bk~
D09 = [ eyt oy 900 = 1. (5.42)
If 9(r) is normalized conventionally, J(k) gives the amplitude for finding a

particular value of k. An explicit expression for a bound state with mass
M =~ 2m, momentum K = 0, and spin 1 oriented up is then

a3k ~
1B) = VAN [(S55000 = Ikt =k D). (549

The factors of (1/v/2m) convert our relativistically normalized free-particle
states so that their integral with (k) is a state of norm 1. (The factors
should involve |/2E.y, but for a nonrelativistic bound state, |k| < m.) The
outside factor of v/2M converts back to the relativistic normaJizlation assumed
by our formula for cross sections. These normalization factors could easily be
modified to describe a bound state with nonzero total momentum K.

Givefl this expression for the bound state, we can immediately write down
the amplitude for its production:

3k

M(TT_*B) = \/QM/d—{Z;* k L-l_
Since the free—st.ate amplitude from (5.39) is independent of the momenta. of
the muons, the mt(.ag'ral over k gives ¢¥*(0), the position-space wavefunction
evaluated 'a.t the origin. It is quite natural that the amplitude for creation of
:h twg—ai)artu;le }ftate from a pointlike virtual photon should be proportional to

e value of the wavefunction at zero separation. Assembling the pi
find that the amplitude is simply 8 e pieees we

M(11— B) = \/%(—262)1/)*(0)- (5.45)

In a moment we will compute the cross section from this amplitude. First
however, let us generalize this discussion to treat bound states with mor(;
gener.aJ spin configurations. The analysis leading up to (5.37) will cast any S-
matrix element for the production of nonrelativistic fermions with momenta
k and —k into the form of a spin matrix element

iM(something — k, k') = ¢t [C(k)]¢, (5.46)

where T (k) ig esnme 92 ¥ 9 matriv Wa naur munet ranlann tha oninare writh o s



Exercise 3

The substitution into the kinetic term of the scalar field yields

(D, H)'D'H = ((0 duh) — (0 v+h) BUIW,H ;BND ((aﬂh) o'W+ 2B ] (vih»

s
= (@uh)* + 5 (0 vt h) (Wio' +B,) (WHa! + B) ( ! )

= (8uh)2 + T [(W/i)g + (W3)2 + (_WE + Bu)2] .

One quick way to show the last equality without computing every Pauli matrix product is to symmetrize
the product as follows

1
Wawh ol = Swuwt ol oy = wiw st

Then, we want to rescale the gauge fields to have canonically normalized kinetic terms. This means doing

W, —gWi,  By—gyB,.
At this point the lagrangian has become
;C_—*WIWI’UJI *B BH ahZ (U+h)2 2wl2 2w22 _WS B 27,2 h2 i h4
=W w B H(0,h)*+ = [ (W)? + ¢ (W)? + (=gWi + gy By)? | =m? (v+h)*+ 5 (v+h)*

Notice that it would be natural to also rescale the neutral scalar h by h — h/ v/2 to make the third term
canonically normalized, but we will not do it here since it does not affect the vector mass terms.

The fourth term describes some interactions between the h and vector fields. Ignoring these, we focus on
the vector mass terms

: : <, W
v v g W=r
T [PW)?+ (WD) + (—gW) + gy BL)?] = y (W. Wi Wi By) 9> —ggy | | W3

—99y 9% B
We have found the mass matrix of vector fields
2 g 2
M, =" g,
2 g —99vy
99y 9%

which we now want to diagonalize through a unitary transformation to preserve normalization of the fields.
It is already diagonal in the first two fields, but it is customary to define
1 T2
Wi — W:Uf + lWN
w NG
because these will have a definite electric charge. The second block can be diagonalized by a rotation of the
last two fields

Z,, = cos GWWEj —sinfw B, . gy
. 3 , sinfy = ——————
A, =sinbw Wy + cosbw B, Vi + gv?

The vector kinetic and mass terms of the lagrangian can now be rewritten as
1 1 1 m2
—§W#+VW— W D 2 = A A miy W,IW =+ 4 TZZ,LZ“

(g® +9Y 3)o?

where we defined the masses m?%, =
the photon field.

5 m% = . The field A, is massless and is interpeted as

7



