
Quantum Field Theory

Set 26: solutions

Exercise 1

This correction is just a complement to what you can find attached, which is the detailed description of the
e+e− → µ+µ− scattering both in the polarized and in the unpolarized cases, and whose careful reading is
highly recommended.
Let’s start by recalling the QED Lagrangian as it is usually presented:

LQED = −
1

4
FµνFµν + ψ̄e(iγ

ρDρ −me)ψe.

This Lagrangian correctly describes the interaction between photons and electrons, but it is not complete, in
the sense that if an experiment can access sufficiently high energies, other leptons, like the muon or the tau,
can be produced. So the Lagrangian has to be modified (slightly) to include all these possible interactions

LQED = −
1

4
FµνFµν +

∑

l

ψ̄l(iγ
ρDρ −ml)ψl,

and in this exercise we consider l = e, µ. As a matter of notation, we have used Dρ = ∂ρ + ieAρ, where Aρ

is the photon field and e is the coupling constant of QED, namely the positron charge.
From the QED Lagrangian, one can extract the Feynman rules necessary to perform the computation in a
diagrammatic way. In this case in the interaction term there is no dependence on the momentum of the
particles involved, so it is not even necessary to go to Fourier space in order to extract the factor associated
to the vertex: it is just the ’coefficient’ of the product of fields that appear in the interaction Lagrangian,
times i. Here the interaction Lagrangian is Lint = −eAρψ̄lγρψl, so the vertex is simply −ieγρ.
To be complete, we recall all the Feynman rules for QED, including the theory-independent ones (only the
vertices are specific of a particular theory: propagators and external legs just depend on the nature (i.e.
Poincaré representation) of the particle considered):

i

j

ρ = − i e γρij

ρ σ

q

=
−igρσ

q2+iε
j i

q

=

i(qργρ+m)ij
q2−m2+iε

q, s

= ūs(q)

q, s

= v̄s(q)



q, s

= vs(q)

q, s

= us(q)

q, ρ

= ε∗ρ(q)

q, ρ

= ερ(q)

The next step is that of drawing all possible Feynman diagrams allowed by the theory and consistent with
the ’topology’ that we need, namely an incoming electron-positron pair, and an outgoing muon-antimuon
pair. The only diagram for this process (at tree level, i.e. without closed loops) is the one shown at page
131 in Peskin-Shroeder.
At this stage, given the diagrams and the Feynman rules, before performing ANY computation we are already
able to guess the high-energy behavior of the cross-section by dimensional analysis. First, we know that the
amplitude will be proportional to e2 since there are two vertices; moreover the cross section has dimensions
of E−2; finally, only the s−channel is there, and it is always finite, so there are no subtleties linked to the
regulation of infrared divergences as we saw in the λφ3 case. Thus, introducing the fine structure constant
α ≡ e2

4π , our cross section will be

σ ∼
α2

s
,

where s is the center of mass energy squared and the numerical coefficient is expected O(1). After the detailed
computation we will see that this is indeed the case: this shows how far one can go just by dimensional
analysis, which in most situations is enough to assess the order of magnitude of the result.
As last a last supplement to the solution provided by Peskin and Schroeder, we want to show the results in
a simple parametrization of momenta. In the center of mass frame one can write

pµ =

√
s

2
(1, 0, 0, 1),

p′µ =

√
s

2
(1, 0, 0,−1),

kµ =

√
s

2
(1, 0, β sin θ, β cos θ),

k′µ =

√
s

2
(1, 0,−β sin θ,−β cos θ),

q = p+ p′,

where we have approximated the electron as massless and β =
√

1− 4m2
µ/s is the muon velocity in that

frame, as can be deduced by imposing k2 = k′2 = m2
µ.

In terms of these variables one has

p · p′ =
s

2
,

p · k = p′ · k′ =
s

4
(1 − β cos θ),

p · k′ = p′ · k =
s

4
(1 + β cos θ),

q2 = s.

In terms of these quantities, the amplitude squared becomes

1

4

∑

pol

|M| ≡
∣
∣M̄

∣
∣ =

8e4

s2

[
s2

16
(1 + β cos θ)2 +

s2

16
(1− β cos θ)2 +

s

2
m2

µ

]

= e4
[

2− β2(1− cos θ2)
]

.

2



Given the expression for the phase space for equal mass final particles, and of the flux factor for massless
initial particles,

dΦ2 =
βd cos θ

16π
, F =

1

2s
,

at the end the result reads

σ(s, β) =
e4β

32πs

∫ 1

−1
dy

(

2− β2 + β2y2
)

=
2πα2

3s
β(3 − β2).

We can see that the high energy limit of this formula is σ(s, 1) = 4πα2

3s , which corresponds to our dimensional
analysis guess. Dimensional analysis could determine in few seconds the correct result up to a coefficient
4π
3 ∼ O(1).

Exercise 2

Let us consider the following term describing the interaction between a massive vector field Zµ and a fermion-
antifermion pair:

Lint = Zµl̄γ
µ(gV + gAγ

5)l,

where l represents the field associated to a lepton (say the electron). Let us consider parity transformation
P . We recall how P acts on fermionic bilinears:

P : ψ̄γµψ −→ ηµµψ̄γµψ (vector),

ψ̄γµγ5ψ −→ − ηµµψ̄γµγ5ψ (pseudo-vector).

Notice that in the above transformation properties the intrinsic parity ηψ of the fermion ψ doesn’t matter
since only |ηψ|2 = 1 enters the bilinear. The most general transformation property for the vector field Zµ is:

P : Zµ −→ ηZη
µµZµ,

where we have denoted ηZ the intrinsic parity (ηZ = ±1).
One can easily see that if both gA and gV are different from zero there is no choice of ηZ that makes the
Lagrangian term Lint invariant under parity transformations

P : Lint −→ ηZZµ l̄γ
µ(gV − gAγ

5)l.

On the contrary, if gA (gV ) were zero, then the invariance under P would be realized with the choice ηZ = 1
(ηZ = −1). In the case in which both coefficients are non vanishing the theory is not parity preserving.
This reasoning has an important consequence: all the observables that measure in some way a parity violation
(and are zero in a parity invariant theory) must be proportional to the product gV gA. They cannot be
proportional to just one of the two since setting the other coefficient to zero would make the theory parity
invariant while leaving a non vanishing value for the observable, contradicting the fact that the observable
must vanish in the parity conserving case.

Let us consider the decay into two leptons, say e+ and e−, of a Z particle polarized along the ẑ axis. In
the center of mass we observe the lepton pair produced back to back. Let us call θ the angle between the
momentum of the electron and the ẑ axis. One can compute the decay amplitude dΓ

d cos θ as function of θ. If
we perform a parity transformation, this configuration is transformed into the following: the polarization of
the Z remains in the same direction, since the spin is a pseudo-vector and doesn’t change sign under parity,
instead the momenta of the leptons do change sign. This means that the initial process is sent into a similar
one in which θ′ = π − θ and therefore:

P :
dΓ

d cos θ
(θ) −→

dΓ

d cos θ
(π − θ).

If the theory describing this decay were parity preserving then the two processes (with and without the
parity transformation) would be the same, and the decay amplitude would be invariant under the above
transformation.
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When both the coefficients gV and gA are non zero the theory is not invariant and it makes sense to compute
the difference between the decay width evaluated in the two configuration. In particular one can define the
forward-backward asymmetry as:

A =
N+ −N−

N+ +N−
=

Γ[0,π/2] − Γ[π/2,π]

Γ[0,π/2] + Γ[π/2,π]
,

where Γ[a,b] =
∫ b
a

dΓ
dθ dθ. The above quantity measures the asymmetry between the number of electrons

emitted in the upper half-plane and the number emitted in the lower half-plane. In a parity invariant theory
this quantity must be zero, hence we expect it to be proportional to gV gA.

Let us compute the decay width dΓ; in the center of mass we have

dΓ =
1

2MZ
|MZ→e+e− |2dΦ2.

As far as the two body phase space is concerned, we can neglect the electron mass, since the two leptons
will have an energy E+ = E− = MZ

2 & me:

dΓ =
1

2MZ
|MZ→e+e− |2

d cos θ

16π
.

We now need the expression of the matrix element. The Feynman rule associated to the interaction described
by Lint is:

i

j

µ = i[γµ(gV + γ5gA)]ij

In order to write the expression for the matrix element we start from an external fermionic line and we proceed
against the fermion flow direction, associating a factor to the external legs and to the vertex according to
the Feynman rules.
Let us come back to our specific example: let us call p+, p−, pZ the momenta of e+, e− and Z. Now let us
write the matrix element: there is only one fermionic line hence we start from the outgoing electron. We
have

• ū(p−): is the factor associated to an outgoing particle;

• iγµ(gV + gAγ5): is the vertex;

• v(p+) is the factor associated to an outgoing anti-particle;

• εµ: is the polarization of the external Z.

Thus:
iMZ→e+e− = iεµ ū−γ

µ(gV + gAγ
5)v+,

where we have used the short-hand notation u− (v+) for u(p−) (v(p+)). We now perform the square of the
matrix element:

|MZ→e+e− |2 = εµε
∗
ν [ū−γ

µ(gV + gAγ
5)v+][ū−γ

ν(gV + gAγ
5)v+]

†.

Note that the amplitude is a −number, so its complex conjugate corresponds to its hermitian conjugate,
that’s why we have used † instead of ∗ in the previous expression. The second term in parenthesis can be
rewritten as:

[ū−γ
ν(gV + gAγ

5)v+]
† = [u†

−γ
0γν(gV + gAγ

5)v+]
† = v†+(gV + gAγ

5)γν†γ0u−.4



Recalling that γµ† = γ0γµγ0 and {γν, γ5} = 0 one gets

[ū−γ
ν(gV + gAγ

5)v+]
† = v̄+γ

ν(gV + gAγ
5)u−,

and finally the matrix element square reads:

|MZ→e+e− |2 = εµε
∗
ν ū−γ

µ(gV + gAγ
5)v+v̄+γ

ν(gV + gAγ
5)u−.

We now perform a trick which allows us to write the matrix element squared as a trace over a set of gamma
matrices. This technique is general and holds wherever we deal with fermions in the final or initial state and
does not depend on the kind of vertex that we have.
Recalling that u− and v+ are four component spinors let us write explicitly their indices:

|MZ→e+e− |2 = εµε
∗
ν ū−a[γ

µ(gV + gAγ
5)]abv+bv̄+c[γ

ν(gV + gAγ
5)]cdu−d.

Once we have the indices, we can freely reshuffle terms since we know how to contract them (note also that
in this expression there are no annihilation/creation operators since the amplitude is made up of spinors,
not fields, so there are no signs appearing from anticommutations of fermions):

|MZ→e+e− |2 = εµε
∗
ν u−dū−a
︸ ︷︷ ︸

Uda

[γµ(gV + gAγ
5)]ab v+bv̄+c

︸ ︷︷ ︸

Vbc

[γν(gV + gAγ
5)]cd,

U and V are 4× 4 matrices. One can also rewrite:

|MZ→e+e− |2 = εµε
∗
ν [Uγµ(gV + gAγ

5)V γν(gV + gAγ
5)]ee = εµε

∗
ν Tr[Uγµ(gV + gAγ

5)V γν(gV + gAγ
5)]

= εµε
∗
ν Tr[u−ū−γ

µ(gV + gAγ
5)v+v̄+γ

ν(gV + gAγ
5)].

Since we are not interested in the polarization of the final electrons (in the measurement of the asymmetry
A we only count the number of electrons in a given direction), we can sum over the final polarizations. In
doing this we make use of the identities:

∑

s

us(p)ūs(p) = )p+m,

∑

s

vs(p)v̄s(p) = )p−m,

where s = 1, 2 are the two polarizations. In our case we take the electron as massless, therefore we get:

|M̄Z→e+e− |2 ≡
∑

pol

|MZ→e+e− |2 = εµε
∗
ν Tr[ )p−γµ(gV + gAγ

5))p+γν(gV + gAγ
5)].

Using the relation {γµ, γ5} = 0 we get:

|M̄Z→e+e− |2 = εµε
∗
ν Tr[ )p−γµ )p+γν(gV + gAγ

5)2]

= (g2V + g2A)εµε
∗
ν Tr[ )p−γµ )p+γν ] + 2gV gAεµε

∗
ν Tr[ )p−γµ )p+γνγ5].

Finally we can make use of the expression for the traces we deduced in Set 25:

Tr[ )p−γµ )p+γν ] = 4(pµ−p
ν
+ + pν+p

µ
− − ηµνp− · p+),

Tr[ )p−γµ )p+γνγ5] = −4iεαµβνp−αp+β = 4iεµναβp−αp+β.

In order to conclude the computation of the matrix element we need to specify the form of the polarization
vector εµ. We recall that we want to describe a state polarized along the ẑ direction. Such a state is of the
form:

|jz = 1〉 = εµa
†µ|0〉,
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and has to satisfy:
Jz|jz = 1〉 = |jz = 1〉,

where Jz is the generator of the rotation around the ẑ direction. We recall that we found its expression in
Solution 18: in the rest frame of Z we have:

Jz = −i

∫

dΩ)k[.a
†(.k) ∧ .a(.k)]z = −i

∫

dΩ)k[a
†
1(.k)a2(.k)− a†2(.k)a1(.k)].

One can immediately notice that a state of the form (a†1 + ia†2)|0〉 is eigenstate of Jz with eigenvalue +1,
therefore it is a candidate to be the state describing the polarized Z. Hence the polarization vector that
gives rise to such a state is :

εµ =
1√
2
(0, 1, i, 0).

Using the above expression one can compute the matrix element squared:

|M̄Z→e+e− |2 = 4(g2V + g2A)[(ε · p−)(ε∗ · p+) + (ε · p+)(ε∗ · p−) + p− · p+] + 8igV gAε
µναβp−αp+βεµε

∗
ν .

Let us now express the electron and positron momenta as:

pµ± =

(
MZ

2
,±p1,±p2,±p3

)

, |.p| ,
MZ

2
.

Therefore:

ε · p± = ±
1√
2
(p1 + ip2),

ε∗ · p± = ±
1√
2
(p1 − ip2),

p− · p+ =
1

2
(p2Z − p2− − p2+) ,

M2
Z

2
,

εµναβp−αp+βεµε
∗
ν = −iε12αβp−αp+β = iMZp

3 ,
i

2
M2

Z cos θ.

Finally, writing p21 + p22 = M2
Z

4 sin2 θ, we have

|M̄Z→e+e− |2 = M2
Z(g

2
V + g2A)[2− sin2 θ]− 4M2

ZgV gA cos θ

= M2
Z(g

2
V + g2A)

[

1 + cos2 θ − 4
gV gA

g2V + g2A
cos θ

]

.

In the end

dΓ =
MZ

32π
(g2V + g2A)

[

1 + cos2 θ − 4
gV gA

g2V + g2A
cos θ

]

d cos θ.

Now we are ready to compute the asymmetry:

Γ[0,π/2] + Γ[π/2,π] = Γ =
MZ

32π
(g2V + g2A)

∫ 1

−1
(1 + y2)dy =

MZ

32π
(g2V + g2A)×

8

3
,

Γ[0,π/2] − Γ[π/2,π] =
MZ

32π
(2gV gA)(−4)

∫ 1

0
y dy = −4

MZ

32π
gV gA.

In the end the up-down asymmetry is given by simply:

A = −
3

4

2gV gA
g2V + g2A

and as expected it is proportional to both couplings gV and gA.
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Exercise 3

The substitution into the kinetic term of the scalar field yields

(DµH)†DµH =

��
0 ∂µh

�
−
�
0 v + h

� � i
2
σIW I

µ +
i

2
Bµ

����
0

∂µh

�
+

�
i

2
σIW I

µ +
i

2
Bµ

��
0

v + h

��

= (∂µh)
2 +

1

4

�
0 v + h

� �
W I

µσ
I +Bµ

� �
W J µσJ +Bµ

�� 0
v + h

�

= (∂µh)
2 +

(v + h)2

4

�
(W 1

µ)
2 + (W 2

µ)
2 + (−W 3

µ +Bµ)
2
�
.

One quick way to show the last equality without computing every Pauli matrix product is to symmetrize
the product as follows

W I
µW

µJσIσJ =
1

2
W I

µW
µJ{σI ,σJ} = W I

µW
µJδIJ .

Then, we want to rescale the gauge fields to have canonically normalized kinetic terms. This means doing

W I
µ → gW I

µ , Bµ → gY Bµ .

At this point the lagrangian has become

L = −1

4
W I

µνW
I µν−1

4
BµνB

µν+(∂µh)
2+

(v + h)2

4

�
g2(W 1

µ)
2 + g2(W 2

µ)
2 + (−gW 3

µ + gY Bµ)
2
�
−m2(v+h)2+

λ

2
(v+h)4 .

Notice that it would be natural to also rescale the neutral scalar h by h → h/
√
2 to make the third term

canonically normalized, but we will not do it here since it does not affect the vector mass terms.

The fourth term describes some interactions between the h and vector fields. Ignoring these, we focus on
the vector mass terms

v2

4

�
g2(W 1

µ)
2 + g2(W 2

µ)
2 + (−gW 3

µ + gY Bµ)
2
�
=

v2

4

�
W 1

µ W 2
µ W 3

µ Bµ

�



g2

g2

g2 −ggY
−ggY g2Y







W 1µ

W 2µ

W 3µ

Bµ


 .

We have found the mass matrix of vector fields

Mv =
v2

2




g2

g2

g2 −ggY
−ggY g2Y




which we now want to diagonalize through a unitary transformation to preserve normalization of the fields.
It is already diagonal in the first two fields, but it is customary to define

W±
µ =

W 1
µ ∓ iW 2

µ√
2

because these will have a definite electric charge. The second block can be diagonalized by a rotation of the
last two fields �

Zµ = cos θWW 3
µ − sin θWBµ

Aµ = sin θWW 3
µ + cos θWBµ

, sin θW =
gY�

g2 + gY 2

The vector kinetic and mass terms of the lagrangian can now be rewritten as

−1

2
W+

µνW
−µν − 1

4
ZµνZ

µν − 1

4
AµνA

µν +m2
WW+

µ W−µ +
m2

Z

2
ZµZ

µ

where we defined the masses m2
W = g2v2

2 , m2
Z = (g2+gY

2)v2

2 . The field Aµ is massless and is interpeted as
the photon field.
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